Answer:
20%
Step-by-step explanation:
The total number of students is: 4 + 6 + 2 + 2 + 3 + 4 + 6 + 3 = 30 (students)
The probability is: 6/30 = 1/5 = 0.2 = 20%
The probability that the student is a male given that he's a sophomore is approximately 60%.
What is probability?It is the chance of an event to occur from a total number of outcomes.
The formula for probability is given as:
Probability = Number of required events / Total number of outcomes.
Example:
The probability of getting a head in tossing a coin.
P(H) = 1/2
We have,
The probability that the student is a male given that it's a sophomore can be calculated using the formula:
P(male | sophomore) = P(male and sophomore) / P(sophomore)
The number of male sophomores is 6, and the total number of sophomores is 6+4=10.
So, the probability of selecting a sophomore is:
P(sophomore)
= (number of sophomores) / (total number of students)
= 10 / 23
The number of male sophomores is 6.
So,
The probability of selecting a male sophomore is:
P(male and sophomore) = 6 / 23
Therefore,
The probability that the student is a male given that it's a sophomore is:
P(male | sophomore)
= (6 / 23) / (10 / 23)
= 6 / 10
= 3 / 5
Rounding to the nearest whole percent, we get:
P(male | sophomore) ≈ 60%
Thus,
The probability that the student is a male given that he's a sophomore is approximately 60%.
Learn more about probability here:
https://brainly.com/question/14099682
#SPJ7
please help me with this on the image
Answer:
6ab
Step-by-step explanation:
What is the measurement of N?
Answer:
the measurement of N is D, 81.
Step-by-step explanation:
The angle measurement of a Right Angled Triangle is 90 degrees. And based off the angle dimension given in the image above ( 9 degrees ), you need to subtract 90 ( the angle dimension of the triangle) with the angle dimension given (9 degrees) which gets you to an answer of 81 degrees.
Select the correct answer. Which graph represents this inequality? y ≥ 4x − 3
Step-by-step explanation:
You didn't put the graph, but you can compare between your graphs and the picture.
Brainliest please
The graph that represents this inequality y ≥ 4x − 3 is attached below.
What is a solution set to an inequality or an equation?If the equation or inequality contains variable terms, then there might be some values of those variables for which that equation or inequality might be true. Such values are called solution to that equation or inequality. Set of such values is called solution set to the considered equation or inequality.
We are given that the inequality is;
y ≥ 4x − 3
The slope of the inequality is 4.
The equation of the red line is y = 4x − 3
The shading is above the line and the line is solid, that means y is greater than or equal 4x − 3
The graph of this inequality y ≥ 4x − 3 is attached below.
Learn more about inequalities here:
https://brainly.com/question/27425770
#SPJ2
According to the scale drawing, how wide will the actual patio be?
m
Garden
Patio
7 cm
Scale 1 cm: 2 m
The width of the actual garden patio according to the scale drawing is 14 meters.
What is an equation?An equation is an expression that shows the relationship between two or more numbers and variables.
An independent variable is a variable that does not depends on other variable while a dependent variable is a variable that depends on other variable.
Given the scale of 1 cm : 2 m
For a patio of 7 cm, then:
Actual patio = 7 cm / (1 cm/ 2m) = 14 m
The width of the actual garden patio according to the scale drawing is 14 meters.
Find out more on equation at: brainly.com/question/2972832
#SPJ1
3w2 – 21w = 0
Need some help.
Answer:
The solutions are w=0 ,7
Step-by-step explanation:
3w^2 – 21w = 0
Factor out 3w
3w(w-7) =0
Using the zero product property
3w=0 w-7=0
w =0 w=7
The solutions are w=0 ,7
distance between 4, -4 and -7, -4
Step-by-step explanation:
here's the answer to your question
Answer: Distance = 11
Step-by-step explanation:
Concept:
Here, we need to know the idea of the distance formula.
The distance formula is the formula, which is used to find the distance between any two points.
If you are still confused, please refer to the attachment below for a clear version of the formula.
Solve:
Find the distance between A and B, where:
A (4, -4)B (-7, -4)[tex]Distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}[/tex]
[tex]Distance=\sqrt{(4+7)^2+(-4+4)^2}[/tex]
[tex]Distance=\sqrt{(11)^2+(0)^2}[/tex]
[tex]Distance=\sqrt{121+0}[/tex]
[tex]Distance=\sqrt{121}[/tex]
[tex]Distance=11[/tex]
Hope this helps!! :)
Please let me know if you have any questions
URGENT HELP
The gradient of the tangent to the curve y = ax + bx^3 at the point (2, -4) is 6.
Determine the unknowns a and b.
a=?
b=?
Answer:
a = -6
b = 1
Step-by-step explanation:
The gradient of the tangent to the curve y = ax + bx^3, will be:
dy/dx = a + 3bx²
at (2, -4)
dy/dx = a+3b(2)²
dy/dx = a+12b
Since the gradient at the point is 6, then;
a+12b = 6 ....1
Substitute x = 2 and y = -4 into the original expression
-4 = 2a + 8b
a + 4b = -2 ...2
a+12b = 6 ....1
Subtract
4b - 12b = -2-6
-8b = -8
b = -8/-8
b = 1
Substitute b = 1 into equation 1
Recall from 1 that a+12b = 6
a+12(1) = 6
a = 6 - 12
a = -6
Hence a = -6, b = 1
At the city museum, child admission is S5.80 and adult admission is $9.20. On Monday, twice as many adult tickets as child tickets
were sold, for a total sales of $895.40. How many child tickets were sold that day?
[tex]You can call c the number of children and a for adults; you get:5.20c+8.50a=1097.60anda=4c meaning that the number of adults was four times the children.Substituting this value of a into the first equation we get:5.2c+8.5(4c)=1097.65.2c+34c=1097.6rearranging:c=1097.639.2=28and so:a=4c=4⋅28=112[/tex]
I got: 28 children and 112 adults.
Find the x- and y-intercepts of the following line: 4x − 3y = 12
Answer:
x-intercept: (3,0)
y-intercept: (0,-4)
Step-by-step explanation:
To find the x and y-intercepts, we first need to understand what they are. X and y-intercepts are points on the line that passes through the x-axis and y-axis. When a point is an x-intercept, it passes through the x-axis. This means the x-coordinate is an integer, while the y-coordinate is always 0. This can be denoted by (x,0). When a point is a y-intercept, it passes through the y-axis. This means the y-coordinate is an integer, while the x-coordinate is always 0. This can be denoted by (0,y).
Now that we know what x and y-intercepts are, we can plug in x=0 and y=0 to find the intercepts.
x-intercept
4x-3y=12 [plug in y=0]
4x-3(0)=12 [multiply]
4x-0=12 [add both sides by 0]
4x=12 [divide both sides by 4]
x=3
---------------------------------------------------------------------------------------------------------
y-intercept
4x-3y=12 [plug in x=0]
4(0)-3y=12 [multiply]
0-3y=12 [subtract both sides by 0]
-3y=12 [divide both sides by -3]
y=-4
Therefore, the x-intercept is (3,0) and y-intercept is (0,-4).
Initial amount problem help
Answer:
3000
growth
2.2%
Step-by-step explanation:
Evaluate each expression.
The work done by a machine in 2 minutes is 480J. Calculate the power of the machine
Answer:
I think the power is 4
Step-by-step explanation:
480J / 120 = 4
Put 2 mins into seconds which is 120 seconds
Sorry if it is wrong :)
Answer:
[tex]4\text{ watts}[/tex]
Step-by-step explanation:
In physics, the power of a machine is given by [tex]P=\frac{W}{\Delta t}[/tex], where [tex]W[/tex] is work in Joules and [tex]\Delta t[/tex] is time in seconds.
Convert 2 minutes into seconds:
2 minutes = 120 seconds.
Substitute [tex]W=480[/tex] and [tex]\Delta t=120[/tex] to solve for [tex]P[/tex]:
[tex]P=\frac{480}{120}=\boxed{4\text{ watts}}[/tex]
Directions: Use the figure to write the symbol for each.
1. I ray
2. a plane
А
3. 3 points
4. 2 lines
5. 3 angles
6. 3 line segments
D
Geometry
156
Total Math Grade 6
I need help ASAP please due tomorrow 6th grade geometry
The sum of two binomials is 12x2 − 5x. If one of the binomials is x2 − 2x, the other binomial is:
1. 11x2 − 7x.
2. 12x2 − 3x.
3. 11x2 − 3x.
4. None of these choices are correct.
Answer:
C. 11x² - 3x
Step-by-step explanation:
(12x² - 5x) - (x² - 2x)
12x² - 5x - x² + 2x
12x - x² - 5x + 2x
11x² - 3x
helppp .....................
Answer:
D represents a proportional relationship
Step-by-step explanation:
Proportional graphs always intersect with zero
А _______ equation can be written in the form ax2 + bx+c=0 where a, b, and c are real numbers, and a is a nonzero number.
Fill in the blank.
A) quadratic
B) quartic
C) linear
D) cubic
Wrong answers WILL be reported. Thanks!
Answer:
A) quadratic
Step-by-step explanation:
ax2 + bx+c=0
Since the highest power of the equation is 2
A) quadratic -2
B) quartic- 4
C) linear- 1
D) cubic-3
How does the rate of change of f(x)=3x+5 compare to the rate of change of g(x)=2x+5 ?
HELP I NEED ANSWERS
Answer:
The rate of change of f(x) is faster than the rate of change of g(x).
General Formulas and Concepts:
Algebra I
Slope-Intercept Form: y = mx + b
m - slope b - y-interceptStep-by-step explanation:
*Note:
Rate of Change is determined by slope.
Step 1: Define
f(x) = 3x + 5
↓ Compare to y = mx + b
Slope m = 3
g(x) = 2x + 5
↓ Compare to y = mx + b
Slope m = 2
Step 2: Answer
We can see that the slope of f(x) is greater than g(x).
∴ the rate of change of f(x) would be greater than g(x).
can you help me with these high rated questions
I wish you will help me with his highlighted questions
Answer:
52 is (a)
55 is.( d)
56. is (d)
5 = –6x2 + 24x
5 = –6(x2 – 4x)
inside the parentheses and
.
–19 = –6(x – 2)2
StartFraction 19 Over 6 EndFraction = (x – 2)2
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot = x – 2
The two solutions are
Plus or minus StartRoot StartFraction 19 Over 6 EndFraction EndRoot.
Answer:
x = 2 - sqrt(19/6)
x = 2 + sqrt(19/6)
Step-by-step explanation:
Answer:
add 4
subtract 24 from 5
2
Step-by-step explanation:
Open the graphing tool one last time. Compare the graphs of y=log (x-k) and y=log x+k in relation to their domain, range, and asymptotes. Describe what you see.
Answer:
sorry I don't know the answer
Answer:
For the equation y=log(x-k), the domain depends on the value of K. Sliding K moves the left bound of the domain interval. The range and the right end behavior stay the same. For the equation y=log x+k, the domain is fixed, starting at an x-value of 0. The vertical asymptote is also fixed. The range of the equation depends on K.
Step-by-step explanation:
Betty received $ 500,000 from a life insurance policy to be distributed to her as an annuity certain in 10 equal annual installments with the first payment made immediately. On the day she receives her third payment, she is offered a monthly perpetuity of X in lieu of the future annual payments. The first payment will be made in exactly one month. The effective annual rate of interest is 8 %. Determine the value of X.
9514 1404 393
Answer:
annual payment: $68,995.13monthly payment in perpetuity: X = $2394.76Step-by-step explanation:
a) For payments made at the beginning of the period, the annuity is called an "annuity due." The formula in the first attachment tells how to compute the payment for a given present value ($500,000), number of periods (N=10), and interest rate (i=0.08).
pmt = $500,000/(1 +(1 -(1 +i)^(-N+1))/i) = $500,000/(1 +(1 -(1.08^-9))/.08)
pmt ≈ $68,995.13 . . . . annual payment
__
b) After the first payment, the account balance is ...
$500,000 -68,995.13 = $431,004.87
After subsequent payments, the account balance will be ...
$431,004.87×1.08 -68,995.13 = $396,490.13 . . . after 2nd payment
$396,490.13×1.08 -68,995.13 = $359,214.21 . . . after 3rd payment
The payment amount that can be made in perpetuity is the amount of the monthly interest on this balance:
X = $359,214.21 × (0.08/12) = $2394.76
10 ft wide by 14 ft long. if the ceiling is 8 ft high. what is the area of the four walls?
Answer: 80
Step-by-step explanation:
The winter group provides tax advice
what? ;-;.............
Find the values of c such that the area of the region bounded by the parabolas y = 4x2 − c2 and y = c2 − 4x2 is 32/3. (Enter your answers as a comma-separated list.)
Answer:
-2,2
Step-by-step explanation:
Let
[tex]y_1=4x^2-c^2[/tex]
[tex]y_2=c^2-4x^2[/tex]
We have to find the value of c such that the are of the region bounded by the parabolas =32/3
[tex]y_1=y_2[/tex]
[tex]4x^2-c^2=c^2-4x^2[/tex]
[tex]4x^2+4x^2=c^2+c^2[/tex]
[tex]8x^2=2c^2[/tex]
[tex]x^2=c^2/4[/tex]
[tex]x=\pm \frac{c}{2}[/tex]
Now, the area bounded by two curves
[tex]A=\int_{a}^{b}(y_2-y_1)dx[/tex]
[tex]A=\int_{-c/2}^{c/2}(c^2-4x^2-4x^2+c^2)dx[/tex]
[tex]\frac{32}{3}=\int_{-c/2}^{c/2}(2c^2-8x^2)dx[/tex]
[tex]\frac{32}{3}=2\int_{-c/2}^{c/2}(c^2-4x^2)dx[/tex]
[tex]\frac{32}{3}=2[c^2x-\frac{4}{3}x^3]^{c/2}_{-c/2}[/tex]
[tex]\frac{32}{3}=2(c^2(c/2+c/2)-4/3(c^3/8+c^3/28))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{4}{3}(\frac{c^3}{4}))[/tex]
[tex]\frac{32}{3}=2(c^3-\frac{c^3}{3})[/tex]
[tex]\frac{32}{3}=2(\frac{2}{3}c^3)[/tex]
[tex]c^3=\frac{32\times 3}{4\times 3}[/tex]
[tex]c^3=8[/tex]
[tex]c=\sqrt[3]{8}=2[/tex]
When c=2 and when c=-2 then the given parabolas gives the same answer.
Therefore, value of c=-2, 2
What is a1
of the arithmetic sequence for which a3=126
and a64=3,725
a
64
=
3
,
725
?
In an arithmetic sequence, every pair of consecutive terms differs by a fixed number c, so that the n-th term [tex]a_n[/tex] is given recursively by
[tex]a_n=a_{n-1}+c[/tex]
Then for n ≥ 2, we have
[tex]a_2=a_1+c[/tex]
[tex]a_3=a_2+c = (a_1+c)+c = a_1 + 2c[/tex]
[tex]a_4=a_3+c = (a_1 + 2c) + c = a_1 + 3c[/tex]
and so on, up to
[tex]a_n=a_1+(n-1)c[/tex]
Given that [tex]a_3=126[/tex] and [tex]a_{64}=3725[/tex], we can solve for [tex]a_1[/tex]:
[tex]\begin{cases}a_1+2c=126\\a_1+63c=3725\end{cases}[/tex]
[tex]\implies(a_1+63c)-(a_1+2c)=3725-126[/tex]
[tex]\implies 61c = 3599[/tex]
[tex]\implies c=59[/tex]
[tex]\implies a_1+2\times59=126[/tex]
[tex]\implies a_1+118 = 126[/tex]
[tex]\implies \boxed{a_1=8}[/tex]
Complete the table for the function y = x−−√3 + 7.
Answer:
option D (5 6 8 9) is the answer
Answer:
X [tex]\Longrightarrow -8\Longrightarrow -1\Longrightarrow 1\Longrightarrow 8[/tex]
Y[tex]\Longrightarrow 5\Longrightarrow 6\Longrightarrow 8\Longrightarrow 9[/tex]
[tex]Answer\hookrightarrow D)[/tex]
-------------------------
Hope it helps...
Have a great day!!
Suppose 5 men and 7 women are on a crowded elevator. At the next floor, four people get off the elevator. Find the probability that three are women.
0.010
0.354
0.424
0.25
Answer:
B. 0.354Step-by-step explanation:
Combination of 4 out of 5 + 7 = 12 is:
12C4 = 12!/8!4! = 495Combination of 1 man and 3 women is:
5C1*7C3 = 5*7!/4!3! = 5*35 = 175Required probability:
P(3W) = 175/495 ≈ 0.353Correct choice is B
Use the procedures developed to find the general solution of the differential equation. (Let x be the independent variable.)
2y''' + 15y'' + 24y' + 11y= 0
Solution :
Given :
2y''' + 15y'' + 24y' + 11y= 0
Let x = independent variable
[tex](a_0D^n + a_1D^{n-1}+a_2D^{n-2} + ....+ a_n) y) = Q(x)[/tex] is a differential equation.
If [tex]Q(x) \neq 0[/tex]
It is non homogeneous then,
The general solution = complementary solution + particular integral
If Q(x) = 0
It is called the homogeneous then the general solution = complementary solution.
2y''' + 15y'' + 24y' + 11y= 0
[tex]$(2D^3+15D^2+24D+11)y=0$[/tex]
Auxiliary equation,
[tex]$2m^3+15m^2+24m +11 = 0$[/tex]
-1 | 2 15 24 11
| 0 -2 - 13 -11
2 13 11 0
∴ [tex]2m^2+13m+11=0[/tex]
The roots are
[tex]$=\frac{-b\pm \sqrt{b^2-4ac}}{2a}$[/tex]
[tex]$=\frac{-13\pm \sqrt{13^2-4(11)(2)}}{2(2)}$[/tex]
[tex]$=\frac{-13\pm9}{4}$[/tex]
[tex]$=-5.5, -1$[/tex]
So, [tex]m_1, m_2, m_3 = -1, -1, -5.5[/tex]
Then the general solution is :
[tex]$= (c_1+c_2 x)e^{-x} + c_3 \ e^{-5.5x}$[/tex]
whats 2 plus 2
*just trying to help someone get points* :)
Answer:4 ma boi
Step-by-step explanation:
Answer:
14
Step-by-step explanation:
because I am god at meth and very smart
simplify
log(125) + log(625) / log(25) - log(5)
Answer:
3.39794000867
Step-by-step explanation:
first add log 125 and 625 and divide the answer by log 25 and minus the answer by 5
Answer:
The answer is 7.