Answer:
34°
Using the relation
θᶜ = sin^-1(n₂/n₁),
where n1= the refractive index of light is propagating from a medium
And n2 = refractive index of medium into which light is entering
So we know that
refractive index of diamond at 589nm = 2.41= n₁
refractive index of ethanol at 589nm and 20°C = 1.36= n₂
Thus. θᶜ = sin^-1(1.361/2.417) = 0.58radians = 34°
Explanation:
You add 500 mL of water at 10°C to 100 mL of water at 70°C. What is the
most likely final temperature of the mixture?
O A. 80°C
OB. 10-C
OC. 20°C
O D. 60°C
Answer:
Option (c) : 20°C
Explanation:
[tex]t(final) = \frac{w1 \times t1 + w2 \times t2}{w1 + w2} [/tex]
T(final) = 500* 10 + 100*70/600 = 20°C
"A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if"
Answer:
A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if
the dispersion is great
A rectangular coil having N turns and measuring 15 cm by 25 cm is rotating in a uniform 1.6-T magnetic field with a frequency of 75 Hz. The rotation axis is perpendicular to the direction of the field. If the coil develops a sinusoidal emf of maximum value 56.9 V, what is the value of N?
A) 2
B) 4
C) 6
D) 8
E) 10
Answer:
A) 2
Explanation:
Given;
magnetic field of the coil, B = 1.6 T
frequency of the coil, f = 75 Hz
maximum emf developed in the coil, E = 56.9 V
area of the coil, A = 0.15 m x 0.25 m = 0.0375 m²
The maximum emf in the coil is given by;
E = NBAω
Where;
N is the number of turns
ω is the angular velocity = 2πf = 2 x 3.142 x 75 = 471.3 rad/s
N = E / BAω
N = 56.9 / (1.6 x 0.0375 x 471.3)
N = 2 turns
Therefore, the value of N is 2
A) 2
Suppose a 1300 kg car is traveling around a circular curve in a road at a constant
9.0 m/sec. If the curve in the road has a radius of 25 m, then what is the
magnitude of the unbalanced force that steers the car out of its natural straight-
line path?
Answer:
F = 4212 N
Explanation:
Given that,
Mass of a car, m = 1300 kg
Speed of car on the road is 9 m/s
Radius of curve, r = 25 m
We need to find the magnitude of the unbalanced force that steers the car out of its natural straight- line path. The force is called centripetal force. It can be given by :
[tex]F=\dfrac{mv^2}{r}\\\\F=\dfrac{1300\times 9^2}{25}\\\\F=4212\ N[/tex]
So, the force has a magnitude of 4212 N
Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plates in Capacitor B are separated by twice the separation of the plates of Capacitor A. If Capacitor A has a capacitance of CA-17.8nF, what is the capacitance of Capacitor? .
Answer:
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Explanation:
The capacitance of a parallel plate capacitor is given by the following formula:
C = ε₀A/d
where,
C = Capacitance
ε₀ = Permeability of free space
A = Area of plates
d = Distance between plates
FOR CAPACITOR A:
C = CA = 17.8 nF = 17.8 x 10⁻⁹ F
A = A₁
d = d₁
Therefore,
CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F ----------------- equation 1
FOR CAPACITOR B:
C = CB = ?
A = A₁/2
d = 2 d₁
Therefore,
CB = ε₀(A₁/2)/2d₁
CB = (1/4)(ε₀A₁/d₁)
using equation 1:
CB = (1/4)(17.8 X 10⁻⁹ F)
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Please help!
Much appreciated!
Answer:
F = 2.7×10¯⁶ N.
Explanation:
From the question given:
F = (9×10⁹ Nm/C²) (3.2×10¯⁹ C × 9.6×10¯⁹ C) /(0.32)²
Thus we can obtain the value value of F by carrying the operation as follow:
F = (9×10⁹) (3.2×10¯⁹ × 9.6×10¯⁹) /(0.32)²
F = 2.7648×10¯⁷ / 0.1024
F = 2.7×10¯⁶ N.
Therefore, the value of F is 2.7×10¯⁶ N.
Suppose you drop paperclips into an open cart rolling along a straight horizontal track with negligible friction. As a result of the accumulating paper clips, explain whether the momentum and kinetic energy increase, decrease, or stay the same.
Answer:
Stay the same
Explanation:
Since, friction is negligible:
Initial Momentum = Final Momentum
Initial KE = Final KE
m1 * v1 = m2 * v2
When m increases v decreases.
The momentum and kinetic energy remain the same if you drop paper clips into an open cart rolling along a straight horizontal track with negligible friction.
What is friction?Between two surfaces that are sliding or attempting to slide over one another, there is a force called friction. For instance, friction makes it challenging to push a book down the floor. Friction always moves an object in a direction that is counter to the direction that it is traveling or attempting to move.
Given:
The paperclips into an open cart rolling along a straight horizontal track with negligible friction,
Calculate the momentum, Since friction is negligible,
Initial Momentum = Final Momentum
Initial Kinetic Energy = Final Kinetic Energy
m₁ × v₁ = m₁ × v₂
When m increases, v decreases,
Thus, momentum will remain the same.
To know more about friction:
https://brainly.com/question/28356847
#SPJ5
A current of 5 A is flowing in a 20 mH inductor. The energy stored in the magnetic field of this inductor is:_______
a. 1J.
b. 0.50J.
c. 0.25J.
d. 0.
e. dependent upon the resistance of the inductor.
Answer:
C. 0.25J
Explanation:
Energy stored in the magnetic field of the inductor is expressed as E = 1/2LI² where;
L is the inductance
I is the current flowing in the inductor
Given parameters
L = 20mH = 20×10^-3H
I = 5A
Required
Energy stored in the magnetic field.
E = 1/2 × 20×10^-3 × 5²
E = 1/2 × 20×10^-3 × 25
E = 10×10^-3 × 25
E = 0.01 × 25
E = 0.25Joules.
Hence the energy stored in the magnetic field of this inductor is 0.25Joules
Niobium metal becomes a superconductor when cooled below 9 K. Its superconductivity is destroyed when the surface magnetic field exceeds 0.100 T. In the absence of any external magnetic field, determine the maximum current a 5.68-mm-diameter niobium wire can carry and remain superconducting.
Answer:
The current is [tex]I = 1420 \ A[/tex]
Explanation:
From the question we are told that
The diameter of the wire is [tex]d = 5.68 \ mm = 0.00568 \ m[/tex]
The magnetic field is [tex]B = 0.100 \ T[/tex]
Generally the radius of the wire is mathematically evaluated as
[tex]r = \frac{d}{2}[/tex]
substituting values
[tex]r = \frac{ 0.00568}{2}[/tex]
[tex]r = 0.00284 \ m[/tex]
Generally the magnetic field is mathematically represented as
[tex]B = \frac{\mu_o * I}{ 2 \pi r }[/tex]
=> [tex]I =\frac{ B * 2 \pi r }{\mu_o}[/tex]
Here [tex]\mu_o[/tex] is the permeability of free space with value [tex]\mu_o = 4 \pi *10^{-7} N/A^2[/tex]
substituting values
=> [tex]I =\frac{ 0.100 * 2 * 3.142 * 0.00284 }{ 4 \pi * 10^{-7}}[/tex]
=> [tex]I = 1420 \ A[/tex]
A long solenoid consists of 1700 turns and has a length of 0.75 m.The current in the wire is 0.48 A. What is the magnitude of the magnetic field inside the solenoid
Answer:
1.37 ×10^-3 T
Explanation:
From;
B= μnI
μ = 4π x 10-7 N/A2
n= number of turns /length of wire = 1700/0.75 = 2266.67
I= 0.48 A
Hence;
B= 4π x 10^-7 × 2266.67 ×0.48
B= 1.37 ×10^-3 T
Consult Interactive Solution 27.18 to review a model for solving this problem. A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 653 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference
Answer:
Explanation:
In the given case for destructive interference , the condition is,
path difference = (2n+1)λ /2 where n is an integer and λ is wavelength
2 μ d = (2n+1)λ /2
Putting λ = 653 nm
for minimum thickness n = 0
2 μ d = 653 / 2 nm
= 326.5 nm
For constructive interference the condition is
2 μ d = n λ₁
326.5 nm = n λ₁
λ₁ = 326.5 / n
For n = 1
λ₁ = 326.5 nm ,
or , 326.5nm .
Longest wavelength possible is 326.5
An aluminum rod 17.400 cm long at 20°C is heated to 100°C. What is its new length? Aluminum has a linear expansion coefficient of 25 × 10-6 C-1.
Answer:
the new length is 17.435cm
Explanation:
the new length is 17.435cm
pls give brainliest
The new length of aluminum rod is 17.435 cm.
The linear expansion coefficient is given as,
[tex]\alpha=\frac{L_{1}-L_{0}}{L_{0}(T_{1}-T_{0})}[/tex]
Given that, An aluminum rod 17.400 cm long at 20°C is heated to 100°C.
and linear expansion coefficient is [tex]25*10^{-6}C^{-1}[/tex]
Substitute, [tex]L_{0}=17.400cm,T_{1}=100,T_{0}=20,\alpha=25*10^{-6}C^{-1}[/tex]
[tex]25*10^{-6}C^{-1} =\frac{L_{1}-17.400}{17.400(100-20)}\\\\25*10^{-6}C^{-1} = \frac{L_{1}-17.400}{1392} \\\\L_{1}=[25*10^{-6}C^{-1} *1392}]+17.400\\\\L_{1}=17.435cm[/tex]
Hence, The new length of aluminum rod is 17.435 cm.
Learn more:
https://brainly.com/question/19495810
Which notation is better to use? (Choose between 4,000,000,000,000,000 m and 4.0 × 1015 m)
Answer:
4 x 10¹⁵
Explanation:
Suppose that a sound source is emitting waves uniformly in all directions. If you move to a point twice as far away from the source, the frequency of the sound will be:________.
a. one-fourth as great.
b. half as great.
c. twice as great.
d. unchanged.
Answer:
d. unchanged.
Explanation:
The frequency of a wave is dependent on the speed of the wave and the wavelength of the wave. The frequency is characteristic for a wave, and does not change with distance. This is unlike the amplitude which determines the intensity, which decreases with distance.
In a wave, the velocity of propagation of a wave is the product of its wavelength and its frequency. The speed of sound does not change with distance, except when entering from one medium to another, and we can see from
v = fλ
that the frequency is tied to the wave, and does not change throughout the waveform.
where v is the speed of the sound wave
f is the frequency
λ is the wavelength of the sound wave.
CAN SOMEONE HELP ME PLEASE ITS INTEGRATED SCIENCE AND I AM STUCK
Answer:
[tex]\huge \boxed{\mathrm{Option \ D}}[/tex]
Explanation:
Two forces are acting on the object.
Subtracting 2 N from both forces.
2 N → Object ← 5 N
- 2 N - 2N
0 N → Object ← 3 N
The force 3 N is pushing the object to the left side.
The mass of the object is 10 kg.
Applying formula for acceleration (Newton’s Second Law of Motion).
a = F/m
a = 3/10
a = 0.3
A train on one track moves in the same direction as a second train on the adjacent track. The first train, which is ahead of the second train and moves with a speed of 36.4 m/s , blows a horn whose frequency is 123 Hz .what is its speed?
Answer:
51. 7m/s
Explanation:
Take speed of sound in air = 340 m/s
fp = fs (V + Vp)/(V + Vs)
128 = 123 (340 + Vp)/(340 + 36.4)
Vp = 51.7m/s
Explanation:
The roller coaster car reaches point A of the loop with speed of 20 m/s, which is increasing at the rate of 5 m/s2. Determine the magnitude of the acceleration at A if pA
Answer and Explanation:
Data provided as per the question is as follows
Speed at point A = 20 m/s
Acceleration at point C = [tex]5 m/s^2[/tex]
[tex]r_A = 25 m[/tex]
The calculation of the magnitude of the acceleration at A is shown below:-
Centripetal acceleration is
[tex]a_c = \frac{v^2}{r}[/tex]
now we will put the values into the above formula
= [tex]\frac{20^2}{25}[/tex]
After solving the above equation we will get
[tex]= 16 m/s^2[/tex]
Tangential acceleration is
[tex]= \sqrt{ac^2 + at^2} \\\\ = \sqrt{16^2 + 5^2}\\\\ = 16.703 m/s^2[/tex]
A 1.2-m length of wire centered on the origin carries a 20-A current directed in the positive y direction. Determine the magnetic field at the point x= 5.0m on x-axis.
a. 1.6 nt in the negative z direction
b. 1.6 nt in the positive z direction
c. 2.4 T in the positive z direction
d. 2.4 nt in the negative z direction
e. None of the above
Answer:
None of the above
Explanation:
The formula of the magnetic field of a point next to a wire with current is:
B = 2×10^(-7) × ( I /d)
I is the intensity of the current.
d is the distance between the wire and the point.
● B = 2*10^(-7) × (20/5) = 8 ×10^(-7) T
Which examination technique is the visualization of body parts in motion by projecting x-ray images on a luminous fluorescent screen?
Answer:
Fluoroscopy
Explanation:
A Fluoroscopy is an imaging technique that uses X-rays to obtain real-time moving images of the interior of an object. In its primary application of medical imaging, a fluoroscope allows a physician to see the internal structure and function of a patient, so that the pumping action of the heart or the motion of swallowing, for example, can be watched.
Proposed Exercises: Strength and Acceleration in Circular Movement In the situation illustrated below, a 7kg sphere is connected to a rope so that it can rotate in a vertical plane around an O axis perpendicular to the plane of the figure. When the sphere is in position A, it has a speed of 3m/s. Determine for this position the modulus of tension on the string and the rate at which the tangential velocity is increased.
Answer:
81 N
7.1 m/s²
Explanation:
Draw a free body diagram of the sphere. There are two forces:
Weight force mg pulling straight down,
and tension force T pulling up along the rope.
Sum of forces in the centripetal direction:
∑F = ma
T − mg sin 45° = m v² / r
T = m (g sin 45° + v² / r)
T = (7 kg) (10 m/s² sin 45° + (3 m/s)² / 2 m)
T = 81 N
Sum of forces in the tangential direction:
mg cos 45° = ma
a = g cos 45°
a = (10 m/s²) cos 45°
a = 7.1 m/s²
If mirror M2 in a Michelson interferometer is moved through 0.233 mm, a shift of 792 bright fringes occurs. What is the wavelength of the light producing the fringe pattern?
Answer:
The wavelength is [tex]\lambda = 589 nm[/tex]
Explanation:
From the question we are told that
The distance of the mirror shift is [tex]k = 0.233 \ mm = 0.233*10^{-3} \ m[/tex]
The number of fringe shift is n = 792
Generally the wavelength producing this fringes is mathematically represented as
[tex]\lambda = \frac{ 2 * k }{ n }[/tex]
substituting values
[tex]\lambda = \frac{ 2 * 0.233*10^{-3} }{ 792 }[/tex]
[tex]\lambda = 5.885 *10^{-7} \ m[/tex]
[tex]\lambda = 589 nm[/tex]
A charge of 15 is moving with velocity of 6.2 x17 which makes an angle of 48 degrees with respect to the magnetic field. If the force on the particle is 4838 N, find the magnitude of the magnetic field.
a. 06.0T.
b. 08.0T.
c. 07.0T.
d. 05.0 T.
Complete question:
A charge of 15C is moving with velocity of 6.2 x 10³ m/s which makes an angle of 48 degrees with respect to the magnetic field. If the force on the particle is 4838 N, find the magnitude of the magnetic field.
a. 0.06 T
b. 0.08 T
c. 0.07 T
d. 0.05 T
Answer:
The magnitude of the magnetic field is 0.07 T.
Explanation:
Given;
magnitude of the charge, q = 15C
velocity of the charge, v = 6.2 x 10³ m/s
angle between the charge and the magnetic field, θ = 48°
the force on the particle, F = 4838 N
The magnitude of the magnetic field can be calculated by applying Lorentz force formula;
F = qvBsinθ
where;
B is the magnitude of the magnetic field
B = F / vqsinθ
B = (4838) / (6.2 x 10³ x 15 x sin48)
B = 0.07 T
Therefore, the magnitude of the magnetic field is 0.07 T.
Calculate the density of the following material.
1 kg helium with a volume of 5.587 m³
700 kg/m³
5.587 kg/m³
0.179 kg/m³
Answer:
[tex]density \: = \frac{mass}{volume} [/tex]
1 / 5.587 is equal to 0.179 kg/m³
Hope it helps:)
Answer:
The answer is
0.179 kg/m³Explanation:
Density of a substance is given by
[tex]Density \: = \frac{mass}{volume} [/tex]
From the
mass = 1 kg
volume = 5.583 m³
Substitute the values into the above formula
We have
[tex]Density \: = \frac{1 \: kg}{5.583 \: {m}^{3} } [/tex]
We have the final answer as
Density = 0.179 kg/m³Hope this helps you
Which scientist proposed a mathematical solution for the wave nature of light?
Answer:
Explanation:
Christian Huygens
Light Is a Wave!
Then, in 1678, Dutch physicist Christian Huygens (1629 to 1695) established the wave theory of light and announced the Huygens' principle.
A 17.0 g bullet traveling horizontally at 785 m/s passes through a tank containing 13.5 kg of water and emerges with a speed of 534 m/s.
What is the maximum temperature increase that the water could have as a result of this event? (in degrees)
Answer:
The maximum temperature increase is [tex]\Delta T = 0.0497 \ ^oC[/tex]
Explanation:
From the question we are told that
The mass of the bullet is [tex]m = 17.0 \ g =0.017 \ kg[/tex]
The speed is [tex]v_1 = 785 \ m/s[/tex]
The mass of the water is [tex]m_w = 13.5 \ kg[/tex]
The velocity it emerged with is [tex]v_2 = 534 \ m/s[/tex]
Generally due to the fact that energy can nether be created nor destroyed but transferred from one form to another then
the change in kinetic energy of the bullet = the heat gained by the water
So
The change in kinetic energy of the water is
[tex]\Delta KE = \frac{1}{2} m (v_1^2 - v_2 ^2 )[/tex]
substituting values
[tex]\Delta KE =0.5 * 0.017 * (( 785)^2 - (534) ^2 )[/tex]
[tex]\Delta KE = 2814.1 \ J[/tex]
Now the heat gained by the water is
[tex]Q = m_w* c_w * \Delta T[/tex]
Here [tex]c_w[/tex] is the specific heat of water which has a value [tex]c_w = 4190 J/kg \cdot K[/tex]
So since [tex]\Delta KE = Q[/tex]
we have that
[tex]2814.1 = 13.5 * 4190 * \Delta T[/tex]
[tex]\Delta T = 0.0497 \ ^oC[/tex]
When light is either reflected or refracted, the quantity that does not change in either process is its
Answer:
Frequency
Explanation:
When waves travel from one medium to another, it is only the frequency of the wave that remains constant . when a wave is refracted at the boundary between two media, the wave will slow down and its wavelength decreases. The wave usually bends at the interface between the two media. The wavelength and speed of a wave may change at the boundary between two media but its frequency remains the same.
Hence the frequency of light is its only property that remains constant.
You need to repair a broken fence in your yard. The hole in your fence is
around 3 meters in length and for whatever reason, the store you go to
has oddly specific width 20cm wood. Each plank of wood costs $16.20,
how much will it cost to repair your fence? (Hint: 1 meter = 100 cm) *
Answer:
cost = $ 243.00
Explanation:
This exercise must assume that it uses a complete table for each piece, we can use a direct ratio of proportions, if 1 table is 0.20 m wide, how many tables will be 3.00 m
#_tables = 3 m (1 / 0.20 m)
#_tables = 15 tables
Let's use another direct ratio, or rule of three, for cost. If a board costs $ 16.20, how much do 15 boards cost?
Cost = 15 (16.20 / 1)
cost = $ 243.00
Expectant mothers many times see their unborn child for the first time during an ultrasonic examination. In ultrasonic imaging, the blood flow and heartbeat of the child can be measured using an echolocation technique similar to that used by bats. For the purposes of these questions, please use 1500 m/s as the speed of sound in tissue. I need help with part B and C
To clearly see an image, the wavelength used must be at most 1/4 of the size of the object that is to be imaged. What frequency is needed to image a fetus at 8 weeks of gestation that is 1.6 cm long?
A. 380 kHz
B. 3.8 kHz
C. 85 kHz
D. 3.8 MHz
Answer:
380 kHz
Explanation:
The speed of sound is taken as 1500 m/s
The length of the fetus is 1.6 cm long
The condition is that the wavelength used must be at most 1/4 of the size of the object that is to be imaged.
For this 1.6 cm baby, the wavelength must not exceed
λ = [tex]\frac{1}{4}[/tex] of 1.6 cm = [tex]\frac{1}{4}[/tex] x 1.6 cm = 0.4 cm =
0.4 cm = 0.004 m this is the wavelength of the required ultrasonic sound.
we know that
v = λf
where v is the speed of a wave
λ is the wavelength of the wave
f is the frequency of the wave
f = v/λ
substituting values, we have
f = 1500/0.004 = 375000 Hz
==> 375000/1000 = 375 kHz ≅ 380 kHz
Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
A. Which skater, if either, has the greater momentum after the push-off? Explain.
B. Which skater, if either, has the greater speed after the push-off? Explain.
Answer:
the two ice skater have the same momentum but the are in different directions.
Paula will have a greater speed than Ricardo after the push-off.
Explanation:
Given that:
Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
A. Which skater, if either, has the greater momentum after the push-off? Explain.
The law of conservation of can be applied here in order to determine the skater that possess a greater momentum after the push -off
The law of conservation of momentum states that the total momentum of two or more objects acting upon one another will not change, provided there are no external forces acting on them.
So if two objects in motion collide, their total momentum before the collision will be the same as the total momentum after the collision.
Momentum is the product of mass and velocity.
SO, from the information given:
Let represent the mass of Paula with [tex]m_{Pa}[/tex] and its initial velocity with [tex]u_{Pa}[/tex]
Let represent the mass of Ricardo with [tex]m_{Ri}[/tex] and its initial velocity with [tex]u_{Ri}[/tex]
At rest ;
their velocities will be zero, i.e
[tex]u_{Pa}[/tex] = [tex]u_{Ri}[/tex] = 0
The initial momentum for this process can be represented as :
[tex]m_{Pa}[/tex][tex]u_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]u_{Ri}[/tex] = 0
after push off from each other then their final velocity will be [tex]v_{Pa}[/tex] and [tex]v_{Ri}[/tex]
The we can say their final momentum is:
[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex] = 0
Using the law of conservation of momentum as states earlier.
Initial momentum = final momentum = 0
[tex]m_{Pa}[/tex][tex]u_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]u_{Ri}[/tex] = [tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]
Since the initial velocities are stating at rest then ; u = 0
[tex]m_{Pa}[/tex](0) + [tex]m_{Pa}[/tex](0) = [tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]
[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] + [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex] = 0
[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] = - [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]
Hence, we can conclude that the two ice skater have the same momentum but the are in different directions.
B. Which skater, if either, has the greater speed after the push-off? Explain.
Given that Ricardo weighs more than Paula
So [tex]m_{Ri} > m_{Pa}[/tex] ;
Then [tex]\mathsf{\dfrac{{m_{Ri}}}{m_{Pa} }= 1}[/tex]
The magnitude of their momentum which is a product of mass and velocity can now be expressed as:
[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] = [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]
The ratio is
[tex]\dfrac{v_{Pa}}{v_{Ri}} =\dfrac{m_{Ri}}{m_{Pa}} = 1[/tex]
[tex]v_{Pa} >v_{Ri}[/tex]
Therefore, Paula will have a greater speed than Ricardo after the push-off.
(A) Both the skaters have the same magnitude of momentum.
(B) Paula has greater speed after push-off.
Conservation of momentum:Given that two skaters Paula and Ricardo are initially at rest.
Ricardo weighs more than Paula.
Let us assume that the mass of Ricardo is M, and the mass of Paula is m.
Let their final velocities be V and v respectively.
(A) Initially, both are at rest.
So the initial momentum of Paula and Ricardo is zero.
According to the law of conservation of momentum, the final momentum of the system must be equal to the initial momentum of the system.
Initial momentum = final momentum
0 = MV + mv
MV = -mv
So, both of them have the same magnitude of momentum, but in opposite directions.
(B) If we compare the magnitude of the momentum of Paula and Ricardo, then:
MV = mv
M/m = v/V
Now, we know that M>m
so, M/m > 1
therefore:
v/V > 1
v > V
So, Paula has greater speed.
Learn more about conservation of momentum:
https://brainly.com/question/2141713?referrer=searchResults
The frequency of light emitted from hydrogen present in the Andromeda galaxy has been found to be 0.10% higher than that from hydrogen measured on Earth.
Is this galaxy approaching or receding from the Earth, and at what speed?
Answer:
3x10^5m/s
Explanation:
See attached file
Explanation:
The speed of the light emitted from the earth is approaching the galaxy at [tex]3\times 10^5\;\rm m/s[/tex].
Doppler's Effect
According to the Doppler effect, the difference between the frequency at which light wave leave a source and reaches an observer is caused by the relative motion of the observer and the wave source.
Given that the difference in the frequency is 0.10 %. The speed of light emitted from the galaxy can be calculated by the Doppler effect.
[tex]\dfrac {\Delta f}{f} = \dfrac {v}{c}[/tex]
Where f is the frequency of the light, v is the speed of light emitted from the galaxy and c is the speed of light emitted from the earth.
[tex]\dfrac {0.10 f}{100 f} = \dfrac {v}{3\times 10^8}[/tex]
[tex]v = 3\times 10^5\;\rm m/s[/tex]
Hence we can conclude that the speed of the light emitted from the earth is approaching the galaxy at [tex]3\times 10^5\;\rm m/s[/tex].
To know more about the doppler effect, follow the link given below.
https://brainly.com/question/1330077.