An Image point has coordinates B'7,-4). Find the coordinates of its pre-Image If the translation used was (x+4, y+5).
О ВІЗ, Т
OB(3-9)
OB/11-9)
B110
NET QUESTION
ASK FOR HELP
TURNITIN

An Image Point Has Coordinates B'7,-4). Find The Coordinates Of Its Pre-Image If The Translation Used

Answers

Answer 1

Answer:

The ans is (3,-9) which means it's the second option


Related Questions

Pls solve x it’s urgent

Answers

Answer:

1. 55 degree

2. 50 degree

3. 88 degree

4. 50 degree

Step-by-step explanation:

1.

Angle AE interior 180-120 = 60

Angle CD interior 180-112 = 68

x = 180- (60+68) = 180-128 = 52 degree

2.

interior 180 -120= 40

interior 180- 110 = 90

x = 180 - (40+90) = 180-130 = 50 degree

3.

exterior 90-52= 38

exterior 90-40 = 50

x = 180-(52+40)= 180-92 = 88 degree

4.

interior 180- (45+50) = 180-95 = 85 degree

interior adjoining triangle 180 - 85 = 95

all angles add up to 180

interior 180- (35 + 95)= 180-130 = 50 degree

x = 50 degree

Let f(x) = 5 + 12x − x^3. Find (a) the x- coordinate of all inflection points, (b)
the open intervals on which f is concave up, (c) the open intervals on which
f is concave down.

Answers

Answer:

A) x = 0.

B) f is concave up for (-∞, 0).

C) f is concave down for (0, ∞).

Step-by-step explanation:

We are given the function:

[tex]f(x)=5+12x-x^3[/tex]

A)

We want to find the x-coordinates of all inflection points.

Recall that inflections points (may) occur when the second derivative equals zero. Hence, find the second derivative. The first derivative is given by:

[tex]f'(x) = 12-3x^2[/tex]

And the second:

[tex]f''(x) = -6x[/tex]

Set the second derivative equal to zero:

[tex]0=-6x[/tex]

And solve for x. Hence:

[tex]x=0[/tex]

We must test the solution. In order for it to be an inflection point, the second derivative must change signs before and after. Testing x = -1:

[tex]f''(-1) = 6>0[/tex]

And testing x = 1:

[tex]f''(1) = -6<0[/tex]

Since the signs change for x = 0, x = 0 is indeed an inflection point.

B)

Recall that f is concave up when f''(x) is positive, and f is concave down when f''(x) is negative.

From the testing in Part A, we know that f''(x) is positive for all values less than zero. Hence, f is concave up for all values less than zero. Our interval is:

[tex](-\infty, 0)[/tex]

C)

From Part A, we know that f''(x) is negative for all values greater than zero. So, f is concave down for that interval:

[tex](0, \infty)[/tex]

A research team is testing a product that will minimize wrinkles among older adults. Volunteers in the age group of 40 to 45 are included in the research. The research team gives a cream to be applied on the face to one group and a placebo cream to the other group.

Answers

What is the question?

A soft drink manufacturer wishes to know how many soft drinks adults drink each week. They want to construct a 95% confidence interval with an error of no more than 0.08. A consultant has informed them that a previous study found the mean to be 3.1 soft drinks per week and found the variance to be 0.49. What is the minimum sample size required to create the specified confidence interval? Round your answer up to the next integer.

Answers

Answer:

The minimum sample size required to create the specified confidence interval is 295.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

Variance of 0.49:

This means that [tex]\sigma = \sqrt{0.49} = 0.7[/tex]

They want to construct a 95% confidence interval with an error of no more than 0.08. What is the minimum sample size required to create the specified confidence interval?

The minimum sample size is n for which M = 0.08. So

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

[tex]0.08 = 1.96\frac{0.7}{\sqrt{n}}[/tex]

[tex]0.08\sqrt{n} = 1.96*0.7[/tex]

[tex]\sqrt{n} = \frac{1.96*0.7}{0.08}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.96*0.7}{0.08})^2[/tex]

[tex]n = 294.1[/tex]

Rounding up:

The minimum sample size required to create the specified confidence interval is 295.

What is the simplified expression for the
expression below? 4(x+8)+5(x-3)

Answers

4(x+8)+5(x-3)
= 4x+32+5(x-3)
=4x+32+5x-15
=9x+17

Answer: 9x+17

Hiiii can u please pls pls pls

Answers

Answer:

x | y

0 | 0

6 | 2

12 | 4

Step-by-step explanation:

Multiply each x value in the table by 1/3 to get 0, 2, and 4 for your y values.

Answer:

x    y

0    0

6    2

12   4

Step-by-step explanation:

Is means equals

The equation is

y = 1/3 x

Let x = 0

y = 1/3 (0) = 0

Let x = 6

y = 1/3 (6) = 2

Let x = 12

y = 1/3 (12) = 4

4. Consider the function g(x) = 2x^2 - 4x+3 on the interval [-1, 2]
A.) Does Rolle's Theorem apply to g(x) on the given interval? If so, find all numbers, s,
guaranteed to exist by Rolle's Theorem. If not, explain why not. (2 pts.)
b.) Does the Mean Value Theorem apply to g(x) on the given interval? If so, find all
numbers, a guaranteed to exist by the Mean Value Theorem. If not, explain why not.
(4 pts.)

Answers

Hi there!

A.) Begin by verifying that both endpoints have the same y-value:

g(-1) = 2(-1)² - 4(-1) + 3

Simplify:

g(-1) = 2 + 4 + 3 = 9

g(2) = 2(2)² - 4(2) + 3 = 8 - 8 + 3 = 3

Since the endpoints are not the same, Rolle's theorem does NOT apply.

B.)

Begin by ensuring that the function is continuous.

The function is a polynomial, so it satisfies the conditions of the function being BOTH continuous and differentiable on the given interval (All x-values do as well in this instance). We can proceed to find the values that satisfy the MVT:

[tex]f'(c) = \frac{f(a)-f(b)}{a-b}[/tex]

Begin by finding the average rate of change over the interval:

[tex]\frac{g(2) - g(-1)}{2-(-1)} = \frac{3 - 9 }{2-(-1)} = \frac{-6}{3} = -2[/tex]

Now, Find the derivative of the function:

g(x) = 2x² - 4x + 3

Apply power rule:

g'(x) = 4x - 4

Find the x value in which the derivative equals the AROC:

4x - 4 = -2

Add 4 to both sides:

4x = 2

Divide both sides by 4:

x = 1/2

(2/3)^x-1=27/8, Find x​

Answers

You’re answer will be “x=-2”
See the attached photo for the answer

Hope this helps! Please make me the brainliest, it’s not necessary but appreciated, I put a lot of effort and research into my answers. Have a good day, stay safe and stay healthy.

Which is heavier, 4- kilograms
or
4
4 kilograms?

Answers

Answer:

i think 4 4 kilograms if im wrong sorry

Step-by-step explanation:

I need some help! thank you!

Answers

Answer:

The 1st,Thrid, Fifth Option

Step-by-step explanation:

The first option is true. We can move the orginal square root function to get g(x).

The second option is false. Function g(x) which equals

[tex] \sqrt{x - 3} - 1[/tex]

Domain is all real numbers greater than or equal to 3.

The third option is true. Since minimum point we can get is 0 in a square root function. We have a vertical shift so our new minimum point is

[tex]0 - 1 = - 1[/tex]

We can take the sqr root of 0 so

So all real numbers that are greater than or equal to -1 is true.

The fourth option is false, we need to add 3 instead of subtract 3.

The fifth option is true, we can do that to get back to our original function

The regression analysis can be summarized as follows: Multiple Choice No significant relationship exists between the variables. A significant negative relationship exists between the variables. For every unit increase in x, y decreases by 12.8094. A significant positive relationship exists between the variables

Answers

Answer:

A significant negative relationship exists between the variables

Step-by-step explanation:

Base on the information given in the question which goes thus : For every unit increase in x, y decreases by 12.8094. The value 12.8094 is the slope which is the rate of change in y variable per unit change in the independent variable. The sign or nature of the slope Coefficient gives an hint about the relationship between the x and y variables. The slope Coefficient in this case is negative and thus we'll have a negative relationship between the x and y variables (an increase in x leads to a corresponding decrease in y). This is a negative association.

The concentration of carbon monoxide (CO) in a gas sample is measured by a spectrophotometer and found to be 85 ppm. Through long experience with this instrument, it is believed that its measurements are unbiased and normally distributed, with an uncertainty (standard deviation) of 9 ppm. Find a 95% confidence interval for the concentration of CO in this sample. Round the answers to two decimal places. The 95% confidence interval is

Answers

Answer:

The confidence interval is [tex](85 - \frac{14.81}{\sqrt{n}},85 + \frac{14.81}{\sqrt{n}})[/tex], in which n is the size of the sample.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

[tex]M = 1.645\frac{9}{\sqrt{n}} = \frac{14.81}{\sqrt{n}}[/tex]

The lower end of the interval is the sample mean subtracted by M. So it is [tex]85 - \frac{14.81}{\sqrt{n}}[/tex]

The upper end of the interval is the sample mean added to M. So it is [tex]85 + \frac{14.81}{\sqrt{n}}[/tex]

The confidence interval is [tex](85 - \frac{14.81}{\sqrt{n}},85 + \frac{14.81}{\sqrt{n}})[/tex], in which n is the size of the sample.

A ball is thrown from an initial height of 7 feet with an initial upward velocity of 23 ft/s. The ball's height h (in feet) after 1 seconds is given by the following.
h = 7+23t-16t^2
Find all values of 1 for which the ball's height is 15 feet.

Answers

Answer:

Step-by-step explanation:

If we are looking for the time(s) that the ball is at a height of 15, we simply sub in a 15 for the height in the position equation and solve for t:

[tex]15=-16t^2+23t+7[/tex] and

[tex]0=-16t^2+23t-8[/tex]

Factor this however you factor a quadratic in class to get

t = .59 seconds and t = .85 seconds.

This means that .59 seconds after the ball was thrown into the air it was 15 feet off the ground. Then the ball reached its max height, gravity took over, and began pulling it back down to earth. The ball passes the height of 15 feet again on its way down after .85 seconds.

A business rents in-line skates and bicycles to tourists on vacation. A pair of skates rents for $5 per day. A bicycle rents for $20 per day.
On a certain day, the owner of the business has 25 rentals and takes in $425.
Write a system of equation to represent this situation, then solve to find the number of each item rented.
Show both the equations and the solution.

Answers

Answer:

5x+20y=425

Step-by-step explanation:

Its 5 bucks for x pairs of skates

Its 20 dollars for y bikes

x+y rentals have to equal 25

all of this is equal to 425. All that is left to do is test with number until the statement is true.

try :

5(5)+(20)(20)=425

x + y do equal 25, and the total is equal to 425.

Area: Change in Dimensions
A rectangle FGHJ has a width of 3 inches and a length of 7 inches

Answers

Answer:

A) 21 in²

B) 42 in²

C) 84 in²

D) I) 4 in²

II) 8 in²

III) 16 in²

E) From our calculations, we can see that doubling one part of the dimensions gives an area that is twice the original one while doubling both dimensions gives an area that four times the original one.

Step-by-step explanation:

We are given dimensions of triangle as;

width; w = 3 inches

length; L = 7 inches

A) Area of triangle is;

A = Lw

A = 7 × 3

A = 21 in²

B) If we double the width, then area is;

A = 7 × (2 × 3)

A = 42 in²

Area is twice the original area

C) If we double the width and length, then we have;

Length = 7 × 2 = 14 in

Width = 3 × 2 = 6 in

Area = 14 × 6 = 84 in²

Area is four times the original one

D) Let's try a triangle with base 2 in and height 4 in.

I) formula for area of triangle is;

A = ½ × base × height

A = ½ × 2 × 4

A = 4 in²

II) If we double the width(base) , then area is;

A = ½ × 2 × 2 × 4

A = 8 in²

This is twice the original area.

III) If we double the width(base) and length(height), then we have;

A = ½ × 2 × 2 × 4 × 2

A = 16 in²

This is four times the original area

E) From our calculations, we can see that doubling one part of the dimensions gives an area that is twice the original one while doubling both dimensions gives an area that four times the original one.

Factor 12x-40 using the gcf

Answers

Answer:

4(3x-10)

Step-by-step explanation:

12x-40 = (4*3)x-(4*10) = 4(3x-10). The GCF is 4.

Evaluate − x 2 −5 y 3 when x = 4 and y =−1

Answers

Answer:

-11

Step-by-step explanation:

I am going to assume that it is -x^2-5y^3.

-(4^2)-5(-1^3)

-16-5(-1)

-16+5

-11

Answer:

- 11

Step-by-step explanation:

If x = 4,  y = -1

then,

        - x^2 - 5y^3 = - (4)^2 - 5(-1)^3

                            = - 16 + 5

                            = - 11

In factons you divide the numerator and the whole number .. then denominator

Correct?

Answers

Answer:

Step-by-step explanation:

yes

If he is correct, what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months

Answers

Complete Question

The quality control manager at a computer manufacturing company believes that the mean life of a computer is 91 months with a standard deviation of 10 months if he is correct. what is the probability that the mean of a sample of 68 computers would differ from the population mean by less than 2.08 months? Round your answer to four decimal places. Answer How to enter your answer Tables Keypad

Answer:

[tex]P(-1.72<Z<1.72)=0.9146[/tex]

Step-by-step explanation:

From the question we are told that:

Population mean \mu=91

Sample Mean \=x =2.08

Standard Deviation \sigma=10

Sample size n=68

Generally the Probability that The  sample mean  would differ from the population mean

P(|\=x-\mu|<2.08)

From Table

[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]

T Test

[tex]Z=\frac{\=x-\mu}{\frac{\sigma}{\sqrt{n} } }[/tex]

[tex]Z=\frac{2.08}{\frac{10}{\sqrt{68} } }[/tex]

[tex]Z=1.72[/tex]

[tex]P(|\=x-\mu|<2.08)=P(|z|<1.72)[/tex]

[tex]P(-1.72<Z<1.72)[/tex]

Therefore From Table

[tex]P(-1.72<Z<1.72)=0.9146[/tex]

4. A typical smartphone battery (yes that includes iphones) degrades at approximately 1%
battery capacity per month with typical use.
a. Construct an equation using f(t) and t that represents the relationship between
"f(t)" the battery capacity of a typical smartphone after "t" months and "L" the
number of months the smartphone has been in normal use.
b. What does the horizontal intercept represent in context? (The x-intercept)
c. What does the vertical intercept represent in context? (The y-intercept)

Answers

Answer:

a. [tex]f(t) = (0.99)^{t} 100%\\[/tex]

b. The x - intercept represents the time at which the battery life drops to 0 %.

c. The y - intercept represents the initial battery life.

Step-by-step explanation:

a. Construct an equation using f(t) and t that represents the relationship between

"f(t)" the battery capacity of a typical smartphone after "t" months and "L" the

number of months the smartphone has been in normal use.

Let the initial battery life be I.

After one month, it decreases by 1%. So, our new value, I' = initial value - decrease = I - 1%I = 99%I.

After two months, it decreases by 1% to our new value I". So, our new value, I" = initial value - decrease = I' - 1%I' = 99%I' = 99%(99%)I = (99%)²I

After three months, it decreases by 1% to our new value I'". So, our new value, I"' = initial value - decrease = I" - 1%I" = 99%I" = 99%(99%)²I = (99%)³I

We see a pattern here.

After t months, f(t)

[tex]f(t) = (0.99)^{t} 100%\\[/tex]

b. What does the horizontal intercept represent in context? (The x-intercept)

The x - intercept represents the time at which the battery life drops to 0 %.

c. What does the vertical intercept represent in context? (The y-intercept)

The y - intercept represents the initial battery life.

The population of the world in 1987 was 5 billion and the annual growth rate was estimated at 2 percent per year. Assuming that the world population follows an exponential growth model, find the projected world population in 2015

Answers

Answer:

The projected world population in 2015 was 8,705,121,030 people.

Step-by-step explanation:

Given that the population of the world in 1987 was 5 billion and the annual growth rate was estimated at 2 percent per year, assuming that the world population follows an exponential growth model, to find the projected world population in 2015 the following calculation must be performed :

5,000,000,000 x 1.02 ^ (2015-1987) = X

5,000,000,000 x 1.02 ^ 28 = X

5,000,000,000 x 1.741024 = X

8,705,121,030 = X

Therefore, the projected world population in 2015 was 8,705,121,030 people.

A sporting goods store manager was selling a ski set for a certain price. The manager offered the markdowns​ shown, making the​ one-day sale price of the ski set ​$324. Find the original selling price of the ski set.

Answers

Answer:

$520.632

Step-by-step explanation:

520 and some change

identify the angles relationship

Answers

Answer:

Adjacent

Step-by-step explanation:

Adjacent angles are two angles that have a common vertex and a common side but do not overlap

Find the sample size necessary to estimate the mean arrival delay time for all American Airlines flights from Dallas to Sacramento to within 6 minutes with 95% confidence. Based on a previous study, arrival delay times have a standard deviation of 39.6 minutes.

Answers

Answer:

The sample size necessary is of 168.

Step-by-step explanation:

We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:

[tex]\alpha = \frac{1 - 0.95}{2} = 0.025[/tex]

Now, we have to find z in the Z-table as such z has a p-value of [tex]1 - \alpha[/tex].

That is z with a pvalue of [tex]1 - 0.025 = 0.975[/tex], so Z = 1.96.

Now, find the margin of error M as such

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

In which [tex]\sigma[/tex] is the standard deviation of the population and n is the size of the sample.

Based on a previous study, arrival delay times have a standard deviation of 39.6 minutes.

This means that [tex]\sigma = 39.6[/tex]

Find the sample size necessary to estimate the mean arrival delay time for all American Airlines flights from Dallas to Sacramento to within 6 minutes with 95% confidence.

This is n for which M = 6. So

[tex]M = z\frac{\sigma}{\sqrt{n}}[/tex]

[tex]6 = 1.96\frac{39.6}{\sqrt{n}}[/tex]

[tex]6\sqrt{n} = 1.96*39.6[/tex]

[tex]\sqrt{n} = \frac{1.96*39.6}{6}[/tex]

[tex](\sqrt{n})^2 = (\frac{1.96*39.6}{6})^2[/tex]

[tex]n = 167.34[/tex]

Rounding up:

The sample size necessary is of 168.

If three times a number added to 8 is divided by the number plus 7, the result is four thirds. Find the number.​

Answers

9514 1404 393

Answer:

  4/5

Step-by-step explanation:

The wording is ambiguous, as it often is when math expressions are described in English. We assume you intend ...

  [tex]\dfrac{3n+8}{n+7}=\dfrac{4}{3}\\\\3(3n+8)=4(n+7)\qquad\text{multiply by $3(n+7)$}\\\\9n+24=4n+28\qquad\text{eliminate parentheses}\\\\5n=4\qquad\text{subtract $4n+24$}\\\\\boxed{n=\dfrac{4}{5}}\qquad\text{divide by 5}[/tex]

The number is 4/5.

Which of the following have both 2 and -5 as solutions?

X2+3x-10-0

X2-3x-10=0

X2+7x+10=0

X2-7x+10=0

Answers

Answer:

X^2 + 3x - 10=0

combine like terms

-7+5x-2=15

Answers

If you combine like terms you get :

5x = 24

Step-by-step explanation:

[tex] - 7 + 5x - 2 = 15[/tex]

Combine like terms

[tex]5x = 15 + 7 + 2[/tex]

Further Workings :

Simplify

[tex]5x = 24[/tex]

[tex] \frac{5x}{5} = \frac{24}{5} \\ \\ x = 4.8[/tex]

A recent study of the relationship between social activity and education for a sample of corporate executives showed the following results. Social Activity Education Above Average Average Below Average College 30 20 10 High School 20 40 90 Grade School 10 50 130 The appropriate test statistic for the analysis is a(n) ______.a. F-statistic.b. t-statistic.c. Chi-square statistic.d. z-statistic.

Answers

Answer:

Chisquare statistic

Step-by-step explanation:

The most appropriate test to use here is the Chisquare test as it isemployed when testing the relationship between two variables. Both the T statistic and z statistics are the used for testing difference in means. However, in the analysis above, we are given two variables with each having its own levels. Hence, the Chisquare test is the most appropriate in this kind of situation a it measures if a difference exists between the two variables. It tests if they are related or independent of on one another

Find the solution to the system of equations.
x + y + z = 11
y + z = 12
Z= 8

Answers

The answer is (A. x =-1, y=4, z=8)

You want to walk from home to a clothing store that is 1/4 miles away you stop for a rest after 1/8 miles how much farther do you have to walk

Answers

Answer:

1/8

Step-by-step explanation:

Answer: 1/8

Step-by-step explanation:

1/8 + 1/8 = 2/8 = 1/4

Other Questions
Which image is used throughout "Sinners in the Hands of an Angry God" to provoke fear in the audience?firearrowsinsectsserpents b. Compare the similar triangle proof from question 3 with the inscribed squareproof. How are they different? Which method was easier for you to understand?(1 point) th no l li ch so snh what is another name for hard water? Fill in the blank with the French word that best completes the following sentence.Cette nouvelle robetrs cher!O cuteO entreO achteOpaye What are the possible steps involved in solving the equation shown? Select three options.3.5 + 1.2(6.3 7x) = 9.38 Choose the correct adjective for the sentence.The dinner was the _______ of all.A. tastierB. tastiestC. tastyD. more tasty Non-digital bi-metallic stem thermometers are no-longer recommended for use in food service because they require constant re-calibration. Select one: True False PLEASE HURRYTo be scurrilous is to beA foul-mouthedB. challengingC. self-respectingD. misunderstood Has anyone here gone to NYU steinhardt? If so, do you have any advice on getting accepted? Con tus palabras que dice la cancin todos juntos de los jaivas? Question 27The sex glands in the male are thea. gametesb. androgensC. glansd.gonadse. spermatozoa Help me please! Show work. Thanks!!!!!! Find the product. (-2x^2)^3 3x a que distancia se encuentra una gaviota respecto del nivel del mar? Which expression is equivalent to (3x^2+4x-7)(x-2) Solve the system using substitution. x+y=-2 and x-y=-8 Vehicle registration laws do not apply to:A tractorA three-wheeled motorcycle used for agricultural purposes. A trailers with no springs or pulled by a tongue.All of the above Table sugar is an example of which molecule Yes, I want to go to the party. Which sentence is punctuated correctly?