i think its 2.0
Why do i think this-If you add 0.73g to 1.3g it comes to 2.0g
How many moles of water are produced if 3.30 moles of N20 is
produced? NH4NO3 --> N20 + 2 H2O (mole to mole conversion) 1 step
Answer:
The netto reaction equation is:
2 OH- + 2H+ = 2 H2O
So the answer is 2 moles.
12.0: A
Mention three body fluids that are alkaline in nature
The literature values listed for the unknowns in this assignment are from either the Merck Index or the CRC Handbook, the two most used reference handbooks. However, the values tend to vary slightly across literature sources and sometimes the temperatures are given as ranges. Give at least one reason for the variations in these reported temperatures.
In general, the boiling points of compounds increase down a group in the periodic table. The melting points and boiling points for the hydrogen compounds of group 6A elements are in the table below.
Melting point (0C) Boiling point (oC)
H2O 0.0 100.0
H2S -82.0 -60.0
H2Se -65.7 -41.2
H2Te -49.0 -2.2
Answer:
See explanation
Explanation:
One of the important trends in the periodic table is electronegativity. Electro negativity decreases down the group and increases across the period. This trend has important consequences on the observed properties of the compounds of elements in a particular group in the periodic table.
As we move down in group 6A, the electro negativity of the elements elements the group decrease and as such, the magnitude of intermolecular hydrogen bonding between the molecules also decrease accordingly. Hydrogen bonds occur between
molecules of a substance when hydrogen is covalently bonded to an electronegative element. Hydrogen bonding is responsible for the high melting and boiling points of small molecules such as water which contain the highly electronegative oxygen atom.
So, as we move down the group there is lesser intermolecular hydrogen bonding between the hydride molecules of group 6A elements resulting in the observed trend in melting and boiling points of the hydrides.
The weaker hydrogen bonds that occurbetween molecules of group 6A hydrides lead to a steady decrease in melting and boiling points of the hydrides of group 6A elements as we move down the group.
A 2.9 kg model rocket accelerates at 15.3 m/s2 with a force of 44 N. Before launch, the model rocket was not moving. After the solid rocket engine ignited, hot gases were pushed out from the rocket engine nozzle and propelled the rocket toward the sky.
Which of Newton’s laws apply in this example?
Answer:
Newton's first and third law of Motion
Explanation:
The laws applying in the example Newton's first and third laws of Motion.
The first law states that any object at rest (ie. not moving) will stay at rest until it is forced to move by an external force. In this case, said force were the propulsion gases ignited.As the hot gases were pushed out from the engine nozzle, there was another force equal in magnitud but opposite in direction (as the gases went down, that force went upwards), said force is directly responsible for the rocket taking off. That is an example of the third law.Answer:
It Newtons first, second, and third laws
Explanation:
Consider the following events that take place when rip currents occur.
A. Waves travel to the beach.
B. Waves are trapped by the sandbars.
C. Waves reach the shore and go back to the ocean.
D. Waves speed up and flow between the sandbars.
E. Waves are broken by the sandbars.
Which list shows the order of events in the production of rip currents?
Rita determined the experimental van 't Hoff factor, i, for KCl to be 1.9 which is less than the theoretical value of 2. Select the option that best explains the difference between the theoretical and experimental i.a) The difference is due to the ion-pairing effect which effectively reduces the number of solute particles present in the solution.b) The difference is due to the ion-pairing effect which effectively increases the number of solute particles present in the solution correct amount of KCl that will give better agreement between the experimental and theoretical results.c) Rita did not freeze the entire sample.
Answer:
The difference is due to the ion-pairing effect which effectively reduces the number of solute particles present in the solution.
Explanation:
Colligative properties are those properties that depend on the amount of solute present. Such properties include; boiling point elevation, freezing point depression etc.
Ion pairing causes the Van't Hoff factor to deviate from whole numbers. Ion pairing effect generally reduces the number of solute particles in solution thereby decreasing the experimental value of the Van't Hoff factor (i).
Hence, the reason why Rita determined the Van't Hoff factor as 1.9 and not the theoretical value of 2 is because of on-pairing effect which effectively reduces the number of solute particles present in the solution.
The difference between the theoretical and experimental is A. The difference is due to the ion-pairing effect which effectively reduces the number of solute particles present in the solution.
Colligative propertiesIt should be noted that colligative properties simply means the properties that depend on the amount of solute present.
The ion pairing causes the Van't Hoff factor to deviate from whole numbers. Therefore, they caused the difference between the theoretical and experimental values.
Learn more about ion on:
https://brainly.com/question/11638999
2 . a) b) (1) List three oxides of nitrogen ( 3ks) State Charles law (2mks) (111) A given mass of gas occupies 300cm at 900mmHg if temperature remains constant (5mks) State one industrial application in each of the following Crystallization (2mks) (11) Filtration (2mks) (111) Fractional distillation (2mks) (1) State the property of hydrogen which makes it suitable for filling meteorological balloons (2mks) Why is helium preferred to hydrogen in filling balloons? (2mks) (1) с) 3. a) b) (1) List the steps involved in the purification of water for town supply State two differences between rusting and burning (1) Copy and complete the following table Element No of neutron Electron Group configuration 1 1522522p5 ZOR (ii) State the family to which the elements belong State the two differences between fine chemical and heavy chemicals 32P 130 19 c) 1. a ( List the three types of particles present in an atom Name the element that does not contain all the three particles What is the particle that is not present What is isomerism? b)
ask correctly so that your points cant make fun of others
Which best illustrates the way in which radiation transfers thermal energy?
O
Warr
Cool
o
Warm
Cool
Warm
Cool
Warm
H11
Cool
Answer:
It is so because heat is flowing from hot body to cold body, and there is no direct contact between the body. It explains correctly the mode of transmission of thermal energy through the process of radiations.
Explanation:
Fun fact:
How does thermal energy transfer by radiation?
Radiation. All objects transfer energy to their surroundings by infrared radiation . The hotter an object is, the more infrared radiation it gives off. No particles are involved in radiation, unlike conduction.
Which of the following is true about oxidation-reduction reactions?
=============================================================
One atom is oxidized and one is reduced
Both atoms are oxidized and reduced
The total number of electrons changes
One atom can be oxidized without one being reduced
Answer:
the last one probably
Explanation:
Identify the conjugate acid/base pairs in each of the following equations:
(a) H2S + NH3 ⇔ NH4+ + HS-
Pair 1: H2S and
Pair 2: NH3 and
(b) HSO4- + NH3 ⇔ SO42- + NH4+
Pair 1: HSO4- and
Pair 2: NH3 and
(c) HBr + CH3O- ⇔ Br- + CH3OH
Pair 1: HBr and
Pair 2: CH3O- and
(d) HNO3 + H2O → NO3- + H3O+
Pair 1: HNO3 and
Pair 2: H2O and
Answer:
(a) Pair 1: H₂S and HS⁻
Pair 2: NH₃ and NH₄⁺
(b) Pair 1: HSO₄⁻ and SO₄⁻
Pair 2: NH₃ and NH₄⁺
(c) Pair 1: HBr and Br⁻
Pair 2: CH₃O⁻ and CH₃OH
(d) Pair 1: HNO₃ and NO₃⁻
Pair 2: H₃O⁺
Explanation:
When an acid loses its proton (H⁺), a conjugate base is produced.
When a base accepts a proton (H⁺), it forms a conjugate acid.
(a) H₂S is an acid. When it loses a proton, it forms the conjugate base HS⁻.
NH₃ is a base. When NH₃ gains a proton, it forms the conjugate acid NH₄⁺
(b) The acid HSO₄⁻ loses a H⁺ ion and forms the conjugate base SO₄²⁻.
The base NH₃ accepts a H⁺ ion to form the conjugate acid NH₄⁺.
(c) HBr is an acid. When loses the H⁺ ion, it forms the conjugate base Br⁻.
CH₃O⁻ accepts a H⁺ ion to form the conjugate acid CH₃OH.
(d) HNO₃ loses a proton to form the conjugate base NO₃⁻.
H₂O gains a proton to form the conjugate acid H₃O⁺.
A calorimeter measures the heat involved in reactions or other processes by measuring the temperature change of the materials ________ the process The calorimeter is_______ to prevent transfer of heat to outside the device A calorimeter measures the heat involved in reactions or other processes by measuring the temperature change 01 the process the materials _______. _______ produced by The calorimetelinvolved in surrounding to prevent transfer of heat to outside the device. A calorimeter measures the heat involved in reactions or other processes by measuring the temperature change of the materials _______ the process to prevent transfer of heat to outside the device. The calorimeter is _____ _______Insulated conductive left open V A calorimeter measures the heat involved in reactions or other processes by measuring the temperature change _______ the materials ______ SS moles mass heat The calorimeter is _______comprevent transfer of heat to outside the device of A calorimeter measures the heat involved in reactions or other processes by measuring the temperature chang- ______ the materials _______ the process mass gain enthalpy change temperature change The calorimeter is ________... to prevent transfer of heat to outside the device
Complete Question:
A calorimeter measures the heat involved in reactions or other processes by measuring the ______ of the materials _____ the process. The calorimeter is _______ to prevent transfer of heat to outside the device.
Answer:
Temperature; surrounding; insulated.
Explanation:
A calorimeter can be defined as a scientific instrument or device designed and developed for measuring the heat involved in reactions or other processes, especially by taking the measurement of the temperature of the materials surrounding the process.
Basically, a calorimeter is insulated using materials with very high level of resistivity so as to prevent heat transfer to the outside of the device (calorimeter). Some of the components that make up a simple calorimeter are thermometer, an interior styrofoam cup, an exterior styrofoam cup, cover, etc.
Additionally, a calorie refers to the amount of heat required to raise the temperature of a gram of water by one degree Celsius (°C).
Answer:
Temperature; surrounding; insulated.
Explanation:
A calorimeter measures the heat involved in reactions or other processes by measuring the Temperature of the materials surrounding the process. The calorimeter is insulated to prevent the transfer of heat outside the device.
Using the following equation how many grams of water you would get from 886 g of glucose:
C6H12O6 + 6O2 → 6CO2 + 6H2O + energy
Answer:
531.6g
Explanation:
Total moles of glucose in this case is: 886/180= 4.922 (mole)
For every 1 mole glucose we get 6 mole water
-> Mole of water is: 4.922 * 6= 29.533 (mole)
weight of water is 18. Therefore, total weight of water that we will have from 886g of glucose are: 25.933*18= 531.6g
A mixture of coarse sand and sugar is 45.0 percent sand by mass. 120.0 grams (g) of the mixture is placed in a fine-mesh cloth bag and dunked repeatedly in Lake Michigan. After drying, the mass of the contents of the bag equals: ________.
A. 66.0 g
B. 120.0 g
C. 65.0 g
D. 72.00 g
E. 54.0 g
Answer:
Option E
Explanation:
From the question we are told that:
Amount of sand in percentage [tex]s_p=45%[/tex]
Sample size[tex]n=120g[/tex]
Note:After being dumped in the river repeatedly the sugar melts away leaving behind the insoluble sand
Generally the equation for Amount of sand content is mathematically given by
[tex]X=n*s_p[/tex]
[tex]X=120*\frac{45}{100}[/tex]
[tex]X=54g[/tex]
Therefore
After drying, the mass of the contents of the bag equals
[tex]X=54g[/tex]
Option E
When the following oxidation-reduction reaction in acidic solution is balanced, what is the
lowest whole-number coefficient for Rb+ (aq)?
Rb(s) + Sr2+ (aq) → Rb+(aq) + Sr(s)
Answer:
2Rb(s) + Sr^+(aq) → 2Rb^+ (aq) + Sr(s)
Explanation:
In a redox reaction, we must ensure that the number of electrons gained equals the number of electrons lost in the reduction and oxidation half reaction equations respectively.
Having that in mind;
Oxidation half reaction;
2Rb(s) ---->2Rb^+(aq) + 2e
Reduction half equation;
Sr^2+(aq) + 2e---> Sr(s)
Hence, the overall redox reaction equation is;
2Rb(s) + Sr^+(aq) → 2Rb^+ (aq) + Sr(s)
A buffer solution contains 0.472 M hydrocyanic acid and 0.342 M sodium cyanide. If 0.0194 moles of sodium hydroxide are added to 150 mL of this buffer, what is the pH of the resulting solution
Answer:
pH = 9.54.
Explanation:
Hello there!
In this case, since this is an acidic buffer due to the hydrocyanic acid, it will be firstly necessary for us to calculate the moles of both acid and conjugate base in 150 mL given their concentrations:
[tex]n_{acid}=0.472mol/L*0.150L=0.0708mol\\\\n_{base}=0.342mol/L*0.150L=0.0513mol[/tex]
Next, since the effect of adding NaOH, consume the acid and produce more base, we subtract 0.0194 moles from 0.0708 mol and add 0.0194 to 0.0513 mol for us to calculate the new moles:
[tex]n_{acid}^{new}=0.0708mol-0.0194mol=0.0514mol\\\\n_{base}^{new}=0.0513mol+0.0194mol=0.0707mol[/tex]
Thus, since the pKa of hydrocyanic acid is 9.40, we therefore use the Henderson-Hasselbach equation to calculate the pH of the resulting solution for the same volume:
[tex]pH=9.40+log(\frac{0.0707mol}{0.0514mol} )\\\\pH=9.54[/tex]
Which increase make sense since we added some strong base.
Regards!
The three parts of quality assurance are determining use objectives, setting specifications, and assessment of results. Classify the actions taken during quality assurance by the part of quality assurance in which they should be taken.
a. Document procedures and keep suitable records.
b. Use quality control samples to monitor performance.
c. Compare data and results with specifications.
d. Consider the accuracy and precision needed.
e. Determine the sampling requirements.
f. Follow standard operating procedures.
The actions taken during quality assurance by the part of quality assurance in which they should be taken is to document procedures and keep suitable records. The correct option is a.
What is quality assurance?Quality assurance is checking the quality of objects and services. They are assured in the companies and factories and other places to check the quality of the products.
The different type of quality assurance is: There are different types of quality assurance.
control.acceptance sampling. control charts.product quality control.They work in the set quality and set requirements. They maintain the quality and develop those sets. Furthermore, they manage waste and quality.
Thus, the correct option is a. Document procedures and keep suitable records.
To learn more about quality assurance, refer to the link:
https://brainly.com/question/13164793
#SPJ2
Select the keyword or phrase that will best complete each sentence. law is a gas law that relates pressure and volume and states that for a fixed amount of gas at constant temperature, the pressure and volume of the gas are ____________ related. ____________ law is a gas law that states that for a fixed amount of gas at constant pressure, the volume of the gas is propotional to its Kelvin temperature. ____________ law is a law that states that the total pressure of a gas mixture is equal to the sum of the partial pressure of its component gases. ____________ law is a gas law that states that the volume of a gas is ____________ proportional to the number of moles of present when the pressure and temperature are held constant. ____________ law is a gas law that states for a fixed amount of gas at constant volume, the pressure of the gas is ____________ proportional to its Kelvin temperature. The ____________ law is a gas law that relates pressure, volume, and temperature. The ____________ law is the equation PV
Answer:
Find answers below.
Explanation:
1. Boyle's law is a gas law that relates pressure and volume and states that for a fixed amount of gas at constant temperature, the pressure and volume of the gas are directly related.
Mathematically, Boyle's law is given by;
[tex] PV = K[/tex]
[tex] P_{1}V_{1} = P_{2}V_{2} [/tex]
Where;
P1 and P2 represents the initial and final pressures respectively.
V1 and V2 represents the initial and final volumes respectively.
2. Charles law is a gas law that states that for a fixed amount of gas at constant pressure, the volume of the gas is propotional to its Kelvin temperature.
Mathematically, Charles is given by;
[tex] VT = K[/tex]
[tex] \frac{V_{1}}{T_{1}} = \frac{V_{2}}{T_{2}}[/tex]
Where;
V1 and V2 represents the initial and final volumes respectively.
T1 and T2 represents the initial and final temperatures respectively.
3. Dalton law is a law that states that the total pressure of a gas mixture is equal to the sum of the partial pressure of its component gases.
4. Avogadro's law is a gas law that states that the volume of a gas is directly proportional to the number of moles of present when the pressure and temperature are held constant.
5. Gay Lussac's law is a gas law that states for a fixed amount of gas at constant volume, the pressure of the gas is directly proportional to its Kelvin temperature.
Mathematically, Gay Lussac's law is given by;
[tex] PT = K[/tex]
[tex] \frac{P1}{T1} = \frac{P2}{T2}[/tex]
6. The combined gas law is a gas law that relates pressure, volume, and temperature.
7. The ideal gas law is the equation PV = nRT
Where;
P is the pressure.
V is the volume.
n is the number of moles of substance.
R is the ideal gas constant.
T is the temperature.
A penny has a thickness of approximately 1.0 mm. If you stacked Avogadro's number of pennies one on top of the other on Earth's surface, how far would the stack extend (in kilometers). For comparison, the sun is about 150 million km from Earth and the nearest star (Proxima Centauri) is about 40 trillion km from Earth].
Answer:
6.02 × 10²⁷ km
Explanation:
Step 1: Calculate the height of the stack of pennies
A penny has a thickness of approximately 1.0 mm. If you stacked Avogadro's number of pennies (6.02 × 10²³ pennies) one on top of the other on Earth's surface, the height of the stack of pennies would be:
6.02 × 10²³ pennie × 1.0 mm/1 pennie = 6.02 × 10²³ mm
Step 2: Convert 6.02 × 10²³ mm to kilometers
We will use the following conversion factors.
1 km = 10³ m1 m = 10³ mm6.02 × 10²³ mm × 1 m/10³ mm × 1 km/10³ m = 6.02 × 10²⁷ km
Why is the reaction SO2 + H2O → H2SO2 not balanced?
There are more oxygen atoms in the reactants while there are less oxygen atoms in the product.
Both sides of the equation is supposed to be balanced for a balanced equation. If any one of them isn't balanced, the equation remains unbalanced.
The main reason why the reaction above can not be balanced is:
This chemical reaction SO2 + H2O -> H2SO2 is not correctly written.
It must be: SO2 + H2O -> H2SO3
hope this helps....
Identify the bronsted-lowry acid and the bronsted-lowry base in this reaction on the left side of each of the following equations, and also identify the conjugate acid and conjugate base of each on the right side.
mathrm { NH } _ { 4 } ^ { + } ( a q ) + mathrm { CN } ^ { - } ( a q ) rightleftharpoons mathrm { HCN } ( a q ) + mathrm { NH } _ { 3 } ( a q )
Answer: [tex]NH_4^+[/tex] is an acid, [tex]CN^-[/tex] is a base, [tex]NH_3[/tex] is conjugate base and [tex]HCN[/tex] is conjugate acid
Explanation:
According to Bronsted and Lowry's theory:
An acid is defined as a proton donor while a base is defined as a proton acceptor.
In a chemical reaction, an acid loses a proton to form a conjugate base while a base accepts a proton to form conjugate acid.
For the given chemical reaction:
[tex]NH_4^+(aq)+CN^-(aq)\rightleftharpoons HCN(aq)+NH_3(aq)[/tex]
[tex]NH_4^+[/tex] is losing a proton thus it is an acid to form [tex]NH_3[/tex] which is its conjugate base
[tex]CN^-[/tex] is gaining a proton thus it is a base to form [tex]HCN[/tex] which is its conjugate acid
Hence, [tex]NH_4^+[/tex] is an acid, [tex]CN^-[/tex] is a base, [tex]NH_3[/tex] is conjugate base and [tex]HCN[/tex] is conjugate acid
Which state of matter is characterized by having an indefinite shape, but a definite volume?
solid
gas
liquid
Answer:
liquid is the right answer k
Answer:
liquid
Explanation:
Exercise 2: (7 points)
Augmentin
Augmentin is a drug formed by amoxicillin of molecular formula C16H19N3O5S.3H20 and molar mass 419 g.mol"! Augmenting is used to treat infections caused by certain bacteria. The normal dose is 500mg of tablet each 12 hours. The maximum dose is 40g of Augmentin for 10 days. Augmentin generally has a normal action; a high dose (overdose) in Augmentin causes kidney problems.
1) Explain in which case we use Augmentin. 2) 2.1) Il a patients dissolved in the water an Augmentin tablet of 500mg to prepare a 100ml solution, determine the mass concentration and molar concentration of the obtained solution 2.2) Write the procedures followed to prepare this solution and indicate the materials used in this preparation.
3) If a patient takes daily 100ml of Augmentin solution of concentration 50g L for 10 days, will he suffer from kidney problems?
Answer:
See explanation
Explanation:
I) from the question;
500 × 10^-3 g dissolves in 100ml
xg dissolves in 1000ml
x = 500 × 10^-3 g × 1000ml/100 ml
x= 5 g/L
Mass concentration = molar concentration × molar mass
Molar concentration = Mass concentration/ molar mass
Molar concentration = 5g/L/419 g/mol
Molar concentration = 0.0119 M
ii) To prepare this solution, measure out 500mg with a weighing balance. Transfer the solid to a standard 100 ml volumetric flask. Make up to the 100ml mark with distilled water.
iii) mass concentration of the solution = 50 g/L
Volume of the solution= 100 ml
Mass of the solid = 50 g/L × 100/1000 L
Mass of solid = 5g
This 5g was taken for 10 days, hence a total of 50 g
Since the normal dose of the drug is 40g for ten days, the patient will suffer from kidney problems because he/she has taken the drug above the recommended dosage.
PLZZZZZZZZ HELPPPPPP
Answer:
482
Explanation:
Complete the following road map for converting volume of A to volume of B for a titration of aqueous solution A with aqueous solution B.
a. multiply by the molarity of B
b. multiply by the moles of B per moles of A
c. divide by the molarity of B
d. multiply by the molarity of A
e. divide by the molarity of A
f. multiply by the moles of A per moles of B
1. volume A (L)
2. moles A
3. moles B
4. volume B (L)
Answer:
Explanation:
The solution of known concentration is expressed as molarity. Molarity is the mole fraction of solute (i.e. the dissolved substance) per liter of the solution, Molarity is also commonly called molar concentration.
Mathematically;
[tex]\mathtt{Molarity = \dfrac{moles \ of \ solute}{ liters \ of \ solution}}[/tex]
To copy and complete the road map from the given question, we have the following array:
Volume A (L)
↓
d. multiplied by the molarity of A
↓
moles A
↓
b. multiplied by the moles of B / moles of A
↓
moles B
↓
c. divided by the molarity of B
↓
volume B (L)
Help me please , I got 0.003 for a I need help with b and c
Answer:
(a) The moles of CuSO₄ is 3.125 × 10⁻³ moles.
(b) The moles of Cu is 3.125 × 10⁻³ moles.
(c) The mass of Cu is 0.2 g.
Explanation:
Given:
Mass of CuSO₄ = 0.5 g
Molar mass of CuSO₄ = 160 g/mol
The given balanced chemical equation is:
[tex]2Al+3CuSO_4\rightarrow 3Cu+Al_2(SO_4)_3[/tex]
Part (a):
Calculating the moles of CuSO₄.
[tex]\text{Moles of } CuSO_4=\frac{\text{Mass of }CuSO_4}{\text{Molar mass of }CuSO_4}\\\\\text{Moles of } CuSO_4=\frac{0.5g}{160g/mol}\\\\\text{Moles of } CuSO_4=3.125\times 10^{-3}mol[/tex]
Thus, the moles of CuSO₄ is 3.125 × 10⁻³ moles.
Part (b):
Calculating the moles of Cu.
From the balanced chemical equation, we conclude that:
As, 3 moles of CuSO₄ reacts to give 3 moles of Cu
So, 3.125 × 10⁻³ moles of CuSO₄ reacts to give 3.125 × 10⁻³ moles of Cu
Thus, the moles of Cu is 3.125 × 10⁻³ moles.
Part (c):
Calculating the mass of Cu.
Mass of Cu = Moles of Cu × Molar mass of Cu
Molar mass of Cu = 64 g/mol
Mass of Cu = (3.125 × 10⁻³ mole) × (64 g/mol)
Mass of Cu = 0.2 g
Thus, the mass of Cu is 0.2 g.
A crop is sprayed with a pesticide to prevent infestation and damage from insects. However, the next season the same pesticide fails to prevent the insects from damaging the crop. Why
Answer:
Farmers spray to mitigate crop damage caused by pests. A pest is any biological organism, including weeds, pathogens, and arthropods, that interferes with the production of crops affecting quality and/or yield. ... Pesticides work in many different ways by affecting their target, whether it be a weed, pest, or disease.
Explanation:
this is my answer❤︎
What mass of octane (in g) is required to produce 8210 kJ of heat?
Answer:
184.8 g
Explanation:
Step 1: Write the balanced thermochemical equation
C₈H₁₈(l) + 25/2 O₂(g) ⇒ 8 CO₂(g) + 9 H₂O(g) ΔH°rxn = -5074.1 kJ
Step 2: Calculate the moles of octane required to produce 8210 kJ of heat
According to the thermochemical equation, 5074.1 kJ of heat are released per mole of octane consumed.
-8210 kJ × 1 mol C₈H₁₈/(-5074.1 kJ) = 1.618 mol
Step 3: Calculate the mass corresponding to 1.618 moles of octane
The molar mass of C₈H₁₈ is 114.23 g/mol.
1.618 mol × 114.23 g/mol = 184.8 g
1mol produces=5074.1KJ heat .
Moles produce 8210 KJ heat :-
8210/5074.1=1.62molMolar mass of Octane :-
8(12)+18=96+18=114g/molMass of Octane=
1.62(114)=184.7gWhich of the following is not generally a characteristic of metal?
Ductility
O
Malleability
High melting point
Low boiling point
Desclony When Fe(NO3)2 dissolves in water, what particles are present in the solution?
Answer:
hjfhgjgjgjghgjgjhgjhhjh
name hydrogen ion
what the symbolotom
Answer:
H+
Explanation:
it's H+
as you see hydrogen ion it could H+