Answer:
-30
Step-by-step explanation:
In ΔRST, s = 93 inches, ∠S=123° and ∠T=28°. Find the length of r, to the nearest 10th of an inch.
We have been given that in ΔRST, s = 93 inches, ∠S=123° and ∠T=28°. We are asked to find the length of r to the nearest 10th of an inch.
We will use law of sines to solve for side r.
[tex]\frac{a}{\text{Sin}(a)}=\frac{b}{\text{Sin}(B)}=\frac{c}{\text{Sin}(C)}[/tex], where a, b and c are corresponding sides to angles A, B and C respectively.
Let us find measure of angle S using angle sum property of triangles.
[tex]\angle R+\angle S+\angle T=180^{\circ}[/tex]
[tex]\angle R+123^{\circ}+28^{\circ}=180^{\circ}[/tex]
[tex]\angle R+151^{\circ}=180^{\circ}[/tex]
[tex]\angle R+151^{\circ}-151^{\circ}=180^{\circ}-151^{\circ}[/tex]
[tex]\angle R=29^{\circ}[/tex]
[tex]\frac{r}{\text{sin}(R)}=\frac{s}{\text{sin}(S)}[/tex]
[tex]\frac{r}{\text{sin}(29^{\circ})}=\frac{93}{\text{sin}(123^{\circ})}[/tex]
[tex]\frac{r}{\text{sin}(29^{\circ})}\cdot \text{sin}(29^{\circ})=\frac{93}{\text{sin}(123^{\circ})}\cdot \text{sin}(29^{\circ})[/tex]
[tex]r=\frac{93}{0.838670567945}\cdot (0.484809620246)[/tex]
[tex]r=110.889786233799179\cdot (0.484809620246)[/tex]
[tex]r=53.7604351[/tex]
Upon rounding to nearest tenth, we will get:
[tex]r\approx 53.8[/tex]
Therefore, the length of r is approximately 53.8 inches.
ok, im failing math rn so plz help
Answer:
-3/4
Step-by-step explanation:
Point A is at (-4,3) and Point B is at (4,-3)
The slope is at
m = (y2-y1)/(x2-x1)
= (-3 -3)/(4 - -4)
= (-3-3)/(4+4)
= -6/8
= -3/4
A standard deck of playing cards has 13 cards in each of four suits: hearts, clubs, diamonds, and spades. Two cards are chosen from the deck at random. What is the probability of choosing one club and one spade, without replacement?
A. 25/102
B.13/102
C.13/204
D.1/2
There are 52 cards in the deck.
Picking a spade would be 13/52 which reduces to 1/4
After the first card is picked there are 51 cards left, picking a club would be 13/51
Picking both would be 1/4 x 13/51 = 13/204
The answer is C.
Please help, it’s a math question
Answer:
the answer is B
Step-by-step explanation:
hope it help
You roll a fair 6-sided die. what is the probability rolling greater than 4
Answer:
1/3
Step-by-step explanation:
There are 6 possible outcomes when you roll this die: 1,2,3,4,5 and 6. Of these, only 5 and 6 are greater than 4, which is 2 successful outcomes. Probability is successful outcomes/total outcomes = 2/6 = 1/3. Hope this helps!
On a coordinate plane, a circle has a center at (4, 5) and a radius of 3 units.
Which equation represents a circle with the same center as the circle shown but with a radius of 2 units?
(x – 4)2 + (y – 5)2 = 2
(x – 4)2 + (y – 5)2 = 4
(x – 5)2 + (y – 4)2 = 2
(x – 5)2 + (y – 4)2 = 4
Answer:
(x - 4)² + (y - 5)² = 4
Step-by-step explanation:
The equation of a circle in standard form is
(x - h)² + (y - k)² = r²
where (h, k) are the coordinates of the centre and r is the radius
Here (h, k) = (4, 5) and r = 2, thus
(x - 4)² + (y - 5)² = 2², that is
(x - 4)² + (y - 5)² = 4 ← second option on list
The required equation represents a circle with the same center as the circle shown but with a radius of 2 units is (x-4)^2 + (y-5)^2 = 4
Equation of a circleThe standard equation of a circle is expressed as:
(x-a)^2 + (y-b)^2 = r^2
where:
(a, b) is the centre = (4, 5)
r is the radius = 3 units
Substitute to have;
(x-4)^2 + (y-5)^2 = 2^2
(x-4)^2 + (y-5)^2 = 4
Hence the required equation represents a circle with the same center as the circle shown but with a radius of 2 units is (x-4)^2 + (y-5)^2 = 4
Learn more on equation of circle here: https://brainly.com/question/14150470
Unit 5. 1) Please help. What is the volume of the cone?
Answer:
I think the correct answer is 27 so option c. :)
A concrete planter is formed from a square-based pyramid that was inverted and placed inside a cube.
This question is incomplete and it lacks the attached diagram of the square based pyramid. Find attached to this answer, the square based pyramid.
Correct Question
A concrete planter is formed from a square-based pyramid that was inverted and placed inside a cube.
A. What is the slant height of the pyramid?
B. What is the surface area of the composite figure?
HINT: The surface area consists of lateral faces of the inside of the inverted pyramid and the remaining 5 faces of the cube.
C. How many cubic yards of concrete are needed to make the planter?
Answer:
A. The slant height of the pyramid = 2.24 yards.
B. The surface area of the composite figure = 12.94 square yards.
C. The cubic yards of concrete are needed to make the planter = 2.67 cubic yards.
Step-by-step explanation:
A. What is the slant height of the pyramid?
To calculate the Slant height of a pyramid we make use of the Pythagoras Theorem which is given as:
a² + b² = c²
Where a = Height of the square pyramid represent by h
b = radius of the square pyramid represented by r
c = Slant height of the square pyramid represented by s
Therefore, we have
h² + r² = s²
Looking at the attached diagram, we are given the side length = 2 yards.
The radius of the square based pyramid = side length ÷ 2
= 2÷ 2 = 1 yard.
The height of a square based pyramid = 2 yards
Since , h² + r² = s²
The slant height of the square pyramid is calculated as :
√h² + r² = s
√(2² + 1²) = s
√5 = s
s = 2.24 yards
B. What is the surface area of the composite figure?
We were given hints in the question that the the surface area consists of lateral faces of the inside of the inverted pyramid and the remaining 5 faces of the cube.
Step 1
We find the Lateral area of the faces of the insides of the inverted pyramid
We have 4 faces, Hence,
The formula is given as
a × √( a² + 4h²
a = 2 yards
h = 2 yards
So, = 2 × √( 2² + 4 ×2²
The Lateral area of the faces = 8.94 square yards.
Step 2
Area of the 5 faces of the cube
= a²
Where a = side length = 2 yards
= 2²
= 4 square yards.
Step 3
Therefore, surface area of the composite figure = 8.94 square yards + 4 square yards
= 12.94 square yards.
C. How many cubic yards of concrete are needed to make the planter?
This is calculated by find the Volume of the Square based pyramid.
The formula is given as :
V = (1/3)a²h
Where a = side length = 2 yards
h = height of the square based pyramid = 2 yards
V = 1/3 × 2² × 2
V = 2.67 cubic yards
Mark recently took a road trip across the country. The number of miles he drove each day was normally distributed with a mean of 450. If he drove 431.8 miles on the last day with a z-score of -0.7, what is the standard deviation?
Answer:
The (population) standard deviation is 26 miles or [tex] \\ \sigma = 26[/tex] miles.
Step-by-step explanation:
We can solve this question using the concept of z-score or standardized value, which is given by the formula:
[tex] \\ z = \frac{x - \mu}{\sigma}[/tex] [1]
Where
[tex] \\ z[/tex] is the z-score.
[tex] \\ x[/tex] is the raw score.
[tex] \\ \mu[/tex] is the population's mean.
[tex] \\ \sigma[/tex] is the population standard deviation.
Analyzing the question, we have the following data to solve this question:
The random variable number of miles driven by day is normally distributed.The population's mean is [tex] \\ \mu = 450[/tex] miles.The raw score, that is, the value we want to standardize, is [tex] \\ x = 431.8[/tex] miles.The z-score is [tex] \\ z = -0.7[/tex]. It tells us that the raw value (or raw score) is below the population mean because it is negative. It also tells us that this value is 0.7 standard deviations units (below) from [tex] \\ \mu[/tex].Therefore, using all this information, we can determine the (population) standard deviation using formula [1].
Then, substituting each value in this formula:
[tex] \\ z = \frac{x - \mu}{\sigma}[/tex]
Solving it for [tex] \\ \sigma[/tex]
Multiplying each side of the formula by [tex] \\ \sigma[/tex]
[tex] \\ \sigma*z = (x - \mu) * \frac{\sigma}{\sigma}[/tex]
[tex] \\ \sigma*z = (x - \mu) * 1[/tex]
[tex] \\ \sigma*z = x - \mu[/tex]
Multiplying each side of the formula by [tex] \\ \frac{1}{z}[/tex]
[tex] \\ \frac{1}{z}*\sigma*z = \frac{1}{z}*(x - \mu)[/tex]
[tex] \\ \frac{z}{z}*\sigma = \frac{x - \mu}{z}[/tex]
[tex] \\ 1*\sigma = \frac{x - \mu}{z}[/tex]
[tex] \\ \sigma = \frac{x - \mu}{z}[/tex]
Then, this formula, solved for [tex] \\ \sigma[/tex], will permit us to find the value for the population standard deviation asked in the question.
[tex] \\ \sigma = \frac{431.8 - 450}{-0.7}[/tex]
[tex] \\ \sigma = \frac{-18.2}{-0.7}[/tex]
[tex] \\ \sigma = 26[/tex]
Thus, the (population) standard deviation is 26 miles or [tex] \\ \sigma = 26[/tex] miles.
The median is the same thing as?
Quartile 1
Quartile 2
Quartile 3
None of the above
Other:
Answer:
The median is NOT the same thing as a quartile.
The median is a measure of center.
Miguelito vende camisas de vestir . En el local le cobran $150 de alquiler; comprq cada camisa en $3.00 y la vende en $5.00. Cuanto es el numero minimo de camisas que debe vender para tener ganancias.
Answer:
[tex]x_{min} = 75\,camisas[/tex]
Step-by-step explanation:
El número mínimo de camisas a vender es igual al costo de alquiler del local dividido por la diferencia entre los valores de venta y compra de cada camisa. (The minimum amount of shirts to be sold is equal to the rental cost of the retail space divided by the difference between sell and purchase cost per shirt):
[tex]x_{min} = \frac{\$ 150}{\$ 5 - \$ 3}[/tex]
[tex]x_{min} = 75\,camisas[/tex]
Miguelito debe vender un mínimo de 75 camisas para obtener ganacias. (Miguelito must sell a minimum of 75 shirts to make a profit.)
A pilot is flying a plane 20000 ft above the ground.The pilot begins a 2 descent to an airport runway.How far is the airplane from the start of the runway(in ground distance)
Answer:
381623 ft
Step-by-step explanation:
Since the airport altitude is 20000 ft and the pilot needs a 2° descent, to calculate the distance of the airplane at the start of this approach, first this is represented in the diagram attached. The distance from the runway at the start is x.
[tex]tan(3) = \frac{20000}{x} \\x=\frac{20000}{tan(3)} \\x=381623ft[/tex]
The airplane is at a distance of 381623 ft away from the airplane runaway at the start of the descent.
Find the area. The figure is not drawn to scale.
1.
36 in.
40 in.
33 in.
-
Answer: 47,520
Step-by-step explanation: 36 times 40 times 33
what is the slope of the line 7x+2y=5
Answer:
slope = -7/2x
Step-by-step explanation:
you can solve the equation in order to make it slope-intercept form.
7x + 2y = 5
2y = -7x + 5
divide everything by 2
it becomes y = -7/2x + 5/2
The required slope of the line is m = -7 / 2.
A line can be defined by the shortest distance between two points is called a line.
Method 1
7x + 2y = 5
Rearranging the equation in the standard form of the equation of a line
y = mx + c
where m is the slope of the line and c is the intercept of the line.
7x + 2y = 5
2y = -7x + 5
y = -7x/2 + 5 - - - - - -(1)
Comparing equation 1 with the standard form of the equation
m = -7/2 and c = 5
Method 2
Differentiate the given equation, with respect to x
d/dx (7x + 2 y) = d/dx (5)
7 + 2dy/dx = 0
dy/dx = -7/2
Slope = dy/dx = -7/2
Thus, the required slope of the equation is m = -7/2
Learn more about lines here:
brainly.com/question/2696693
#SPJ2
hey can anyone pls help me out in dis!!!!!!!!!
Answer:
Look at the attachment
A football team tries to move the ball forward as many yards as possible on each play, but sometimes they end up behind where they started. The distances, in yards, that a team moves on its first five plays are 2, 21, 4, 3, and 25. A positive number indicates moving the ball forward, and a negative number indicates moving the ball backward. 1). Which number in the list is the greatest? 2). What is a better question to ask to find out which play went the farthest from where the team started? 3). The coach considers any play that moves the team more than 4 yards from where they started a "big play." Which play(s) are big plays?
Answer:
Given:
The distances, in yards, that a team moves on its first five plays are 2, 21, 4, 3, and 25.
Solved:
1. The greatest number is 25
2. If the moved distances are square, which one is largest?
3. The move which is greater than 4 is considered "big play"
=> 21 and 25 are big play (21 > 4, 25 > 4)
Hope this helps!
:)
The local theater sold 260 tickets to their most recent performance. Admission was $9 for adults and $5 for children. If they made $2,140, how many adult tickets did they sell?
Answer:
210 adult tickets were sold
Step-by-step explanation:
let x be the number of adult tickets sold
let y be the number of children tickets sold
x+y=260 equation 1
9x+5y=2140 equation 2
multiply equation 1 by 5
multiply equation 2 by 1
5x+5y=1300
9x+5y=2140
subtract equation 1 from 2
4x=840
x=840/4 =210 tickets
substitute for x in equation 1
210+y=260
y=260-210=50
A football team has P points.
P = 3W + D
W is the number of wins
D is the number of draws
If a team has 53 points from 33 games, with 11 draws, how many games did the team lose
Answer:
They must have lost 19 games.
Step-by-step explanation:
If you plug in 53 into the equation, you get 53 = 3w + 11. You subtract 11 from both sides, resulting in 42 = 3w. You divide 3 from both sides this time, resulting in 14 = w. Since W is the number of wins, and you're trying to figure out games lost, you subtract 14 from the number of games played, so 33-14 is equal to 19.
Sarah, Natasha and Richard share some sweets in the ratio 5:2:3. Sarah gets 75 sweets. How many more sweets does Richard get over Natasha?
Answer:
Richard gets 15 more sweets than Natasha.
Step-by-step explanation:
Given that the ratio of Sarah's sweets is 5 and she has 75 sweets. So firstly, you have to find out how many sweets in a ratio of 1 :
Let ratio be units,
[tex]5 units = 75 sweets[/tex]
[tex]1 unit = 75 \div 5[/tex]
[tex]1 unit = 15 sweets[/tex]
Now we have to find how many sweets does Natasha and Richard has :
Richard (ratio of 3),
[tex]3 units = 15 \times 3[/tex]
[tex]3 units = 45 sweets[/tex]
Natasha (ratio of 2),
[tex]2 units = 15 \times 2[/tex]
[tex]2 units = 30 sweets[/tex]
In order to find how many sweets Richard has more than Natasha, you have to substract :
[tex]45 - 30 = 15 sweets[/tex]
Answer:
15
Step-by-step explanation:
the answer is 15
Simplify the expression:
6V + 10 - V
Answer:
5V + 10
Step-by-step explanation:
Add the like terms.
-5v - 4
If you add the like terms this is what you get
Unit 5. 9) Please help. A soda can holds approximately 25.5 cubic inches of soda and is 4.8 inches tall. What is the approximate area of its base?
Answer:
5.3125 in^2
Step-by-step explanation:
The volume of a cylinder is given by
V = pi r^2 h
V = Bh
Where B is the area of the base
25.5 = 4.8 B
Divide each side by 4.8
25.5/4.8 = B
5.3125 = B
Find the surface area of the prism.
Answer:
920 ft^2
Step-by-step explanation:
area of triangles: base x height / 2 (2)
8 x 15 / 2
= 60 x 2
= 120
area of rectangular base: length x width
15 x 20 = 300
area of sloped rectangle: length x width
17 x 20 = 340
area of rectangle: length x width
8 x 20 = 160
Total: 120 + 300 + 340 + 160
=920 ft^2
Answer:
920 ft²
Step-by-step explanation:
2 triangles + 3 rectangles
2(½×15×8) + 20(17+8+15)
120 + 800
920
Use Heron’s Formula, that is, the area of a triangle is , where the triangle contains sides a, b and c and to find the area of the triangle with side lengths: .a=7/2 b=4/3 c=9/4
Answer:
Area: T = 0.649
Step-by-step explanation:
Sides: a = 3.5 b = 1.333 c = 2.25
Mrs. Rodriguez bought 3 tickets for a concert. She also paid for a poster at the concert. Mrs. Rodriguez paid a total of $102 for the tickets and the poster. The equation 3t + p = 102 can be used to find p, the amount Mrs. Rodriguez paid for the poster. If Mrs. Rodriguez paid $29 for each ticket, t, then how much did she pay for the poster
Answer:
15
Step-by-step explanation:
102-(29 x 3)
Answer:
p=15
Step-byexplanation:
3t+p/102
3(29)+p=102
87+p=102
p=15
xion orders 5 loves of bread from the website bakery the total shipping weight is 9 pounds as model of the bread what is in pounds each of the lovaes
Given a triangle with b = 7, C = 3, and A = 37° what is the length of a? Round to the nearest tenth.
a. 4.9
b.5.9
c.5.5 d. 4.3
Answer: 4.9
Step-by-step explanation:
The mk family orchard has 120 apple trees and 90 pear trees. If each fruit tree produces an average of 590 pounds of fruit per year, about how many pounds of fruit can the orchard produce in one year
Answer & Step-by-step explanation:
If each fruit tree produces an average of 590 pounds of fruit, then that means we are going to multiply. For the apples, we are going to multiply 120 by 590. For the pears, we are going to multiply 90 by 590. After we multiply these numbers, we are going to add the products so we can find the total amount of pounds of fruit.
Apples:
120 × 590 = 70800
Pears:
90 × 590 = 53100
Now, we add 70800 to 53100.
70800 + 53100 = 123900
So, the orchard produces 123900 pounds of fruit in one year.
(x-3)(x+5) the product
Answer:
x^2 +2x -15
Step-by-step explanation:
FOIL
(x-3)(x+5)
first x*x = x^2
outer 5x
inner -3x
last -3*5 = -15
Add them together
x^2 +5x-3x-15
Combine like terms
x^2 +2x -15
what does this expression represent five times the quotient of some number and ten
Answer:
5(n/10)
Step-by-step explanation:
quotient of some number and ten=n/10
five time=*5
put it togther=5(n/10)
There are eight black socks six blue socks and 14 White Socks in a drawer if one sock is randomly chosen from the drawer than what is the probability that the sock Will not be blue?
Answer:
22/28 = 11/14
Step-by-step explanation:
no of socks other than blue = 22
total no of socks = 28
so probability= 22/28 = 11/14
Answer:
22
Step-by-step explanation:
8 black 6 blue and 14 white is equal to 28
and if 6 are blue the rest are not so 6-28=22