Answer:
Step-by-step explanation:
Let's use the variable "s" to represent the number of slices in each pizza.
The drama club bought 999 large pizzas, and each pizza had s slices. So, the total number of pizza slices is given by the product of 999 and s, which can be written as:
999s = 727272
To solve for s, we can divide both sides of the equation by 999:
s = 727272/999
Using a calculator, we can simplify this fraction to:
s ≈ 728.73
Therefore, each pizza has approximately 728 slices. Note that this is an unusual number of slices for a pizza, so it's possible that the problem is not intended to be taken literally, but rather as a math puzzle or word problem.
Answer:
Each pizza has 729 slices.
Step-by-step explanation:
Determine whether the statement is true or false. If it is false, rewrite it as a true statement. A sampling distribution is normal only if the population is normal. Choose the correct answer below. A. The statement is true. B. The statement is false. A sampling distribution is normal only if n≥30. C. The statement is false. A sampling distribution is normal if either n≥30 or the population. D. The statement is false. A sampling distribution is never normal.
A sampling distribution is normal only if the population is normal. This statement is false because A sampling distribution is normal only if n≥30.
If the underlying population is normally distributed, the sampling distribution (such as the sample mean distribution, also known as the xbar distribution) is also normally distributed. Even though the population is not normally distributed, the x(bar) distribution is approximately normal if n > 30, due to the central limit theorem. Some textbooks may use values above 30, but after a certain threshold the x(bar) distribution is effectively "normal".
Option B is close, but misses the normal population part. n > 30 is not necessary if we know the population is normal.
A sampling distribution is the probability distribution of a statistic obtained from a large number of samples drawn from a particular population. The sampling distribution for a given population is the frequency distribution of a range of different outcomes that can occur in the population.
In statistics, a population is the entire basin from which a statistical sample is drawn. A population can refer to an entire population of people, objects, events, hospital visits, or measurements. Thus, a population can be said to be a global observation of subjects grouped by common characteristics.
Learn more about Population:
https://brainly.com/question/29117685
#SPJ4
In the above video lecture, we verified the following result: Computing the gradient of n
Rn (θ) = 1/n Σ (y^(t) - θ.x^(t)^2 / 2
t=1
we get ΔRn (θ) = Aθ-b (=0) where A= n n
A = 1/n Σ x^(t) (x^(t))^T , b = 1/n Σ y^(t) x^(t)
t=1 t=1
Now, what is the necessary and sufficient condition that Aθ - b = 0 has a unique solution?
- None of A's entries is 0. - A is invertible.
- A's dimension is the same as that of θ's
The direction of the steepest descent, which is used to find the minimum value of a function.
The necessary and sufficient condition that Aθ-b = 0 has a unique solution is: A is invertible.What is computing?Computing is a part of computer science that focuses on computer programs, including their software and hardware. It is concerned with designing algorithms to solve problems and creating software that will run these algorithms. As a result, computing is a field of study that is concerned with the process of creating algorithms and software.InvertibleAn invertible matrix is a matrix in which the determinant is not zero. An invertible matrix is also referred to as a non-singular matrix. An invertible matrix has a unique inverse. The rank of an invertible matrix is equal to its dimension. An invertible matrix can be used to solve a system of linear equations.GradientA gradient is a vector field in which the direction of the vector points to the steepest increase in a function, and the magnitude of the vector is the rate of increase in that direction. The gradient of a function is a vector field that is a derivative of the function. The gradient is used in multivariable calculus to solve optimization problems. The gradient is used to find the direction of the steepest ascent, which is used to find a maximum value of a function. It is used to find the direction of the steepest descent, which is used to find the minimum value of a function.
Learn more about Steepest
brainly.com/question/3435806
#SPJ11
Jackson owns a heating and cooling company. He is going to install a new furnace into a customer's house, but he must determine the volume of airflow
needed in order to select the best size of furnace. Find the volume of the house sketched below, where H1-10 ft., H2=9 feet, L=30 feet, and W=20 feet.
Volume of a rectangular prism is V=WLH (width x length x height) Volume of a triangular Prism is:
V =
a.ch
A
A target has a bull's-eye with a d X
O mathwarehouse.com
h (in this case a-9, c= 20, h= 30)
15
[tex]8700[/tex] cubic feet of airflow are required for the entire home. Jackson may utilize this information to determine the best furnace size for the customer's requirements.
Volume explain: What is it?Volume is the quantity of space an object occupies, whereas capacity is a measurement of the substance—such as a solid, liquid, or gas—that an object can hold. While capacity may be measured in virtually any other unit, such as liters, gallons, pounds, etc., volume was determined in cubic units.
What are volume and what is its unit?Volume, which is measured in cubic units, is the three dimensional space inhabited by material or surrounded by a surface. The cubic centimeter (m3), a derived unit, is the SI unit for volume.
Volume of the first section with height [tex]H1=10[/tex] ft:
[tex]V1 = WLH1 = (20 ft)(30 ft)(10 ft) = 6000[/tex] cubic feet
Volume of the second section with height [tex]H2=9[/tex] ft:
[tex]V2 = (1/2)WLH2 = (1/2)(20 ft)(30 ft)(9 ft) = 2700[/tex]cubic feet
Total volume of house,
[tex]V total = V1 + V2 = 6000[/tex] cubic feet + [tex]2700[/tex] cubic feet [tex]= 8700[/tex] cubic feet
Therefore, the volume of airflow needed for the house is [tex]8700[/tex] cubic feet.
To know more about volume visit:
https://brainly.com/question/1578538
#SPJ1
Halla los números desconocidos de estas operaciones
A)872+. +173=2000
B)9180:. =102
C). -99=706
Con los mismos números y las mismas operaciones podemos obtener diferentes resultados,coloca los paréntesis de manera que se obtengan los resultados indicados. A)3+5x7-2=40
B)3+5×7-2=54
C)3+5×7-2=28
ES PARA HOY PORFAVOR☹,PUEDEN HACER EN UNA HOJA O ESCRIBIR ASI PERO EXPLIQUEN BIEN!!!!!!AYUDA SI NO SABEN NO RESPONDAD
In equation A the missing number is 955, In equation B the missing number is 90 and In equation C the missing number is 805.
A) To find the missing number in the equation 872 + ? + 173 = 2000, we need to subtract 872 and 173 from 2000, which gives us:
2000 - 872 - 173 = 955
Therefore, the missing number is 955.
B) To find the missing number in the equation 9180 ÷ ? = 102, we need to divide 9180 by 102, which gives us:
9180 ÷ 102 = 90
Therefore, the missing number is 90.
C) To find the missing number in the equation ? - 99 = 706, we need to add 99 to 706, which gives us:
706 + 99 = 805
Therefore, the missing number is 805.
To obtain the indicated results with the same numbers and operations, we need to use parentheses to change the order of operations.
A) 3 + (5x7) - 2 = 40
B) (3 + 5) × 7 - 2 = 54
C) 3 + (5 × (7-2)) = 28
Equations are used extensively in various fields of science, engineering, economics, and finance, to name a few. It is formed by placing an equal sign between the two expressions. Equations are used to solve problems and find unknown values.
An equation can contain variables, constants, and mathematical operations such as addition, subtraction, multiplication, and division. The variables in an equation represent unknown values that need to be found, while the constants are known values that are already given. Solving an equation involves manipulating the expressions on both sides of the equal sign using mathematical operations to isolate the variable on one side and constants on the other. The final solution obtained is the value of the variable that satisfies the equation..
To learn more about Equation visit here:
brainly.com/question/29538993
#SPJ4
Complete Question: -
Find unknown numbers of these operations
A ) 872 +. + 173 = 2000
B ) 9180:. = 102
C ). -99 = 706
With the same numbers and the same operations we can obtain different results, place the parentheses so that the indicated results are obtained.
A ) 3 + 5 x 7-2 = 40
B ) 3 + 5 × 7-2 = 54
C ) 3 + 5 × 7-2 = 28
IT'S FOR TODAY PLEASE ☹, CAN DO IN A LEAF OR WRITE ASI BUT EXPLAIN WELL!!!!!!HELP IF THEY DON'T KNOW NO RESPOND
Solve the triangle PQR (find the measures of ∠P, ∠Q, and side PQ).
(I need help finding both angle measure and side measure, please and thank you!)
Therefore , the solution of the given problem of triangle comes out to be the angles P and Q have measurements of roughly 39.39° and 58.10°, respectively.
What precisely is a triangle?A polygon is a hexagon if it has over one extra segment. It's shape is a simple rectangle. Only the sides A and B can differentiate something like this arrangement from a regular triangle. Despite the exact collinearity of the borders, Euclidean geometry only produces a portion of the cube. Three edges and three angles make up a triangle.
Here,
The rule of cosines can be applied to the triangle PQR to determine the length of side PQ:
=> PQ² = PR² + QR² - 2(PR)(QR)cos(∠PQR)
=> PQ² = 9² + 12² - 2(9)(12)cos(62°)
=> PQ² ≈ 110.03
=> PQ ≈ 10.49
As a result, side PQ is roughly 10.49 units long.
The rule of sines can then be used to determine the dimensions of angles P and Q:
=> sin(∠P) / PQ = sin(62°) / PR
=> sin(∠P) / 10.49 = sin(62°) / 9
=> sin(∠P) ≈ 0.6322
=> ∠P ≈ 39.39°
=> sin(∠Q) / PQ = sin(77°) / QR
=> sin(∠Q) / 10.49 = sin(77°) / 12
=> sin(∠Q) ≈ 0.8559
=> ∠Q ≈ 58.10°
As a result, the angles P and Q have measurements of roughly 39.39° and 58.10°, respectively.
To know more about triangle visit:
https://brainly.com/question/2773823
#SPJ1
g in acid base reactions, the hydrogen ions from the acid and the hydroxide ions from the base neutralize each other. khp has one ionizable hydrogen; this means that one mole of sodium hydroxide neutralizes one mole of khp. from experiment 1, calculate the exact molarity of the sodium hydroxide. (hint: use the mass of khp and do a stoichiometry problem.....) tip: khp is not the chemical formula. khp stands
In the following question, among the conditions given, the statement is said to be, the exact molarity of the NaOH solution is 0.0960 M.
The question is asking to calculate the exact molarity of the sodium hydroxide from Experiment 1.
KHP stands for potassium hydrogen phthalate, and one mole of sodium hydroxide (NaOH) will neutralize one mole of KHP. To solve the problem, use the mass of KHP and a stoichiometry problem.
First, calculate the number of moles of KHP:
Moles KHP = (Mass KHP (g) / Molar Mass KHP (g/mol))
Then, calculate the moles of NaOH:
Moles NaOH = (Moles KHP * Mole Ratio NaOH/KHP)
Finally, calculate the molarity of NaOH:
Molarity NaOH = (Moles NaOH / Volume NaOH (L))
For more such questions on NaOH
https://brainly.com/question/15973235
#SPJ11
Analyze the proportion below and complete the instructions that follow. Use a model to find the missing value in the proportion. A. 4 B. 5 C. 10 D. 22 Please select the best answer from the choices provided A B C D
Step-by-step explanation:
The area of a rectangle is 1,872 ft2. The ratio of the length to the width is 9:13. Find the perimeter of the rectangle.
176 ft
You want to make a scale drawing of your bedroom to help arrange your furniture. You decide on a scale of 3 in. = 2 ft. Your bedroom is a 12 ft by 14 ft rectangle. What should the dimensions of your drawing be?
18 in. by 21 in.
If 5/y + 7/x=24 and 12/y + 2/x=24, find the ratio of x to y.
5/7
Simplify the ratio 8ft/12in. Use the conversion 12 in. = 1 ft.
8/1
Analyze the proportion below and complete the instructions that follow.
2x+5/3 = x-5/4
-7
If a+b/2a-b = 5/4 and b/a+9 = 5/9, find the value of b.
30
Analyze the ratio below and complete the instructions that follow.
$30:$6
Simplify the ratio.
5:1
If 14/3 = x/y then 14/x =
3/y
Analyze the diagram below and complete the instructions that follow.
In the diagram, AB:BC is 3:4 and AC = 42. Find BC.
24
Analyze the diagram below and complete the instructions that follow.
If AB:BC is 3:11, solve for x.
9
If a, b, c, and d are four different numbers and the proportion a/b = c/d is true, which of the following is false?
b/a = c/d
Analyze the diagram below and complete the instructions that follow.
Find the ratio of the width to the length of the rectangle, then simplify the ratio. Use the conversion 100 cm = 1 m.
3/4
Simplify the ratio 3 gal./24 qt. Use the conversion 4 qt = 1 gal.
1/2
The area of a rectangle is 4,320 ft2. The ratio of the length to the width is 6:5. Find the length of the rectangle.
72 ft
Analyze the diagram below and complete the instructions that follow.
Given that CB/CA = DE/DF, find BA.
10.5
Analyze the proportion below and complete the instructions that follow.
2/3 = 8/x
3, 8
Analyze the diagram below and complete the instructions that follow.
Are the polygons shown here similar? Justify your answer. The images are not drawn to scale.
Yes, PQR ~TSV with a scale factor of 1:√3
All __________ are similar.
squares
Analyze the diagram below and complete the instructions that follow.
Determine which 2 triangles are similar to each other. The images are not drawn to scale.
GHI ~ JKL
Analyze the diagram below and complete the instructions that follow.
Pentagon PQRST ~ pentagon XYZVW. Find the value of b. The images are not drawn to scale.
3
Analyze the diagram below and complete the instructions that follow.
If ABC ~ XYZ, find XY. The images are not drawn to scale.
24
ABC is a right triangle. The legs of ABC are 9 ft and 12 ft. The shortest side of XYZ is 13.5 ft, and ABC ~ XYZ How long is the hypotenuse of XYZ?
22.5 ft
The points (-7,4) and (r,19) lie on a line with slope 3. Find the missing coordinate r.
Answer:
r = -2
Step-by-step explanation:
We can use the slope formula to find r.
m = ( y2-y1)/(x2-x1)
3 = ( 19-4)/(r- -7)
3 = 15/(r+7)
Multiply each side by (r+7).
3 ( r+7) = 15
Divide each side by 3.
r+7 = 15/3
r+7 = 5
Subtract 7 from each side.
r+7-7 = 5-7
r = -2
find the values of a and b such that
x^2- +5=(x-a)^2+b
The value οf a = 1/2 and b = 19/4 in the equatiοn x² - x + 5 = (x-a)² + b.
What dο yοu mean by algebra?The part οf mathematics in which letters and οther general symbοls are used tο represent numbers and quantities in fοrmulae and equatiοn is called algebra.
x² - x + 5 = (x-a)² + b
x² - x + 5 = x² + a² - 2xa + b
-x + 5 = -2xa + a² + b
By matching cοrrespοnding terms,
2a = 1 and a²+ b = 5
a= 1/2 and a²+ b = 5
Substituting value οf "a"
(1/2)² + b = 5
1/4 + b = 5
b = 5- 1/4
b = 19/4
Thus, a = 1/2 and b = 19/4.
To learn more about algebra, click on the link given below
https://brainly.com/question/22399890
#SPJ1
a) if lisa's score was 83 and that score was the 29th score from the top in a class of 240 scores, what is lisa's percentile rank? (round your answer to the nearest whole number.)
Lisa's percentile rank is approximately 88%.
Percentile rank is a statistical measure that indicates the percentage of scores that fall below a particular score in a given distribution of data. It is commonly used to describe the relative position of a particular score in a set of scores.
If Lisa's score was 83 and that score was the 29th score from the top in a class of 240 scores, then her percentile rank can be calculated using the following formula:
Percentile Rank = [(Number of scores below Lisa's score) ÷ (Total number of scores)] × 100
Percentile Rank = [(240 - 29) ÷ 240] × 100
Percentile Rank = (211 ÷ 240) × 100
Percentile Rank = 0.8792 × 100
Percentile Rank ≈ 88 (rounded to the nearest whole number)
Therefore, her percentile rank is approximately 88%.
Learn more about percentile here: https://brainly.com/question/24245405.
#SPJ11
If G is a group with subgroups A, B of orders m, n, respectively, where m and n are relatively prime, prove that the subset of G, AB = {abla E Ab E B}, has mn distinct elements.
The number of distinct elements of AB = m n.
Given that G is a group with subgroups A and B of orders m and n, respectively, where m and n are prime, we need to prove that the subset of G, AB = {abla E Ab E B}, has m n distinct elements. Step-by-step. Let, G is a group with subgroups A and B of orders m and n, respectively. Since, m and n are relatively prime, then we have gcd(m, n) = 1.By Lagrange's Theorem, the order of any subgroup of G divides the order of G.
Hence, the order of G is equal to the product of the orders of A and B, i.e. |G| = |A| * |B| = m * n Let, a and a' be two distinct elements of A and b and b' be two distinct elements of B. Thus, a and a' generate distinct subgroups of G, i.e. ≠ and b and b' generate distinct subgroups of G, i.e. ≠ .Now, the number of distinct elements of AB = {abla E Ab E B} is equal to |A||B| since any two elements ab and a'b' of AB will be distinct if either a and a' are distinct or b and b' are distinct or both are distinct. Hence, the number of distinct elements of AB = m n.
Learn more about Distinct
brainly.com/question/20739236
#SPJ11
there are 20 rows of seats on a concert hall: 25 seats are in the 1st row, 27 seats on the 2nd row, 29 seats on the 3 rd row, and so on. if the price per ticket is $32, how much will be the total sales for a one-night concert if all seats are taken?
Answer:
Step-by-step explanation:
To solve this problem, we need to find out how many seats there are in total, and then multiply that by the price per ticket.
To find the total number of seats, we need to add up the number of seats in each row. We can use the formula for an arithmetic sequence to do this:
S = n/2 * (a + l)
where S is the sum of the sequence, n is the number of terms, a is the first term, and l is the last term.
In this case, we have:
n = 20 (since there are 20 rows)
a = 25 (since there are 25 seats in the first row)
d = 2 (since the difference between each row is 2 seats, the common difference is 2)
We can use d to find the last term as well:
l = a + (n-1)*d
l = 25 + (20-1)*2
l = 25 + 38
l = 63
Now we can plug these values into the formula:
S = 20/2 * (25 + 63)
S = 10 * 88
S = 880
So there are 880 seats in total.
To find the total sales, we just need to multiply by the price per ticket:
total sales = 880 * $32
total sales = $28,160
Therefore, the total sales for a one-night concert with all seats taken would be $28,160.
LMN is a straight angle. Find m LMP and m NMP
From the given information provided, the value of angle LMP and angle NMP is 77 and 103 degrees respectively.
Since LMN is a straight angle, it measures 180 degrees.
We are given the measures of LMP and NMP, and we are told that LMP + NMP = LMN. Therefore, we can set up an equation:
LMP + NMP = LMN
(-16x + 13) + (-20x + 23) = 180
Simplifying and solving for x, we get:
-36x + 36 = 180
-36x = 144
x = -4
Now that we have found the value of x, we can substitute it back into the expressions for LMP and NMP to find their measures:
LMP = -16x + 13 = -16(-4) + 13 = 77 degrees
NMP = -20x + 23 = -20(-4) + 23 = 103 degrees
Therefore, the measures of LMP and NMP are 77 degrees and 103 degrees, respectively, and the measure of LMN is 180 degrees.
Question - LMN is a straight angle. LMP = -16x + 13 NMP = -20x + 23 LMP + NMP = LMN What are the measures?
Learn more about angle here: brainly.com/question/25770607
#SPJ4
PLEASE HELP!!! WILL MARK BRANLIEST!!!
Answer:
The point z = 3+4i is plotted as a blue dot, and the two square roots are plotted as a red dot and a green dot. The magnitudes of z and its square roots are shown by the radii of the circles centered at the origin.
Step-by-step explanation:
qrt(z) = +/- sqrt(r) * [cos(theta/2) + i sin(theta/2)]
where r = |z| = magnitude of z and theta = arg(z) = argument of z.
Calculate the magnitude of z:
|r| = sqrt((3)^2 + (4)^2) = 5
And the argument of z:
theta = arctan(4/3) = 0.93 radians
Now, find the two square roots of z:
sqrt(z) = +/- sqrt(5) * [cos(0.93/2) + i sin(0.93/2)]
= +/- 1.58 * [cos(0.47) + i sin(0.47)]
= +/- 1.58 * [0.89 + i*0.46]
Using a calculator, simplify this expression to:
sqrt(z) = +/- 1.41 + i1.41 or +/- 0.2 + i2.8
Given the triangle, find the length of X. Give your answer in simpliest radical form.
Answer:
x = 4[tex]\sqrt{2}[/tex]
Step-by-step explanation:
using the cosine ratio in the lower right triangle and the exact value
cos45° = [tex]\frac{1}{\sqrt{2} } }[/tex] , then
cos45° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{4}{x}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )
x = 4[tex]\sqrt{2}[/tex]
The dwarf lantern shark is the smallest shark in the world. At birth, it is about 55 millimeters long. As an adult, it is only 3 times as long. How many centimeters long is an adult dwarf lantern shark? centimeters
Answer: 165
Step-by-step explanation:
55 x 3 = 165
a 3-digit pin number is selected. what it the probability that there are no repeated digits? the probability that no numbers are repeated is
The probability that no numbers are repeated = [tex]\frac{720}{1000}=0.72[/tex]
The probability that there are no repeated digits in a 3-digit pin number is 0.72.
Formula used:
[tex]P(n,r)=\frac{n!}{(n-r)!}\\ Probability=\frac{Number of favourable outcomes}{Total number of events in the samples pace}[/tex]
There are 10 digits (0,1,2,3,4,5,6,7,8,9) to choose from.
Therefore, the total number of possible 3-digit pin numbers with no repeated digits is
[tex]P(10,3)=\frac{10!}{(10-3)!}\\P(10,3)= \frac{10!}{7!}\\P(10,3)=720[/tex]
The total number of possible 3-digit pin numbers [tex]= 10 * 10 * 10 = 1000[/tex].
Thus, the probability that no numbers are repeated = [tex]\frac{720}{1000}=0.72[/tex]
Therefore, the probability that there are no repeated digits in a 3-digit pin number is 0.72.
Learn more about probability below
https://brainly.com/question/13604758
Using c use the best term to identify the following.
The correct definition for the lines drawn to circle with centre C are:
FA is an secant.CD is the radius of the circle.DE is the diameter.EB is the tangent on the circle.Explain about the circle?A circle is a spherical shape without boundaries or edges.
A radius describes the distance radiating from the centre.The Diameter passes through the centre of the circle in a straight line.The distance travelled through a circle is its circumference.A line that precisely crosses a circle at one point is said to be tangent.The circular region is divided into two sections by a circle's chord. The term "circular segment" refers to each component.The major segment and minor segment are distinguished by the arcs they contain. The major segment contains the minor arc.Thus, on the basis of propertied of circle, the correct definition for the lines drawn to circle with centre C are:
FA is an secantCD is the radius of the circle.DE is the diameter.EB is the tangent on the circle.know more about the circle,
https://brainly.com/question/24375372
#SPJ1
Sophie invested $92,000 in an account paying an interest rate of 6 1/8% compounded
continuously. Damian invested $92,000 in an account paying an interest rate of 6 5/8%
compounded monthly. After 14 years, how much more money would Damian have in
his account than Sophie, to the nearest dollar?
Answer:
Step-by-step explanation:
To solve this problem, we need to use the formula for compound interest:
A = P*e^(rt)
where A is the final amount, P is the principal (initial investment), e is the base of the natural logarithm (approximately 2.71828), r is the interest rate (expressed as a decimal), and t is the time (in years).
For Sophie's account, we have:
P = $92,000
r = 6 1/8% = 0.06125 (as a decimal)
t = 14 years
A = 92000*e^(0.06125*14)
A = $219,499.70 (rounded to the nearest cent)
For Damian's account, we have:
P = $92,000
r = 6 5/8% = 0.06625/12 = 0.005521 (as a monthly decimal rate)
t = 14*12 = 168 months
A = 92000*(1+0.005521)^168
A = $288,947.46 (rounded to the nearest cent)
Now we can subtract Sophie's final amount from Damian's final amount to find the difference:
Difference = $288,947.46 - $219,499.70
Difference = $69,447.76
Therefore, Damian would have about $69,448 more in his account than Sophie, to the nearest dollar.
What is 6x+2y=-4 in slope-intercept form
Answer:
y = -3x - 2
Step-by-step explanation:
To write the equation 6x + 2y = -4 in slope-intercept form, we need to solve for y.
First, we can isolate the y-term by subtracting 6x from both sides:
6x + 2y = -4
2y = -6x - 4
Next, we can divide both sides by 2 to isolate y:
2y/2 = (-6x - 4)/2
y = -3x - 2
So the slope-intercept form of the equation 6x + 2y = -4 is y = -3x - 2.
What is an equation for the quadratic function represented by the table shown?
(0,-1),(2,3),(4,-1),(6,-13)
The equation of the quadratic function represented by the given table is y = -x² + 4x - 7.
What is a quadratic function?A quadratic function is a function of the form:\sf(x) = ax^2 + bx + c\swhere a, b, and c are constants and x is the parameter. The graph of a quadratic function is a parabola, which is an Inverted curve. Whether the parabola opens up (if a > 0) or down (if a 0) depends on the sign of the coefficient a.
The width of the parabola is also determined by the coefficient a. The parabola is narrow if |a| is greater than 1. (i.e. it has a small width relative to its height). The parabola is wide if |a| is greater than 1.
The standard form of the quadratic equation is given as:
y = ax² + bx + c
Substitute the value of x and y from the table:
3 = a(2)² + b(2) + c
4a + 2b + c = 3........(1)
For point (4, -1):
-1 = a(4)² + b(4) + c
16a + 4b + c = -1..........(2)
For (6, -13):
-13 = a(6)² + b(6) + c
36a + 6b + c = -13..........(3)
From 1 we have:
c = 3 - 4a - 2b
Substitute the value of c in equation 2 and 3:
16a + 4b + 3 - 4a - 2b = - 1
12a + 2b = - 4........(4)
36a + 6b + 3 - 4a - 2b = -13
32a + 4b = -16.......(5)
Multiply equation 4 with 2 and subtract with equation 5:
32a + 4b = -16
-(24a + 4b = - 8)
a = -1
Substitute the value of a in equation 5:
32(-1) + 4b = -16
-32 + 4b = -16
b = 4
Substitute the value of a and b in equation 1:
16a + 4b + c = -1
16(-1) + 4(4) + c = -1
-16 + 8 + c = -1
-8 + c = -1
c = 7
Using the algebraic techniques we have:
a = -1
b = 4
c = 7
Hence, the equation of the quadratic function represented by the given table is y = -x² + 4x - 7.
Learn more about quadratic equation here:
https://brainly.com/question/30098550
#SPJ1
If all other factors are held constant, which of the following results in an increase in the probability of a Type II error? a. The true parameter is farther from the value of the null hypothesis. b. The sample size is increased. c. The significance level is decreased d. The standard error is decreased. e. The probability of a Type II error cannot be increased, only decreased
If all other factors are held constant, then the true parameter is farther from the value of the null hypothesis which is an increase in the probability of a Type II error.The correct option is A.
The true parameter is farther from the value of the null hypothesis.
When the true parameter is farther away from the value of the null hypothesis, it increases the probability of a Type II error. This is because the null hypothesis will have a harder time rejecting the true parameter.
The other factors - increasing sample size, decreasing significance level, and decreasing standard error - all result in a decreased probability of a Type II error.
To learn more about the null hypothesis:
https://brainly.com/question/15980493
#SPJ11
I need help with this
sum area = -3x - 6y + 12 and product area = -36x - 72y.
what is rectangle?
A rectangle is a geometric shape that is defined as a four-sided flat shape with four right angles (90-degree angles) and opposite sides that are parallel and equal in length.
The area of a rectangle is given by the product of its length and width. Assuming that the length of the rectangle is given by -3x - 6y and its width is 12, we can express the area in terms of a sum and a product as follows:
Sum:
Area = length x width
Area = (-3x - 6y) + 12
Area = -3x - 6y + 12
Product:
Area = length x width
Area = (-3x - 6y) x 12
Area = -36x - 72y
Note that the product expression is not equal to the sum expression. This is because we used different assumptions for the length of the rectangle in each case.
Therefore, sum area = -3x - 6y + 12 and product area = -36x - 72y.
To learn more about rectange from the. given link:
https://brainly.com/question/29123947
#SPJ1
2. The point (3,w) is on the graph of the line y = 2x + 7. What is the
value of w?
Answer:
We are given that the point (3,w) lies on the line y = 2x + 7. This means that if we substitute x = 3 into the equation y = 2x + 7, we will get the value of y at x = 3, which is equal to w.
Substituting x = 3 into the equation y = 2x + 7, we have:
y = 2(3) + 7
y = 6 + 7
y = 13
Therefore, the value of w is 13.
Step-by-step explanation:
why can't we use mean when a data set has one or two values that are much higher than all of the others
The reason we can't use the mean when a data set has one or two values that are much higher than all of the others is that it skews the average, making it not representative of the rest of the data.
What is the mean?The mean is a numerical measure of the central tendency of a data set. It is calculated by dividing the sum of all the values in a data set by the number of data points.
A data set is a collection of observations or measurements that are analyzed to obtain information. It can be represented graphically, in tabular form, or in any other format. The data set may be a sample or the entire population.
If a data set has one or two extremely high or low values, it can significantly impact the mean. These values are known as outliers. The outliers can cause the mean to be higher or lower than the actual middle value of the data.
Hence, in such cases, the median is a better choice for finding the central tendency of the data. The median is the middle value of the data set, and it is less affected by outliers than the mean. The mode, which is the value that occurs most frequently in the data set, is also a measure of central tendency that is less sensitive to outliers than the mean.
Learn more about mean here:
https://brainly.com/question/31101410
#SPJ11
Can anyone solve this problem please? Thanks!
The trapezoid has a surface area of 480 square units.
What is the measurement for a trapezoid's area?So, a trapezoid measured in feet offers an area in square feet; one measured in millimetres gives an area in square centimetres; and so on. If it's simpler for you, you can add the lengths of the bases and then divide the total by two. Keep in mind that multiplication by 12 is equivalent to dividing by 2.
We must apply the formula for a trapezoid's area to this issue in order to find a solution:
[tex]A = (1/2) * (a + b) * h[/tex]
where h is the trapezoid's height (or altitude) and a and b are the lengths of its parallel sides.
The values for a, b, and h are provided to us, allowing us to change them in the formula:
A = (1/2) * (20 + 60) * 12
A = (1/2) * 80 * 12
A = 480 square units
To know more about trapezoid visit:-
https://brainly.com/question/8643562
#SPJ1
Which equation is equivalent to pq=r?
Responses
A) p=logR q
B) p=logQ r
C) q=logR p
D) q=logP r
The equation is equivalent to pq=r is option (C) q=logR p
To determine which equation is equivalent to pq=r, we can use logarithmic properties. Taking the logarithm of both sides of the equation, we get
log(pq) = log(r)
Using the property that log(a×b) = log(a) + log(b), we can simplify the left side of the equation
log(p) + log(q) = log(r)
Now, we can compare this expression to each of the answer choices
A) p = logR q
Substituting this into the equation, we get
log(p) + logR(q) = log(r)
This is not equivalent to our expression, so A is not the correct answer.
B) p = logQ r
Substituting this into the equation, we get
log(logQ r) + log(q) = log(r)
This is also not equivalent to our expression, so B is not the correct answer.
C) q = logR p
Substituting this into the equation, we get
log(p) + logR(q) = log(r)
This matches our expression, so C is the correct answer.
D) q = logP r
Substituting this into the equation, we get
log(p) + log(q) = log(logP r)
This is not equivalent to our expression, so D is not the correct answer.
Therefore, the correct option is (C) q=logR p
Learn more about logarithmic properties here
brainly.com/question/30226560
#SPJ4
There is a 0.99962 probability that a randomly selected 28-year-old female lives through the year. An insurance company wants to offer her a one-year policy with a death benefit of $500,000. How much should the company charge for this policy if it wants an expected return of $400 from all similar policies?
In order to expect a return on $400 from across all policies of a similar nature, the insurance firm should charge the policy for about $501.88.
How then do we return a value?Return[expr] leaves control structures that are present during a function's definition and returns the value expression for the entire function. Even if it comes inside other functions, yield takes effect as quickly as it is evaluated. Functions like Scan can use Return inside of them.
Since p is the chance that the 28-year-old woman survives the year and is given as 0.99962, we can enter this number into the equation for n as follows: n = 400(0.99962)/500,400 n 0.799
In light of this, the insurance provider should impose a premium of: Premium = 400/n
$501.88 is the premium ($Premium = 400/0.799)
To know more about return visit:
https://brainly.com/question/28562900
#SPJ1
what are the roots of 2x^2+10x+9=2x
The roots of the equation 2x² + 10x + 9 = 2x does not exist i.e no real roots
Calculating the roots of the equationTo find the roots of the given quadratic equation 2x² + 10x + 9 = 2x, we can start by rearranging the equation to the standard form of a quadratic equation
2x² + 10x + 9 - 2x = 0
Simplifying the left-hand side, we get:
2x² + 8x + 9 = 0
Now, we can use the quadratic formula to find the roots of the equation:
x = (-b ± √(b² - 4ac)) / 2a
where a = 2, b = 8, and c = 9.
Substituting these values into the formula, we get:
x = (-8 ± √(8² - 4(2)(9))) / 2(2)
Simplifying the expression under the square root, we get:
x = (-8 ± √-8) / 4
The square root of -8 is not a real number
So, the equation has no real root
Read more about quadratic equation at
https://brainly.com/question/24334139
#SPJ1
pls help Are the following lines parallel, perpendicular, or neither?
y = 2/3x − 4
y = −3/2x − 7
Responses
Parallel
Perpendicular
Neither
Answer:
Perpendicular.
Step-by-step explanation:
To determine whether the two lines are parallel, perpendicular, or neither, we need to compare their slopes.
The slope-intercept form of a line is y = mx + b, where m is the slope and b is the y-intercept. So we can rewrite the given equations in this form
y = 2/3x - 4 ==> slope = 2/3
y = -3/2x - 7 ==> slope = -3/2
Two lines are parallel if and only if their slopes are equal. Therefore, since the slopes of the two lines are different (2/3 and -3/2), they cannot be parallel.
Two lines are perpendicular if and only if their slopes are negative reciprocals of each other. That is, if the product of their slopes is -1. Therefore, we can check if the product of the slopes of the two lines is -1
(2/3) * (-3/2) = -1
Since the product of the slopes is -1, the two lines are perpendicular.
Therefore, the answer is: perpendicular.