Answer:
Let us check these out one at a time:
1. x + y is odd. FALSE. The sum of 2 odd numbers is even.
2. xy is odd. TRUE. The product of 2 odd numbers is odd.
3. x/y is odd. TRUE. The ratio of 2 odd numbers is odd, if the ratio is an integer.
4. x - y is odd. FALSE. The difference of 2 odd numbers is even.
Only statements 2 and 3 are TRUE, so that makes (C) the correct answer.
A car travels 1/8 mile in 2/13 minutes. What is the speed in terms of miles per minute?
Answer:
13/16 miles per minute
Step-by-step explanation:
Take the miles and divide by the minutes
1/8 ÷ 2/13
Copy dot flip
1/8 * 13/2
13/16 miles per minute
PLEASE CORRECT BEFORE ANSWERING I AM HAVING TROUBLE GETTING THINNGS RIGHT SO PLEASE HELP
9514 1404 393
Answer:
3
Step-by-step explanation:
AB is 1 unit long.
A'B' is 3 units long.
The scale factor is the ratio of these lengths:
scale factor = A'B'/AB = 3/1 = 3
ABC is dilated by a factor of 3 to get A'B'C'.
Use a table of values to graph the function ƒ(x) = x−−√. Choose the correct graph from the options below.
Answer:
B
Step-by-step explanation:
The square root function's graph is graph (b). This makes logical sense, because, when taking the square root (the principal root in particular), a general rule is that both the input and the output must be positive. Moreover, if one were to create a table of values to find points on the graph of the function, each of the points can be found on graph (b).
[tex]f(x)=\sqrt{x}[/tex]
x y
1 1
4 2
9 3
16 4
Therefore graph (B) is the correct answer.
What is the following product?
(V12+ V6 (16-V10
6-12-2130+6-2V15
-2 དུ་
6V3-615
31/7- V22+2/3-4
2V3+6-2V15
Answer:
The answer is A: 6√2 - 2√30 + 6 - 2√15
Believe me it right.
Evaluate − x 2 −5 y 3 when x = 4 and y =−1
Answer:
-11
Step-by-step explanation:
I am going to assume that it is -x^2-5y^3.
-(4^2)-5(-1^3)
-16-5(-1)
-16+5
-11
Answer:
- 11
Step-by-step explanation:
If x = 4, y = -1
then,
- x^2 - 5y^3 = - (4)^2 - 5(-1)^3
= - 16 + 5
= - 11
A drinking container is shaped like a cone and must hold at least 10 ounces of fluid. The radius of the top of the container is 2.25 inches. The steps for determining the height of the cone-shaped container are shown below.
9514 1404 393
Answer:
C. h ≥ 1.9 in
Step-by-step explanation:
As the final step, divide both sides of the inequality by 5.3:
(5.3h)/5.3 ≥ 10/5.3
h ≥ 1.9
The function ƒ(x) = x−−√3 is translated 3 units in the negative y-direction and 8 units in the negative x- direction. Select the correct equation for the resulting function.
Answer:
[tex]f(x)=\sqrt[3]{x}[/tex] [tex]3~units\: down[/tex]
[tex]f(x)=\sqrt[3]{x} -3[/tex] [tex]8 \: units \: left[/tex]
[tex]f(x+8)=\sqrt[3]{(x+8)} -3[/tex]
----------------------------
Hope it helps..
Have a great day!!
Answer:
its not B that what i put and i missed it
Step-by-step explanation:
Find the length of XW.
Answer:
XW = 78
Step-by-step explanation:
Both triangles are similar, therefore based on triangle similarity theorem we have the following:
XW/XZ = VW/YZ
Substitute
XW/6 = 104/8
XW/6 = 13
Cross multiply
XW = 13*6
XW = 78
Describe a rule for the transformation.
Answer: 90° counterclockwise
Step-by-step explanation:
it takes engineer 3 hrs to drive to his brother's house at an average of 50 miles per hour. if he takes same route home, but his average speed of 60 miles per hour, what is the time, in hours, that it takes him to drive home?
Answer:
t2 = 2.5 hours.
Step-by-step explanation:
The distance is the same.
d = r * t
The rates and times are different so
t1 = 3 hours
t2 = X
r1 = 50 mph
r2 = 60 mph
r1 * t1 = r2*t2
50 * 3 = 60 * t2
150 = 60 * t2
150 / 60 = t2
t2 = 2.5
Answer:
Answer: Travel Time is 2 hours & 30 minutes
Step-by-step explanation:
Original Journey Time is 3 hours, Speed is 50 mph, Distance is 150 miles
Original Distance is 150 miles, New Speed is 60 mph.
Also Combined Distance was 300 miles, Combined Time was 5 hours & 30 minutes. therefore: Average Speed for complete round trip is 54. 54 mph
someone find x for me lol
Hi there!
[tex]\large\boxed{x = 60^o}[/tex]
We know:
∠AGB ≅ ∠DGC because they are vertical angles. They both are 90°.
∠AGE ≅ FGC because they are vertical angles, equal 30°.
∠BGF ≅ ∠DGE are vertical angles, both equal x.
All angles sum up to 360°, so:
360° = 90° + 90° + 30° + 30° + x + x
Simplify:
360° = 240° + 2x
Subtract:
120° = 2x
x = 60°
Can someone explain how to solve this step by step? Thank you
Answer:
x=10
Step-by-step explanation:
Using the Rational Roots Test, we can say that the potential rational roots are
± (1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90).
Unfortunately, there doesn't really seem to be an easy way to figure out which numbers are actually roots outside of guess and check. Therefore, to solve this, we'll have to go through numbers until we hit something.
To make the process faster, I wrote a Python script as follows:
numbers = [1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90]
negative_numbers = [i * (-1) for i in numbers]
numbers = numbers + negative_numbers
for i in numbers:
if (i**3 - 10*(i**2) + 9*i-90) == 0:
print(i)
The result comes out as 10, meaning that 10 is our only rational root. Using the Factor Theorem, we can say that because 10 is a root, (x-10) is a factor of the polynomial. Using synthetic division, we can divide (x-10) from the polynomial to get
10 | 1 -10 9 -90
| 10 0 90
_________________
1 0 9 0
Therefore, we can say that
(x³-10x²+9x-90)/(x-10) = (x²+0x+9), so
x³-10x²+9x-90 = (x-10)(x²+9)
As the only solution to x²+9=0 contains imaginary numbers, x=10 is the only solution to x³-10x²+9x-90 = (x-10)(x²+9) = 0
6. A boy pushes his little brother in a box with a force of 500 N for 324 m How much work is this if the force of
friction acting on the sliding box is (a) 100 N (6) 250. N?
Answer:
(a) 129600 J
(b) 81000 J
Step-by-step explanation:
The work done is given by the product of force and the displacement in the direction of force.
Force, F = 500 N
distance, d = 324 m
(a) friction force, f = 100 N
The work done is
W = (F - f) x d
W = (500 - 100) x 324
W = 129600 J
(b) Friction, f = 250 N
The work done is
W = (F - f) d
W = (500 - 250) x 324
W = 81000 J
There are 84 students in a speech contest. Yesterday, 1/4 of them gave their speeches. Today, 3/7 of the remaining students gave their speeches. How many students still haven't given their speeches?
Answer:
36
Step-by-step explanation:
Total students un the contest = 84
Number of students who gave their speech yesterday:-
[tex] \frac{1}{4} \: of \: total \\ = \frac{1}{4} \times 84 \\ = 21[/tex]
so 21 students gave their speech yesterday
remaining students = 84 - 21= 63
Number of students who gave their speech today:-
[tex] \frac{3}{7} \: of \: remaining \\ = \frac{3}{7} \times 63 \\ = 27[/tex]
Number of students who have given their speech:-
= 21 + 27
= 48
Number of students who still haven't given their speech :-
= total - 48
= 84 - 48
= 36
identify the angles relationship
write your answer in simplest radical form
Answer:
n = 2
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp /adj
tan 30 = n / 2 sqrt(3)
2 sqrt(3) tan 30 = n
2 sqrt(3) * sqrt(3)/3 = n
2 = n
We have to find,
The required value of n.
Now we can,
Use the trigonometric functions.
→ tan(θ) = opp/adj
Let's find the required value of n,
→ tan (θ) = opp/adj
→ tan (30) = n/2√3
→ n = 2√3 × tan (30)
→ n = 2√3 × √3/3
→ n = 2√3 × 1/√3
→ [n = 2]
Thus, the value of n is 2.
describe how you could use the point-slope formula to find the equation of a line that is perpendicular to a given line and passes through a given point
Answer:
Using the slope intercept formula, we can see the slope of line p is ¼. Since line k is perpendicular to line p it must have a slope that is the negative reciprocal. (-4/1) If we set up the formula y=mx+b, using the given point and a slope of (-4), we can solve for our b or y-intercept. In this case it would be 17.
The regression analysis can be summarized as follows: Multiple Choice No significant relationship exists between the variables. A significant negative relationship exists between the variables. For every unit increase in x, y decreases by 12.8094. A significant positive relationship exists between the variables
Answer:
A significant negative relationship exists between the variables
Step-by-step explanation:
Base on the information given in the question which goes thus : For every unit increase in x, y decreases by 12.8094. The value 12.8094 is the slope which is the rate of change in y variable per unit change in the independent variable. The sign or nature of the slope Coefficient gives an hint about the relationship between the x and y variables. The slope Coefficient in this case is negative and thus we'll have a negative relationship between the x and y variables (an increase in x leads to a corresponding decrease in y). This is a negative association.
A jewelry box is in the shape of a rectangular prism with an area of 528 cubic inches. The length of the box is 12 inches and the height is 5 1/2 inches. What is the width of the jewelry box? A=LxWxH
please help. :)
Which of the following expressions are equivalent to -3x- 6/10
Choose all that apply:
A=3/6x1/10
b=- 3/10x-6
c= none of the above
Answer:
c= none of the above
Step-by-step explanation:
-3x- 6/10
This has two separate terms, a term with a variable
-3x and a term with a constant -6/10
A=3/6x1/10 This has only one term
b=- 3/10x-6 This has a different x term -3/10 which is not -3
c= none of the above
If he is correct, what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months
Complete Question
The quality control manager at a computer manufacturing company believes that the mean life of a computer is 91 months with a standard deviation of 10 months if he is correct. what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months? Round your answer to four decimal places. Answer How to enter your answer Tables Keypad
Answer:
[tex]P(-1.72<Z<1.72)=0.9146[/tex]
Step-by-step explanation:
From the question we are told that:
Population mean \mu=91
Sample Mean \=x =2.08
Standard Deviation \sigma=10
Sample size n=68
Generally the Probability that The sample mean would differ from the population mean
P(|\=x-\mu|<2.08)
From Table
[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]
T Test
[tex]Z=\frac{\=x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]
[tex]Z=\frac{2.08}{\frac{10}{\sqrt{68} } }[/tex]
[tex]Z=1.72[/tex]
[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]
[tex]P(-1.72<Z<1.72)[/tex]
Therefore From Table
[tex]P(-1.72<Z<1.72)=0.9146[/tex]
The average cost when producing x items is found by dividing the cost function, C(x), by the number of items,x. When is the average cost less than 100, given the cost function is C(x)= 20x+160?
A) ( 2, infinit)
B) (0,2)
C) (-infinit,0) U (2,infinit)
D) (- infinit,0] U [2,infinit)
9514 1404 393
Answer:
A) (2, ∞) . . . . or C) (-∞, 0) ∪ (2, ∞) if you don't think about it
Step-by-step explanation:
We want ...
C(x)/x < 100
(20x +160)/x < 100
20 +160/x < 100 . . . . . separate the terms on the left
160/x < 80 . . . . . . . subtract 20
160/80 < x . . . . . multiply by x/80 . . . . . assumes x > 0
x > 2 . . . . . . simplify
In interval notation this is (2, ∞). matches choice A
__
Technically (mathematically), we also have ...
160/80 > x . . . . and x < 0
which simplifies to x < 0, or the interval (-∞, 0).
If we include this solution, then choice C is the correct one.
_____
Comment on the solution
Since we are using x to count physical items, we want to assume that the practical domain of C(x) is whole numbers, where x ≥ 0, so this second interval is not in the domain of C(x). That is, the average cost of a negative number of items is meaningless.
What is the value of Z? Z =2^3
the value of Zis 8.
Z =2^3=8
Now we have to,
find the required value of Z.
→ Z = 2^3
→ [Z = 8]
Therefore, value of Z is 8.
Let f(x) = 5 + 12x − x^3. Find (a) the x- coordinate of all inflection points, (b)
the open intervals on which f is concave up, (c) the open intervals on which
f is concave down.
Answer:
A) x = 0.
B) f is concave up for (-∞, 0).
C) f is concave down for (0, ∞).
Step-by-step explanation:
We are given the function:
[tex]f(x)=5+12x-x^3[/tex]
A)
We want to find the x-coordinates of all inflection points.
Recall that inflections points (may) occur when the second derivative equals zero. Hence, find the second derivative. The first derivative is given by:
[tex]f'(x) = 12-3x^2[/tex]
And the second:
[tex]f''(x) = -6x[/tex]
Set the second derivative equal to zero:
[tex]0=-6x[/tex]
And solve for x. Hence:
[tex]x=0[/tex]
We must test the solution. In order for it to be an inflection point, the second derivative must change signs before and after. Testing x = -1:
[tex]f''(-1) = 6>0[/tex]
And testing x = 1:
[tex]f''(1) = -6<0[/tex]
Since the signs change for x = 0, x = 0 is indeed an inflection point.
B)
Recall that f is concave up when f''(x) is positive, and f is concave down when f''(x) is negative.
From the testing in Part A, we know that f''(x) is positive for all values less than zero. Hence, f is concave up for all values less than zero. Our interval is:
[tex](-\infty, 0)[/tex]
C)
From Part A, we know that f''(x) is negative for all values greater than zero. So, f is concave down for that interval:
[tex](0, \infty)[/tex]
Find the expression that is equivalent to 7(x2 – 5x + 1).
Answer:
7x^2 -35x +7
Step-by-step explanation:
7(x^2 – 5x + 1)
Distribute
7x^2 -7*5x +7*1
7x^2 -35x +7
Which is heavier, 4- kilograms
or
4
4 kilograms?
Answer:
i think 4 4 kilograms if im wrong sorry
Step-by-step explanation:
13 A traffic roundabout has a circular garden
in the centre and two lanes for traffic
encircling the garden. The diameter of the
garden is 16 metres and each lane is 3 metres
wide. Each lane is to be resurfaced. Calculate
the area to be resurfaced. Answer in square
metres to the nearest whole number.
Answer:
Step-by-step explanation:
The area to be resurfaced is the area of the
whole circle including garden and lanes minus
the area of the garden.
Area of a circle is (pi)r2
radius of garden is (1/2)diameter = 8 m
Garden area: (pi)82 = 64(pi) m2
Diameter of garden plus traffic lanes is
16 + 2(6) because we add 6 m to both sides
of the diameter of the garden.
Full diameter = 16+12 = 28 m
Full radius = 28/2 = 14 m
Full area: (pi)142 = 196(pi) m2
Area to be resurfaced:
196(pi) - 64(pi) = 132(pi) m2 ≅ 415 m2
What is the derivative of x^2?
Answer:
[tex]\displaystyle \frac{d}{dx}[x^2] = 2x[/tex]
General Formulas and Concepts:
Calculus
Differentiation
DerivativesDerivative NotationBasic Power Rule:
f(x) = cxⁿf’(x) = c·nxⁿ⁻¹Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = x^2[/tex]
Step 2: Differentiate
Basic Power Rule: [tex]\displaystyle \frac{dy}{dx} = 2x^{2 - 1}[/tex]Simplify: [tex]\displaystyle \frac{dy}{dx} = 2x[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
^please answer, thanks in advance ^
Answer:
There is not enough information to determine the mean, the median is 28.
There is not enough information to determine the mean absolute deviation, the interquartile range is 18
Step-by-step explanation:
The box plot given has a skewed distribution, this means that both the mean and median values are not the same. From a box plot, the median value Can be obtained as the point in between the box.
From the box plot given, the marked point in between the box is 28 cm
Hence, Median = 28 cm
The mean cannot be inferred from the skewed box plot.
There is also not enough information to determine the mean absolute deviation ;
The interquartile range:
(Q3 - Q1)
Q3 = upper quartile, the endpoint of the box = 40
Q1 = the starting point of the box = 22
IQR = Q3 - Q1
IQR = 40 - 22 = 18
The cost function in a computer manufacturing plant is C(x) = 0.28x^2-0.7x+1, where C(x) is the cost per hour in millions of dollars and x is the number of items produced per hour in thousands. Determine the minimum production cost.
9514 1404 393
Answer:
$562,500 per hour
Step-by-step explanation:
The cost will be a minimum where C'(x) = 0.
C'(x) = 0.56x -0.7 = 0
x = 0.7/0.56 = 1.25
The cost at that production point is ...
C(1.25) = (0.28×1.25 -0.7)1.25 +1 = -0.35×1.25 +1 = 0.5625
The minimum production cost is $562,500 per hour for production of 1250 items per hour.
_____
Additional comment
This is different than the minimum cost per item. This level of production gives a per-item cost of $450. The minimum cost per item is $358.30 at a production level of 1890 per hour.