Answer:
x = 10
Step-by-step explanation:
Since B is the midpoint of AC then AB = BC = 3x - 4 and
AB + BC = AC , thus
3x - 4 + 3x - 4 = 52, that is
6x - 8 = 52 ( add 8 to both sides )
6x = 60 ( divide both sides by 6 )
x = 10
What are the dimensions of the matrix?
The order of a matrix is m×n where m is the number of rows and n is the number of columns.
can you count and find what are m and n here?
Answer:
Step-by-step explanation:
Number of rows X Number of columns
Rows = 3
Columns = 2
answer = 3x2
which is the solution set of 18 - 3n + 2 = n + 20 - 4n Ф 0 all reals
Answer:
all reals
Step-by-step explanation:
Simplified, you have ...
20 -3n = 20 -3n
The equation is a tautology, true for all values of n.
The solution set is "all reals."
What is the slope of the line that passes through the points (-10, 8) and
(-15, – 7)? Write your answer in simplest form.
Answer:
[tex]slope=3[/tex]
Step-by-step explanation:
Use the following equation the find the slope:
[tex]\frac{y_{2}-y_{1}}{x_{2}-x_{1}} =\frac{rise}{run}[/tex]
Rise over run is the change in the y-axis over the change in the x-axis from one point to the other. This is also known as the "slope". Insert the known values:
[tex](-10_{x1},8_{y1})\\\\(-15_{x2},-7_{y2})\\\\\\\frac{-7-8}{-15-(-10)}\\\\\frac{-7-8}{-15+10}[/tex]
Solve:
[tex]\frac{-7-8}{-15+10}=\frac{-15}{-5}[/tex]
Simplify. Two negatives make a positive:
[tex]\frac{-15}{-5}=\frac{15}{5}[/tex]
Simplify fraction by dividing top and bottom by 5:
[tex]\frac{15}{5}=\frac{3}{1} =3[/tex]
The slope is 3.
:Done
The slope of the line that passes through the points (-10, 8) and (-15, -7) is 3 and thsi can be determined by using the point-slope formula.
Given :
The line that passes through the points (-10, 8) and (-15, -7).
The following steps can be used in order to determine the slope of the line that passes through the points (-10, 8) and (-15, -7):
Step 1 - The slope formula when two points are given is:
[tex]\rm m = \dfrac{y_2-y_1}{x_2-x_1}[/tex]
where m is the slope and [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are the points on the line.
Step 2 - Substitute the known terms in the above formula.
[tex]\rm m = \dfrac{-7-8}{-15+10}[/tex]
Step 3 - Simplify the above expression.
[tex]\rm m = \dfrac{15}{5}[/tex]
m = 3
For more information, refer to the link given below:
https://brainly.com/question/2514839
Consider the equation x2+4x+9=0 in standard form. Which equation shows the coefficients a, b, and c correctly substituted into the quadratic formula? Please show all steps to get to the answer, please!!
Answer:
x = -2+i√5 and -2i-√5Step-by-step explanation:
The general form of a quadratic equation is ax²+bx+c = 0
Given the quadratic equation x²+4x+9=0 in its standard form, on comparing with the general equation we can get the value of the constant a, b and c as shown;
ax² = x²
a = 1
bx = 4x
b = 4
c = 9
The quadratic formula is given as x = -b±√(b²-4ac)/2a
Substituting the constant;
x = -4±√(4²-4(1)(9))/2(1)
x = -4 ±√(16-36)/2
x = -4±√-20/2
x = -4±(√-1*√20)/2
Note that √-1 = i
x = -4±(i√4*5)/2
x = (-4±i2√5)/2
x = -4/2±i2√5/2
x = -2±i√5
The solution to the quadratic equation are -2+i√5 and -2i-√5
Th sum of a number and two is equal to eight
The equation?
Answer:
2+n = 8
Step-by-step explanation:
2+ something must equal 8.
8 minus 2 = 6
n=6
Answer:
Let the number be n.
According to question,
2+ n =8
=) n = 8-2
=) n =6
hope you understand.
PLS SOMEONE HELP ME ON THIS QUESTION!!!!! I WILL GIVE BRAINLIEST TO THE BEST ANSWER!!!!
Answer:
C.
Step-by-step explanation:
When you replace x by x - h, the graph is shifted h units horizontally.
Here, x is replaced by x - 6.
x - h = x - 6
h = 6
6 is positive, so the shift is 6 units to the right.
Answer: C.
the volume of a solid come is 616cm^3. Find it's height if the base radius is 7cm
Answer:
height = 4cm
Step-by-step explanation:
volume = п r² h
п = 3.14 (aprox.)
r = radius
h = height
volume = 616cm³
then:
616 = 3.14 * 7² * h
616 = 3.14*49*h
616 = 153,86 * h
h = 616 / 153.86
h = 4
height = 4cm
Answer:
Your answer is
Step-by-step explanation:
If u multiply 616cm^3 multipied by 7 cm gives you the correct answer because volume multiplied by radius=height of that particular object.Hope this helps....
Have a nice day!!!!
What is the equation for the line of symmetry in this figure?
Answer:
x = -1
Step-by-step explanation:
the line of the simetry is x = -1
Answer:
Its x = -1 because it splits the diamond shape perfectly at x -1
Step-by-step explanation:
Complete the equation. Answer as a fraction in its simplest form.
9xy * (2/3x)*3 = ( [ ] a0 / [ ] a1 ) x*4y
Answer:
a0 = 8a1 = 3Step-by-step explanation:
[tex]9xy\cdot(\frac{2}{3}x)^3=3^2xy\cdot\dfrac{2^3x^3}{3^3}\\\\=\dfrac{8}{3^{3-2}}x^4y=\boxed{\dfrac{8}{3}}x^4y[/tex]
__
The applicable rules of exponents are ...
(ab)^c = (a^c)(b^c)
(a^b)/(a^c) = 1/(a^(c-b))
What is the equation, in point-slope form, of the line
that is parallel to the given line and passes through the
point (-3, 1)?
y-1=- Ž(x+3)
y-1=-{(x + 3)
y-1= {(x+3)
y-1= {(x+3)
Answer: [tex](y-1)=\dfrac{3}{2}(x+3)[/tex]
Step-by-step explanation:
Slope of the given line passing through (-2,-4) and (2,2) :
m= [tex]\dfrac{y_2-y_1}{x_2-x_1}[/tex]
[tex]=\dfrac{2-(-4)}{2-(-2)}\\\\=\dfrac{2+4}{2+2}=\dfrac{6}{4}\\\\=\dfrac{3}{2}[/tex]
Parallel lines has same slope . That means slope of required line would be [tex]\dfrac{3}{2}[/tex].
Equation of a line passing through (a,b) and has slope 'm' is given by :_
[tex](y-b)=m(x-a)[/tex]
Now, Equation of a line passing through(-3, 1) and has slope '[tex]\dfrac{3}{2}[/tex]' is given by
[tex](y-1)=\dfrac{3}{2}(x-(-3))\\\\\Rightarrow\ (y-1)=\dfrac{3}{2}(x+3)\ \ \to \text{Required equation in point slope form.}[/tex]
I REALLY NEED HELP PLEASE HELP ME :(
Answer:
I may be wrong but I think 8 is your answer.
Step-by-step explanation:
(-1)^(3/7) x 128^(3/7)
-1 x 128^3/7
128^(3/7) = 8
= 8
Which of the following is the first step when copying a line segment to construct a new line segment?
a. draw a line segment
b. use a straight edge to connect the point not on the line segment to a point in the arc
c. plot a point not on the original line segment
d. draw an arc
Answer:
The correct option is;
c. Plot a point not on the original line segment
Step-by-step explanation:
The steps to copy a line segment are;
1) Plot a point that will be an endpoint of the new line segment
2) With the compass pin at the beginning of the original line segment, open the compass width to the end of the original line segment
3) With the adjusted compass width from the above step place the compass pin at the plotted point of the new line segment and draw an arc in the region the new line segment is to be located
4) Select a point on the arc where the other end of the new line will be
5) From the selected point from the above step, draw a line to the point plotted as the beginning of the new line segment
6) The length of the line drawn above is the same as the length of the original line segment.
Solve for x and draw a number line. 3x−91>−87 AND 17x−16>18
Answer:
I hope this will help!
Step-by-step explanation:
(10 PTS) How do I solve for this? Please show work
Answer:
4
Step-by-step explanation:
8 ^ 2/3
Rewriting 8 as 2^3
( 2^3) ^ 2/3
We know that a^ b^c = a^ (b*c)
2 ^ ( 3 * 2/3)
2 ^ 2
4
A train travels 250 km with a average speed of 75 km/hr and 350 km with 70km/hr and 200 km with average speed of 30km/hr. What will the average speed of whole journey of the train?
Answer:
53 1/3 km/h
Step-by-step explanation:
average speed = (total distance)/(total time)
average speed = distance/time
time * average speed = distance
time = distance/(average speed)
250 km at 75 km/h
distance = 250 km
time = (250 km)/(75 km/h) = 3.33333... hours
350 km at 70 km/h
distance = 350 km
time = (350 km)/(70 km/h) = 5 hours
200 km at 30 km/h
distance = 200 km
time = (200 km)/(30 km/h) = 6.6666... hour
total distance = 250 km + 350 km + 200 km = 800 km
total time = 3.33333... hours + 5 hours + 6.66666... hours = 15 hours
average speed = (total distance)/(total time)
average speed = (800 km)/(15 hours)
average speed = 53 1/3 km/h
The average speed of whole journey of the train is 45 km/hr
Average speed is the ratio of total distance travelled to total time taken. It is given by:
Average speed = total distance / total time
Given that a train travels 250 km with a average speed of 75 km/hr, hence:
75 = 250/time
time = 3.33 hours
It the travel 200 km with average speed of 30km/hr, hence:
30 = 200/time
time = 6.67 hours
The total distance = 200 km + 250 km = 450 km
The total time = 3.33 hr + 6.67 hr = 10 hours
Average speed = total distance/total time = 450 km/10 hours = 45 km/hr
The average speed of whole journey of the train is 45 km/hr
Find out more at: https://brainly.com/question/12322912
Find the volume of a pyramid with a square base, where the side length of the base is 17 in 17 in and the height of the pyramid is 9 in 9 in. Round your answer to the nearest tenth of a cubic inch.
Answer:
The volume of the pyramid is 867 inch^3
Step-by-step explanation:
Here in this question, we are interested in calculating the volume of a square based pyramid.
Mathematically, we can use the formula below to calculate the volume V of a square based pyramid.
V = a^2h/3
where a represents the length of the side of the square and h is the height of the pyramid
From the question, the length of the side of the square is 17 in while the height is 9 in
Plugging these values, we have ;
V = (17^2 * 9)/3 = 17^2 * 3 = 867 cubic inch
Describe how to solve an absolute value equation
*will give brainliest*
Answer:
Step 1: Isolate the absolute value expression.
Step2: Set the quantity inside the absolute value notation equal to + and - the quantity on the other side of the equation.
Step 3: Solve for the unknown in both equations.
Step 4: Check your answer analytically or graphically.
Step-by-step explanation:
Answer:
Rewrite the absolute value equation as two separate equations, one positive and the other negative
Solve each equation separately
After solving, substitute your answers back into original equation to verify that you solutions are valid
Write out the final solution or graph it as needed
Step-by-step explanation:
Calculate JK if LJ = 14, JM = 48, and LM = 50
Answer:
JK = 6.86
Step-by-step explanation:
The parameters given are;
LJ = 14
JM = 48
LM = 50
[tex]tan(\angle JML )= \dfrac{Opposite \ leg \ length}{Adjacent \ leg \ length} = \dfrac{LK}{JM} = \dfrac{14}{48} = \dfrac{7}{24}[/tex]
[tex]tan \left( \dfrac{7}{24} \right)= 16.26 ^{\circ }[/tex]
∠JML = 16.26°
Given that ∠JML is bisected by KM, we apply the angle bisector theorem which states that a ray that bisects an interior angle of a triangle bisects the opposite (bisected angle facing side) in the proportion of the ration of the other two sides of the triangle.
From the angle bisector theorem, we have;
LM/JM = LK/JK
50/48 = LK/JK................(1)
LK + KJ = 14.....................(2)
From equation (1), we have;
LK = 25/24×JK
25/24×KJ + JK = 14
JK×(25/24 + 1) = 14
JK × 49/24 = 14
JK = 14×24/49 = 48/7. = 6.86.
JK = 6.86
john always wears a shirt, pants, socks, and shoes. he owns 12 pairs of socks, 3 pairs of shoes, 5 pairs of pants, and 5 shirts. how many different outfits can john make? PLEASE ANSWER
Answer:
900 outfits
Step-by-step explanation:
You just have to multiply them all together :)
The function f(x)=x^2 + ax + b has a minimum at (3,9) what are the values of a and b
Answer:
Step-by-step explanation:
The function is f(x)=x^2 + ax + b
Derivate the function:
● f'(x)= 2x + a
Solve the equation f'(x)=0 to find a
The minimum is at (3,9)
Replace x with 9
● 0 = 2×3 + a
● 0 = 6 + a
● a = -6
So the value of a is -6
Hence the equation is x^2 -6x+b
We have a khown point at (3,9)
● 9 = 3^2 -6×3 +b
● 9 = 9 -18 + b
● 9 = -9 +b
● b = 18
So the equation is x^2-6x+18
Verify by graphing the function.
The vetex is (3,9) and it is a minimum so the equation is right
For a ,a relationship to be a function, which values cannot repeat: the x-
values or the y-values? *
Answer:
The x - valuesThe y-values repeat in various functions (for example: quadratic function: y=x²; y=4 for x=2 and for x=-2)
What is the value of x in the equation 3x-4y=65, when y=4?
x=13 1/4
x=21 2/3
x =23
x = 27
Hello there! :)
Answer:
[tex]\huge\boxed{x = 27}[/tex]
Given the equation:
3x - 4y = 65 where y = 4
Substitute in 4 for "y":
3x - 4(4) = 65
Simplify:
3x - 16 = 65
Add 16 to both sides:
3x - 16 + 16 = 65 + 16
3x = 81
Divide both sides by 3:
3x/3 = 81/3
x = 27.
In 2002, the population of a district was 22,800. With a continuous annual growth rate of approximately 5% what will the population be in 2012 according to the exponential growth function?
Answer:
37,139
Step-by-step explanation:
Given the following :
Population in 2002 = Initial population (P0) = 22,800
Growth rate (r) = 5% = 0.05
Growth in 2012 using the exponential growth function?
Time or period (t) = 2012 - 2002 = 10years
Exponential growth function:
P(t) = P0 * (1 + r) ^t
Where P(t) = population in t years
P(10) = 22800 * (1 + 0.05)^10
P(10) = 22800 * (1.05)^10
P(10) = 22800 * 1.62889
P(10) = 37138.797
P(10) = 37,139 ( to the nearest whole number)
(x+3)(x-5)=(x+3)(x−5)=
Answer:
All real numbers are solutions. 0=0
Step-by-step explanation:
(x+3)(x−5)=(x+3)(x−5)
Step 1: Simplify both sides of the equation.
x2−2x−15=x2−2x−15
Step 2: Subtract x^2 from both sides.
x2−2x−15−x2=x2−2x−15−x2
−2x−15=−2x−15
Step 3: Add 2x to both sides.
−2x−15+2x=−2x−15+2x
−15=−15
Step 4: Add 15 to both sides.
−15+15=−15+15
0=0
All real numbers are solutions.
n urn contains 3 red balls, 9 green, 2 yellow, 2 orange, and 4 purple balls. Two balls aredrawn, one at a time with replacement. Find the probability of drawing a green ball and an orangeball.
Answer:
[tex]\frac{9}{100}[/tex]
Step-by-step explanation:
Given:
Number of red balls, n(R) = 3
Number of green balls, n(G) = 9
Number of yellow balls, n(Y) = 2
Number of orange balls, n(O) = 2
Number of purple balls, n(P) = 4
Two balls are drawn one at a time with replacement.
To find:
Probability of drawing a green ball and an orange ball ?
Solution:
Total number of balls, n(Total) = 3 + 9 + 2 + 2 + 4 = 20
Formula for probability of an event E is given as:
[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]
Probability that a green ball is drawn at first:
[tex]P(Green) = \dfrac{\text{Number of Green balls}}{\text {Total number of Balls}}[/tex]
[tex]P(Green) = \dfrac{9}{20}[/tex]
Now, the ball is replaced , so total number of balls remain the same i.e. 20.[tex]P(Orange) = \dfrac{\text{Number of Orange balls}}{\text {Total number of Balls}}[/tex]
[tex]P(Orange) = \dfrac{2}{20} = \dfrac{1}{10}[/tex]
[tex]P(Green\ then\ orange) = P(Green) \times P(Orange)\\\Rightarrow P(Green\ then\ orange) = \dfrac{9}{10} \times \dfrac{1}{10}\\\Rightarrow P(Green\ then\ orange) = \bold{ \dfrac{9}{100} }[/tex]
Use the discriminant to determine the number of real solutions to the equation.
2n2+n=4
Answer:
Step-by-step explanation:
Hello,
[tex]2n^2+n-4=0\\\\\Delta=b^2-4ac=1^2-4*2*(-4)=1+32=33>0[/tex]
So there are 2 distinct real solutions.
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
* Graph these numbers on a number line.
-5,3, -2,1
-5
-5,3,-2,1 on a number line
<-|----|----|----|----|----|----|----|----|->
-5 -2 0 1 3
ASAP PLEASE GIVE CORRECT ANSWER
In a rectangular coordinate system, what is the number of units in the distance from the origin to the point $(-15, 8)$? Enter your answer
distance of a point [tex](x,y)[/tex] from origin is $\sqrt{x^2+y^2}$
so distance is $\sqrt{(-15)^2+(8)^2}=\sqrt{225+64}=\sqrt{289}=17$
Answer:
Distance=17 units
Step-by-step explanation:
Coordinates of the origin: (0, 0)
Coordinates of the point in question: (-15, 8)
Distance formula for any two points [tex](x_1,y_1), (x_2,y_2)[/tex] on the plane:
[tex]distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\distance=\sqrt{(-15-0)^2+(8-0)^2}\\distance=\sqrt{(15)^2+(8)^2}\\distance=\sqrt{225+64} \\distance=\sqrt{289} \\distance=17[/tex]
Events A and B are mutually exclusive. Find the missing probability.
P(A) = 1/4 P(B) = 13/20 P(A or B) = ?
4/5
1/2
9/10
3/8
Answer:
Option C.
Step-by-step explanation:
It is given that,
[tex]P(A)=\dfrac{1}{4}[/tex]
[tex]P(B)=\dfrac{13}{20}[/tex]
It is given that events A and B are mutually exclusive. It means they have no common elements.
[tex]P(A\cap B)=0[/tex]
We know that,
[tex]P(A\ or\ B)=P(A\cup B)=P(A)+P(B)-P(A\cap B)[/tex]
On substituting the values, we get
[tex]P(A\cup B)=\dfrac{1}{4}+\dfrac{13}{20}-0[/tex]
[tex]P(A\cup B)=\dfrac{5+13}{20}[/tex]
[tex]P(A\cup B)=\dfrac{18}{20}[/tex]
[tex]P(A\cup B)=\dfrac{9}{10}[/tex]
Therefore, the correct option is C.
The P (A or B) should be [tex]\frac{9}{10}[/tex]
Given that,
P(A) = 1 by 4 P(B) = 13 by 20Based on the above information, the calculation is as follows:
[tex]= \frac{1}{4} + \frac{13}{20}\\\\= \frac{5+13}{20} \\\\= \frac{18}{20}\\\\= \frac{9}{10}[/tex]
Learn more: https://brainly.com/question/17429689?referrer=searchResults
Q.An observer 1.7m tall is 20sqrt(3)m away from a tower.The angle of elevation from the eye of observer to the top of the tower is 30 Find the height of the tower
plz Answer me
Answer:
21.7 m
Step-by-step explanation:
The question above is a right angle triangle and we would be using the trigonometric function of tangent to solve for it.
tan θ = Opposite/ Adjacent
Opposite side = Height = unknown
Adjacent = 20sqrt(3) m
θ = Angle of Elevation = 30°
Hence, we have:
tan 30° = Opposite/ 20√3
Opposite = tan 30° × 20√3m
Opposite = 20m
Height of the tower = Height of the observer + Height (Opposite side)
Height = 20m
Height of the the observer as given in the question is = 1.7m
Height of the tower = 20m + 1.7m
= 21.7m
Therefore, the height of the tower = 21.7m