if ABCD is a cyclic quadrilateral and A,B,C,D are its interior angles , then prove that
tanA/2+tanB/2=cotC/2+cotD/2
answer the question plz
dont spam or else i will report that
9514 1404 393
Explanation:
In a cyclic quadrilateral, opposite angles are supplementary. This means ...
A + C = 180° ⇒ A/2 +C/2 = 90° ⇒ C/2 = 90° -A/2
B + D = 180° ⇒ B/2 +D/2 = 90° ⇒ D/2 = 90° -B/2
It is a trig identity that ...
tan(α) = cot(90° -α)
so we have ...
tan(A/2) = cot(90° -A/2) = cot(C/2)
and
tan(B/2) = cot(90° -B/2) = cot(D/2)
Adding these two equations together gives the desired result:
tan(A/2) +tan(B/2) = cot(C/2) +cot(D/2)
[tex] {7}^{2n + 1} \div 49 = {7}^{3} [/tex]
What the value of n
Step-by-step explanation:
[tex] {7}^{2n + 1} \div 49 = {7}^{3} [/tex]
[tex] {7}^{2n + 1} \div {7}^{2} = {7}^{3} [/tex]
[tex] {7}^{2n + 1 - 2}= {7}^{3} [/tex]2n-1=32n=4n=2es urgente
Resuelve cada ecuación. Si tu respuesta es correcta podrás completar con ella la información que esta abajo y aprender también sobre la naturaleza
X - ( x – 10 ) + 50 + (20 - x ) = – 50
Answer:
I hope I've helped /espero haberte ayudado
What is the volume of sphere with radius 13 ft?
Answer:
[tex]\displaystyle V = \frac{8788 \pi}{3} \ ft^3[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightGeometry
Volume of a Sphere Formula: [tex]\displaystyle V = \frac{4 \pi}{3}r^3[/tex]
r is radiusStep-by-step explanation:
Step 1: Define
Identify variables
r = 13 ft
Step 2: Find Volume
Substitute in variables [Volume of a Sphere Formula]: [tex]\displaystyle V = \frac{4 \pi}{3}(13 \ ft)^3[/tex]Evaluate exponents: [tex]\displaystyle V = \frac{4 \pi}{3}(2197 \ ft^3)[/tex]Multiply: [tex]\displaystyle V = \frac{8788 \pi}{3} \ ft^3[/tex]Answer:
The volume of this sphere is equal to [tex]2929\frac{1}{3} \pi ft^{3}[/tex]
Step-by-step explanation:
In order to solve this question, we need to know the formula for the volume of a sphere which is...
[tex]V = \frac{4}{3}\pi r^{3}[/tex] ("V" is the volume of the sphere, and "r" is the radius of the sphere)
Now we have to substitute the values that we already know into the formula, and we will get that...
[tex]V = \frac{4}{3}\pi r^{3}\\\\V = \frac{4}{3} \pi (13ft)^{3} \\\\V = \frac{4}{3} \pi (2,197ft^{3} )\\\\V = 2,929\frac{1}{3} \pi ft^{3}[/tex]
Therefore, the volume of this sphere is equal to [tex]2929\frac{1}{3} \pi ft^{3}[/tex]
Write a polynomial that represents the area of the above football field.
Answer:
36x² + 24x + 300 ft²
Step-by-step explanation:
→ Area of rectangle = Length × Width
→ Area of rectangle = (12x + 8) ft × (3x + 15) ft
→ Area of rectangle = 12x(3x + 15) + 8(3x + 15) ft²
→ Area of rectangle = 36x² + 180 + 24x + 120 ft²
→ Area of rectangle = 36x² + 24x + 300 ft²
An experienced teacher writes an exam so that, on average, about 5% of students will earn an A grade. If she has 50 students in her class and their performance is independent, what is the probability that at least one student gets an A
Answer:
[tex]P(x\geq 1) = 0.923[/tex]
Step-by-step explanation:
From the question we are told that:
Percentage of student to get A [tex]P(A)=\%5=0.05[/tex]
Sample size [tex]n=50[/tex]
Generally Number of student to get A is
[tex]N_a=n*P(A)[/tex]
[tex]N_a=50*0.05[/tex]
[tex]N_a=2.5[/tex]
Therefore
Probability that one student gets an A grade is mathematically by
[tex]^nPC_xP^x(1-P)^{n-x}[/tex]
[tex]P(x\geq 1)=1-P(x<1)[/tex]
[tex]P(x\geq 1) =1-P(x=0)[/tex]
[tex]P(x\geq 1) =^50C_0(0.05)^0(0.95)^50[/tex]
[tex]P(x\geq 1) = 0.923[/tex]
The mapping shows a relationship between input and output values.
Answer:
where is the photo
Step-by-step explanation:
6. Donna adds 400 ml (milliliters) of water to 100 ml of coffee. What percentage of Donna's drink is coffee?
9514 1404 393
Answer:
20%
Step-by-step explanation:
100 mL of the drink is coffee
The total amount of drink is 100 mL +400 mL = 500 mL. Then the fraction that is coffee is ...
coffee/total = (100 mL)/(500 mL) = 1/5 = 1/5 × 100% = 20%
20% of Donna's drink is coffee.
A jacket costs £72 after
a 10% price cut. What
was the original price?
Answer:
£80
Step-by-step explanation:
80-(10%x80)=72. hope this helps
If the rvalue, or correlation coefficient, of a data set is negative, the
coefficient of determination is negative.
The given statement is false. Because If the r-value, or correlation coefficient, of a data set, is negative, the coefficient of determination is positive.
What exactly does a negative correlation coefficient mean?Two variables with a negative correlation tend to move in opposing directions.
While a correlation value of -0.3 or below shows a very weak association, one of -0.8 or lower suggests a significant negative relationship.
The complete question is;
"The given statement is true or false
If the r-value, or correlation coefficient, of a data set, is negative, the coefficient of determination is negative."
Because If a data set's r-value, or correlation coefficient, is negative, the coefficient of determination is positive.
Hence, the given assertion is incorrect.
To learn more about the correlation refer to:
https://brainly.com/question/6563788
#SPJ1
Enlarge the triangle by scale factor -1/3 with centre (-1,2)
PLEASE CAN SOMEONE HELP?????????????/
The coordinates of the image after a dilation by scale factor -1/3 with center (-1, 2) are (0, 2), (0, 4), and (-1, 4).
What is dilation?In Geometry, dilation can be defined as a type of transformation which typically changes the size of a geometric object, but not its shape.
Next, we would have to dilate the coordinates of the pre-image by using a scale factor of -1/3 centered at the point (-1, 2) by using this mathematical expression:
(x, y) → (k(x - a) + a, k(y - b) + b)
For coordinate A, we have;
Coordinate A = (-4, 2) → (-1/3(-4 - (-1)) + (-1), -1/3(2 - 2) + 2)
Coordinate A = (-4, 2) → (-1/3(-4 + 1) - 1, -1/3(2 - 2) + 2)
Coordinate A' = (1, 1) → (0, 2)
For coordinate B, we have;
Coordinate B = (-4, -4) → (-1/3(-4 - (-1)) + (-1), -1/3(-4 - 2) + 2)
Coordinate B = (-4, -4) → (-1/3(-4 + 1) - 1, -1/3(-4 - 2) + 2)
Coordinate B' = (1, 1) → (0, 4)
For coordinate C, we have;
Coordinate C = (-1, -4) → (-1/3(-1 - (-1)) + (-1), -1/3(-4 - 2) + 2)
Coordinate C = (-1, -4) → (-1/3(-1 + 1) - 1, -1/3(-4 - 2) + 2)
Coordinate C' = (1, 1) → (-1, 4).
Read more on dilation here: brainly.com/question/20482938
#SPJ1
Please help me in this! you get 30 points!
Answer:
y=3x-2
Step-by-step explanation:
You can verify it's not D because the y-intercept is at -2.
You can verify it's not A because that would mean the x-intercept is 2 despite it appearing to be closer to one.
You can verify it's not B because that would mean the x-intercept is 1.5
Given the functions below,find (f -g) (-1).
f(x) = x2 + 3
g(x) = 4x - 3
Answer:
f(x)=-1,(-1)2+3=-2+3=1g(x)=-1 4(-1)-3=4-3=1(Step-by-step explanation:
(f-g)=1
Which function of x has a y-intercept of -3?
Answer:
C. y = 2x - 3
Step-by-step explanation:
you look at the number without the x. and the minus three means it's negative. But if it's a plus three then it's positive
Q22. Solve the equation x – 25 = 25 and state which axiom do you use here.
Answer:
x=50
Step-by-step explanation:
The solution to the equation x – 25 = 25 is x = 50. The axiom used to solve the equation is the addition property of equality.
To solve the equation x - 25 = 25, we want to isolate the variable x to find its value.
Adding 25 to both sides of the equation, we get:
x - 25 + 25 = 25 + 25
Simplifying, we have:
x = 50
Therefore, the solution to the equation is x = 50.
In this case, the axiom used to solve the equation is the addition property of equality. According to this axiom, if two expressions are equal, adding the same value to both sides of the equation preserves the equality.
In the given equation, we add 25 to both sides of the equation to maintain equality and obtain the solution x = 50. The addition property of equality allows us to perform this operation and determine the value of x.
To learn more about axioms click on,
https://brainly.com/question/33725824
#SPJ2
Write the following comparison as a ratio reduced to lowest terms. 169 inches to 13 feet
Answer:
14.0833333333 feet | 13 feet
Step-by-step explanation:
169 Inches is 14.0833333333 feet on calculator compared to 13 feet
and 1.08333333333 is 14.0833333333 divided by 13
if is not it, then 13/14.0833333333 is 0.92307692307
i guess that is the lowest terms in ratio
7.296÷2.4
full answer please
The math score for ten of Mrs. Moore's students are shown below. How many students made a score of more than 69 but less than 90?
Answer:
8
Step-by-step explanation:
first, 70-79 have 3 students
then 80-89 have 5 students
work out the size of angle x.
Answer:
actually I would have solved it but don't know the angle you're talking about
y+4x=7 find the missing coordinates for a(-3,) and b (5,)
Answer:
-3 1
Step-by-step explanation:
Somebody help me with this
Answer:
3x4 +x3+ 15x2+30x-14
Step-by-step explanation:
0=5x+3 solve equation
5x+3=0
5x=–3
x=–3/5
x=– 0.6
Answer:
x = -3/5
Step-by-step explanation:
0 = 5x + 3
shift 3 to left hand side . when u are shifting 3 to other side it becomes negative
0 - 3 = 5x
-3 = 5x (5x means 5*x)
now shift 5 to left hand side . multiplication changes to division when u shift.
-3/5 = x
Expand and simplify (b+6)(b-4)
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { \: {b}^{2} + 2b - 24}}}}}}[/tex]
[tex]\sf \bf {\boxed {\mathbb {Step-by-step\:explanation:}}}[/tex]
[tex] \: (b + 6)(b - 4)[/tex]
➼[tex] \: b \: (b - 4) + 6 \: (b - 4)[/tex]
➼[tex] \: {b}^{2} - 4b + 6b - 24[/tex]
Combining like terms, we have
➼[tex] \: {b}^{2} + 2b - 24[/tex]
[tex]\large\mathfrak{{\pmb{\underline{\orange{Mystique35 }}{\orange{❦}}}}}[/tex]
Please can you help me
Answer:
[tex]x = 24.75[/tex]
Step-by-step explanation:
Required
Find x
To find x, we have:
[tex]\angle PQR + \angle RPQ + \angle QRP = 180[/tex] -- angles in a triangle
Because [tex]\bar {PR}[/tex] is extended to S, then:
[tex]\angle QRS = \angle QRP[/tex]
So, we have:
[tex]2x + 6 + x - 7 + 5x -17 = 180[/tex]
Collect like terms
[tex]2x + x + 5x = 180 + 17 + 7-6[/tex]
[tex]8x = 198[/tex]
Divide by 8
[tex]x = 24.75[/tex]
If one dog eats 5 pounds of food each week, how many dogs will 65 pounds of food feed for a week
Answer:
It will feed 13 dogs.
Step-by-step explanation:
1 dog = 5 lbs
Set up an equation:
Variable x = number of dogs
1/5 = x/65
Cross multiply:
1 × 65 = 5 × x
65 = 5x
Divide both sides by 5:
13
Check your work:
13 dogs × 5 lbs = 65 lbs
65 = 65
Correct!
Find the volume and surface area of the rectangular solid. The length is 4 meters, the width is 6 meters, and the height is 3 meters.
Answer:
Volume = h * w * l (height, width, length)
Volume = 4* 6 * 3
Volume = 72 cube meters
Surface area is finding the are of every 2D plane on the solid.
2(w * h) + 2(l*h) + 2(w * l)
Surface are = 108 square meters
milligrams would you administer?
17. How many milligrams of Rocephin are left in a vial containing
Rocephin 2 grams after 750 milligrams are removed?
Answer:
1250 miligrams.
Step-by-step explanation:
Simple conversion, 2 grams = 2000 miligrams - 750 milligrams = 1250 miligrams.
Find the selling price of a $32 item after a 50% markup.
The selling price is $
Answer:
The new price is 48
Step-by-step explanation:
First find the markup
50% of 32
.5 * 32 = 16
Add the markup to the original price
16+32 = 48
The new price is 48
Answer:
$48
Step-by-step explanation:
32 * 0.50 = 16
32 + 16 = 48
Hope this is helpful
2 times the difference between 49.5 and 37.5
Answer:
24
Step-by-step explanation:
diff is 12
12x2 is 24
Police response time to an emergency call is the difference between the time the call is first received by the dispatcher and the time a patrol car radios that it has arrived at the scene. Over a long period of time, it has been determined that the police response time has a normal distribution with a mean of 8.1 minutes and a standard deviation of 2.0 minutes. For a randomly received emergency call, find the following probabilities.
a. between 5 and 10 min
b. less than 5 min
c. more than 10 min
Answer:
a) 0.7683 = 76.83% probability that a randomly selected emergency call is between 5 and 10 minutes.
b) 0.0606 = 6.06% probability that a randomly received emergency call is of less than 5 min.
c) 0.1711 = 17.11% probability that a randomly received emergency call is of more than 10 min.
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean of 8.1 minutes and a standard deviation of 2.0 minutes.
This means that [tex]\mu = 8.1, \sigma = 2[/tex]
a. between 5 and 10 min
This is the p-value of Z when X = 10 subtracted by the p-value of Z when X = 5.
X = 10
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{10 - 8.1}{2}[/tex]
[tex]Z = 0.95[/tex]
[tex]Z = 0.95[/tex] has a p-value of 0.8289
X = 5
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{5 - 8.1}{2}[/tex]
[tex]Z = -1.55[/tex]
[tex]Z = -1.55[/tex] has a p-value of 0.0606
0.8289 - 0.0606 = 0.7683
0.7683 = 76.83% probability that a randomly selected emergency call is between 5 and 10 minutes.
b. less than 5 min
p-value of Z when X = 5, which, found from item a, is of 0.0606
0.0606 = 6.06% probability that a randomly received emergency call is of less than 5 min.
c. more than 10 min
1 subtracted by the p-value of Z when X = 10, which, from item a, is of 0.8289
1 - 0.8289 = 0.1711
0.1711 = 17.11% probability that a randomly received emergency call is of more than 10 min.