An experiment based at New Mexico’s Apache Point observatory uses a laser beam to measure the distance to the Moon with millimeter precision. The laser power is 120 GW, although it’s pulsed on for only 90 ps. The beam emerges from the laser with a diameter of 7.0 mm. It’s then beamed into a telescope aimed at the Moon. When the beam leaves the telescope, it has the telescope’s full 3.5-mm diameter. By the time it reaches the Moon, the beam has expanded to a diameter of 6.5 km.

a. Find the intensity of the beam as it leaves the laser. Express your answer with the appropriate units.
b. Find the intensity of the beam as it leaves the telescope. Express your answer with the appropriate units.

Answers

Answer 1

Answer:

Sorry but i dont know

Explanation:


Related Questions

Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a great amount of angular momentum when rotating. A wind turbine has a total of 3 blades. Each blade has a mass of m = 5500 kg distributed uniformly along its length and extends a distance r = 46 m from the center of rotation. The turbine rotates with a frequency of f = 11 rpm.

Required:
a. Calculate the total moment of inertia of the wind turbine about its axis, in units of kilogram meters squared.
b. Calculate the angular momentum of the wind turbine, in units of kilogram meters squared per second.

Answers

Answer:

Explanation:

moment of inertia of each blade which is similar to rod rotating about its one end

= 1/3 ml²

moment of inertia of 3 blades = ml²

= 5500 x 46²

I = 11638 x 10³ kg m²

angular velocity = 2πn where n is rotation per second

n = 11 / 60

angular velocity = 2π x 11/60

= 1.1513 rad /s

angular momentum

= moment of inertia x angular velocity

=  11638 x 10³ x 1.1513

= 13399 x 10³ kg m² per second.

A steam engine takes in superheated steam at 270 °C and discharges condensed steam from its cylinder at 50 °C. The engine has an efficiency of 30%, and taken in 50 kJ from the hot steam per cycle. If a Carnot engine takes in the same amount of heat per cycle and operates at these temperatures, the work it can turn into is most likely to be:a) 15 kJ. b) 20 kJ. c) 10 kJ. d) 50 kJ.

Answers

Answer:

b) 20 kJ

Explanation:

Efficiency of carnot engine = (T₁ - T₂ ) / T₁  Where T₁ is temperature of hot source  and T₂ is temperature of sink .

T₁ = 270 + 273 = 543K

T₂ = 50 + 273 = 323 K

Putting the given values of temperatures

efficiency = (543 - 323) / 543

= .405

heat input = 50 KJ

efficiency = output work / input heat energy

.405 = output work / 50

output work = 20.25 KJ.

= 20 KJ .

A bicycle coasting downhill reaches its maximum speed at the bottom of the
hill.
This speed would be even greater if some of the bike's
energy had
not been transformed into
energy
A) kinetic; heat
OB) heat; potential
C) kinetic; potential
OD) potential; kinetic

Answers

OB

mmnjnjlkdhfutydjfyiudtkcgvyftdcgvjyiluftgyiuyu  ( had to do that cuz it wouldn't let through)

A 200.0 g block rests on a frictionless, horizontal surface. It is pressed against a horizontal spring with spring constant 4500.0 N/m (assume that the spring is massless). The block is held in position such that the spring is compressed 4.00 cm shorter than its undisturbed length. The block is suddenly released and allowed to slide away on the frictionless surface. Find the speed the block will be traveling when it leaves the spring.

Answers

Answer:

 6 m/s

Explanation:

Given that :

mass of the block   m =  200.0 g  = 200 × 10⁻³ kg

the horizontal spring constant   k  =  4500.0 N/m

position of the block (distance x) = 4.00 cm  = 0.04 m

To determine the speed the block will be traveling when it leaves the spring; we applying the  work done on the spring as it is stretched (or compressed) with the kinetic energy.

i.e [tex]\frac{1}{2} kx^2 = \frac{1}{2} mv^2[/tex]

[tex]kx^2 = mv^2[/tex]

[tex]4500* 0.04^2 = 200*10^{-3} *v^2[/tex]

[tex]7.2 =200*10^{-3}*v^{2}[/tex]

[tex]v^{2} =\frac{7.2}{200*10^{-3}}[/tex]

[tex]v =\sqrt{\frac{7.2}{200*10^{-3}}}[/tex]

v = 6 m/s

Hence,the speed the block will be traveling when it leaves the spring is  6 m/s

the speed of sound is 343m/s. dezeirey is positioned 5m behind her. how many seconds will it take for the echo from the wall to reach her

Answers

Answer:

t = 0.029 s

Explanation:

We have,

Speed of sound is 343 m/s.

Dezeirey is positioned 5 m behind her.

It is required to find the time taken for the echo from the wall to reach her. The total distance covered by the echo when it reaches her is 2d or 10 m.

Time taken,

[tex]t=\dfrac{d}{v}\\\\t=\dfrac{10\ m}{343\ m/s}\\\\t=0.029\ s[/tex]

So, it will take 0.029 seconds for the echo from the wall to reach her.

The shaft of a motor has an angular displacement θ that is a function of time given by the equation: θ(t) = 4.40 t 3 rad/s3 + 1.40 t2 rad/s2 . At time t = 0.00 s the wheel is at rest and is oriented at θ = 0.00 rad. a) Derive the equation that specifies the angular velocity of the shaft as a function of time. b) Derive the equation that specifies the angular acceleration as a function of time.

Answers

Answer:

a) [tex]\omega = 13.2t^2\frac{rad}{s^3}+2.80t\frac{rad}{s^2}[/tex]

b) [tex]\alpha=26.4t\frac{rad}{s^3}+2.80\frac{rad}{s^2}[/tex]

Explanation:

You have that the angular displacement is given by:

[tex]\theta=4.40t^3\frac{rad}{s^3}+1.40t^2\frac{rad}{s^2}[/tex]

a) the angular velocity is given by the derivative in time, of the angular displacement, that is:

[tex]\omega=\frac{d\theta}{dt}=\frac{d}{dt}[4.40 t^3 rad/s^3 + 1.40 t^2 rad/s^2]\\\\\omega=\frac{d\theta}{dt}=13.2t^2\frac{rad}{s^3}+2.80t\frac{rad}{s^2}[/tex]

b) the angular acceleration is the derivative, in time, of the angular velocity:

[tex]\alpha=\frac{d\omega}{dt}=\frac{d}{dt}[13.2t^2\frac{rad}{s^3}+2.80t\frac{rad}{s^2}]\\\\\alpha=26.4t\frac{rad}{s^3}+2.80\frac{rad}{s^2}[/tex]

A solid cylinder of mass m and radius R rolls down a ramp, starting from rest at a height h above a nearby horizontal surface. The coefficients of kinetic and static friction and are non-zero, and sufficiently large that the cylinder rolls down the ramp without slipping. Assume that the coefficient of rolling friction is zero. As the cylinder leaves the ramp, it continues along a horizontal surface (with the same frictional coefficients as the ramp).

Required:
What is the speed V of the cylinder after it has traveled a distance D along the horizontal surface?

Answers

Answer:

the volocity is 50

Explanation:

How are the elements in the same row similar

Answers

Answer:

All elements in a row have the same number of electron shells. Each next element in a period has one more proton and is less metallic than its predecessor. Arranged this way, groups of elements in the same column have similar chemical and physical properties, reflecting the periodic law.

A piston with stops containing water goes through an expansion process through the addition of heat. State 1 the pressure is 200 kPa and the volume is 2 m3. After half of the heat has been delivered the piston hits the stops corresponding to a volume of 5 m3. After all the heat has been delivered, state 2, the pressure is 1000 kPa with the piston resting on the stops. What is the work?

Answers

Answer:

The work will be "600 kJ/kg".

Explanation:

(1-a) ⇒ Constant Pressure

(a-2) ⇒ Constant Volume

The given values are:

In state 1,

Pressure, P₁ = 200 kPa

Volume, V₁ = 2m³

In state 2,

Pressure, P₂ = 1000 kPa

Volume, V₁ = 5m³

Now,

In process (1-a), work will be:

W₁₋ₐ = P₁(Vₐ - V₁)

On putting the values, we get

⇒ W₁₋ₐ = 200(5-2)

⇒         = 200(3)

⇒         = 600 kJ/kg

In process (a-2), work will be:

Wₐ₋₂ = 0

∴ (The change in the volume will be zero.)

So,

Total work = (W₁₋ₐ) + (Wₐ₋₂)

⇒                    = 600 + 0

⇒                    = 600 kJ/kg

What do you think will be different about cars in the future? Describe a change that is already being developed or that you think should be invented.

Answers

Answer:

Flying cars.

Explanation:

How the musculoskeletal and nervous system develop as a human grows

Answers

Answer:

Explanation:

A fan pushes hot air out of a vent and into a room. The hot air displaces cold air in the room, causing the cold air to move closer to the floor.

The hot air displacing the cold air is an example of  transfer by

Electric fields are MOST associated with ________.

Answers

With each point in space

A radiator rests snugly on the floor of a room when the temperature is 10 oC. The radiator is connected to the furnace in the basement by a pipe that is 15 m long. How far off the floor will the radiator be lifted when it is filled with steam at 102 oC? The iron expands 1.0 * 10-5 / oC.

Answers

Answer: 10




Explanation subtract

Einstein developed much of his understanding of relativity through the use of gedanken, or thought, experiments. In a gedanken experiment, Einstein would imagine an experiment that could not be performed because of technological limitations, and so he would perform the experiment in his head. By analyzing the results of these experiments, he was led to a deeper understanding of his theory. In each the following gedanken experiments, Albert is in the exact center of a glass-sided freight car speeding to the right at a very high speed vvv relative to you. Albert has a flashlight in each hand and directs them at the front and rear ends of the freight car. Albert switches the flashlights on at the same time.

In Albert's frame of reference, which beam of light travels at a greater speed, the one directed toward the front or the one toward the rear of the train, or do they travel at the same speed? Which beam travels faster in your frame of reference? Enter the answers for Albert's frame of reference and your frame of reference separated by a comma using the terms front, rear, and same. For example, if in Albert's frame of reference the beam of light directed toward the front of the train travels at a greater speed and in your frame of reference the two beams travel at the same speed, then enter front,same.

Answers

Answer:

For eintein's frame of reference, both beam travel at the same speed.

For my own frame of reference, both beams travel at the same speed.

Explanation:

According to special relativity, the speed of light is the same in all direction on all reference frame. If not for this law we will assume the from beam will have a relative speed that will be the speed of light plus the speed of the fright car. This is not so and it violates the speed limit of light which according to the first law is the highest speed possible and nothing can go beyond that.

By which process does the heat from the Sun reach the Earth? (AKS 4b DOK 1) *

Answers

The earth radiation

A long solid conducting cylinder with radius a = 12 cm carries current I1 = 5 A going into the page. This current is distributed uniformly over the cross section of the cylinder. A cylindrical shell with radius b = 21 cm is concentric with the solid cylinder and carries a current I2 = 3 A coming out of the page. 1)Calculate the y component of the magnetic field By at point P, which lies on the x axis a distance r = 41 cm from the center of the cylinders.

Answers

Answer:

Explanation:

We shall use Ampere's circuital law to find magnetic field at required point.

The point is outside the circumference of two given wires so whole current will be accounted for .

Ampere's circuital law

B = ∫ Bdl = μ₀ I

line integral will be over circular path of radius r = 41 cm .

Total current  I  = 5A -3A = 2A .

∫ Bdl = μ₀ I

2π r B = μ₀ I

2π x .41  B = 4π x 10⁻⁷ x 2

B = 2 x 10⁻⁷ x 2 / .41

= 9.75 x 10⁻⁷ T . It will be along - ve Y - direction.

A. A PH202 student lives next to a construction site and sees a crane with a wrecking ball demolish the building next door. The wrecking ball swings along the wall between her house and the neighbor’s house. In an effort to determine the length of the cable on the wrecking ball the student builds a pendulum using a random rock and a string. Her pendulum turns out to be 0.500m long. While she plays with her pendulum she realizes that the wrecking ball swings back and forth in the same amount of time that it takes the rock to complete 5 full oscillations. What is the length of the cable on the wrecking ball?

Answers

Answer:

The length of cable is 12.5 m

Explanation:

Since, the wrecking ball completes 1 oscillation, in the same time, as it takes for the rock to complete 5 oscillations.

Therefore,

Time Period of Wrecking Ball = 5 (Time Period of Rock)

Since,

Time Period of  Pendulum = 2π√(L/g)

Therefore,

2π√(L₁/g) = 5[2π√(L₂/g)]

√L₁ = 5√L₂

Squaring on both sides:

L₁ = 25 L₂

where,

L₁ = Length of Cable = ?

L₂ = Length of string = 0.5 m

Therefore,

L₁ = 25 (0.5 m)

L₁ = 12.5 m

5.00 kg of liquid water is heated to 100.0 °C in a closed system. At this temperature, the density of liquid water is 958 kg/m3 . The pressure is maintained at atmospheric pressure of 1.01 x 105 Pa. A moveable piston of negligible weight rests on the surface of the water. The water is then converted to steam by adding an additional amount of heat to the system. When all of the water is converted, the final volume of the steam is 8.50 m3 . The latent heat of vaporization of water is 2.26 x 106 J/kg. Calculate how much work is done and the change in the internal energy during this isothermal process.

Answers

Answer:

1.04 x 107 J.

Explanation:

We can use the following method to do the calculation

Total energy given to water to convert intosteam

dQ = m* l

dQ = 5.00* 2.26 * 106

= 1.13* 107 J

Work done at constantpressure dW = P* dV

Initialvolume V1 = 5.00kg / 958

= 5.22* 10-3 m3

Finalvolume = 8.50 m3

=> dW = 1.01* 105 * ( 8.50 - 5.22 * 10-3)

= 8.58* 105 J

First law of thermodynamicsis dQ = ΔU + dW

Change in internalenergy ΔU = 1.13* 107 - 8.58 *105

= 1.04 x 107 J as our answer

A student performs an experiment that involves the motion of a pendulum. The student attaches one end of a string to an object of mass M and secures the other end of the string so that the object is at rest as it hangs from the string. When the student raises the object to a height above its lowest point and releases it from rest, the object undergoes simple harmonic motion. As the student collects data about the time it takes for the pendulum to undergo one oscillation, the student observes that the time for one swing significantly changes after each oscillation. The student wants to conduct the experiment a second time. Which two of the following procedures should the student consider when conducting the second experiment?
a) Make sure that the length of the string is not too long.
b) Make sure that the mass of the pendulum is not too large.
c) Make sure that the difference in height between the pendulum's release position and rest position is not too large.
d) Make sure that the experiment is conducted in an environment that has minimal wind resistance.

Answers

Answer:

the answers the correct one is cη

Explanation:

In this simple pendulum experiment the student observes a significant change in time between each period. This occurs since an approximation used is that the sine of the angle is small, so

              sin θ = θ

 

with this approach the equation will be surveyed

     d² θ / dt² = - g / L sin θ

It is reduced to

      d² θ / dt² = - g / L θ

in which the time for each oscillation is constant, for this approximation the angle must be less than 10º so that the difference between the sine and the angles is less than 1%

The angle is related to the height of the pendulum

         sin θ = h / L

         h = L sin θ.

Therefore the student must be careful that the height is small.

When reviewing the answers the correct one is cη

Considering the approximation of simple harmonic motion, the correct option is:

(c) Make sure that the difference in height between the pendulum's release position and rest position is not too large.

Simple Harmonic Motion

According to Newton's second law in case of rotational motion, we have;

[tex]\tau = I \alpha[/tex]

Applying this, in the case of a simple pendulum, we get;

[tex]-mg\,sin\,\theta =mL^2 \,\frac{d^2 \theta}{dt^2}[/tex]

On, rearranging the above equation, we get;

[tex]mL^2 \,\frac{d^2 \theta}{dt^2} + mg\,sin\,\theta=0\\\\\implies \frac{d^2 \theta}{dt^2} +\frac{g}{L} sin \,\theta=0[/tex]

Now, if angular displacement is very small, i.e.; the bob of the pendulum is only raised slightly.

Then, [tex]sin\, \theta \approx \theta[/tex]

[tex]\implies \frac{d^2 \theta}{dt^2} +\frac{g}{L} \,\theta=0[/tex]

This is now in the form of the equation of a simple harmonic motion.

[tex]\frac{d^2 \theta}{dt^2} +\omega^2 \,\theta=0[/tex]

Comparing both these equations, we can say that;

[tex]\omega = \sqrt{\frac{g}{L}}[/tex]

[tex]T=2\pi\sqrt{\frac{L}{g}}[/tex]

This relation for the time period can only be obtained if the angular displacement is very less.

So, the correct option is;

Option (c): Make sure that the difference in height between the pendulum's release position and rest position is not too large.

Learn more about simple harmonic motion here:

https://brainly.com/question/26114128

A 1000-kg car is driving toward the north along a straight horizontal road at a speed of 20.0 m/s. The driver applies the brakes and the car comes to a rest uniformly in a distance of 160 m. What are the magnitude and direction of the net force applied to the car to bring it to rest?

Answers

Answer:

Force applied to stop the car = 1,250 N

Explanation:

Given:

Mass of car (M) = 1,000 kg

Initial velocity (U) = 20 m/s

Final velocity (V) = 0 m/s

Distance (S) = 160 m

Find:

Force applied to stop the car.

Computation:

[tex]v^2 = u^2 + 2as\\\\0^2=20^2+2(a)(160)\\\\0=400+320(a)\\\\Acceleration = a = -1.25m/s^2\\\\Force = ma \\\\Force= 1,000(1.25)\\\\Force = 1,250 N[/tex]

Force applied to stop the car = 1,250 N

A ball with a mass of 4 kg is initially traveling at 2 m/s and has a 5 N force applied for 3 s. What is the initial momentum of the ball?

Answers

Answer:

The initial momentum of the ball is 8 kg-m/s.

Explanation:

Given that,

Mass of the ball is 4 kg

Initial speed of the ball is 2 m/s

Force applied to the ball is 5 N for 3 seconds

It is required to find the initial momentum of the ball. Initial momentum means that the product of mass and initial velocity of the ball. It is given as :

[tex]p_i=mu\\\\p_i=4\ kg\times 2\ m/s\\\\p_i=8\ kg-m/s[/tex]

So, the initial momentum of the ball is 8 kg-m/s.

To understand thermal linear expansion in solid materials. Most materials expand when their temperatures increase. Such thermal expansion, which is explained by the increase in the average distance between the constituent molecules, plays an important role in engineering. In fact, as the temperature increases or decreases, the changes in the dimensions of various parts of bridges, machines, etc., may be significant enough to cause trouble if not taken into account. That is why power lines are always sagging and parts of metal bridges fit loosely together, allowing for some movement. It turns out that for relatively small changes in temperature, the linear dimensions change in direct proportion to the temperature.
For instance, if a rod has length L0 at a certain temperature T0 and length L at a higher temperature T, then the change in length of the rod is proportional to the change in temperature and to the initial length of the rod: L - L0 = αL0(T - T0),
or
ΔL = αL0ΔT.
Here, α is a constant called the coefficient of linear expansion; its value depends on the material. A large value of α means that the material expands substantially as the temperature increases; smaller values of α indicate that the material tends to retain its dimensions. For instance, quartz does not expand much; aluminum expands a lot. The value of α for aluminum is about 60 times that of quartz!
Questions:
A) Compared to its length in the spring, by what amount ΔLwinter does the length of the bridge decrease during the Teharian winter when the temperature hovers around -150°C?
B) Compared to its length in the spring, by what amount ΔLsummer does the length of the bridge increase during the Teharian summer when the temperature hovers around 700°C?

Answers

Answer:

Check the explanation

Explanation:

Kindly check the attached image below to see the step by step explanation to the question above.

A Texas cockroach of mass 0.157 kg runs counterclockwise around the rim of a lazy Susan (a circular disk mounted on a vertical axle) that has a radius 14.9 cm, rotational inertia 5.92 x 10-3 kg·m2, and frictionless bearings. The cockroach's speed (relative to the ground) is 2.92 m/s, and the lazy Susan turns clockwise with angular velocity ω0 = 3.89 rad/s. The cockroach finds a bread crumb on the rim and, of course, stops. (a) What is the angular speed of the lazy Susan after the cockroach stops? (b) Is mechanical energy conserved as it stops?

Answers

Answer:

-7.23 rad/s

Explanation:

Given that

Mass of the cockroach, m = 0.157 kg

Radius of the disk, r = 14.9 cm = 0.149 m

Rotational Inertia, I = 5.92*10^-3 kgm²

Speed of the cockroach, v = 2.92 m/s

Angular velocity of the rim, w = 3.89 rad/s

The initial angular momentum of rim is

Iw = 5.92*10^-3 * 3.89

Iw = 2.3*10^-2 kgm²/s

The initial angular momentum of cockroach about the axle of the disk is

L = -mvr

L = -0.157 * 2.92 * 0.149

L = -0.068 kgm²/s

This means that we can get the initial angular momentum of the system by summing both together

2.3*10^-2 + -0.068

L' = -0.045 kgm²/s

After the cockroach stops, the total inertia of the spinning disk is

I(f) = I + mr²

I(f) = 5.92*10^-3 + 0.157 * 0.149²

I(f) = 5.92*10^-3 + 3.49*10^-3

I(f) = 9.41*10^-3 kgm²

Final angular momentum of the disk is

L'' = I(f).w(f)

L''= 9.41*10^-3w(f)

Using the conservation of total angular momentum, we have

-0.068 = 9.41*10^-3w(f) + 0

w(f) = -0.068 / 9.41*10^-3

w(f) = -7.23 rad/s

Therefore, the speed of the lazy Susan after the cockroach stops is -7.23 and is directed in the opposite direction of the initial lazy Susan angular speed

b)

The mechanical energy of the cockroach is not converted as it stops

A mutation causes a dog to be born with a tail that is shorter than normal.

Which best describes this mutation?

Answers

Answer:

A mutation causes a dog to be born with a tail that is shorter than normal. Which best describes this mutation? It is harmful because it obviously affects the dog’s survival. It is harmful because it affects the dog’s physical appearance. It is neutral because it does not obviously affect the dog’s survival. It is beneficial because it affects the dog’s physical appearance.

Explanation:

Answer:

C

Explanation:

:)))

8. At temperature 15°C, aluminum rivets have a diameter of 0.501 cm, and holes drilled in a titanium sheet have a diameter of 0.500 cm. If both the aluminum rivets and the titanium sheet are cooled together, at what temperature will the rivets just fit into the appropriate holes in the titanium sheet? Use 25x10-6 (°C)-1 for the coefficient of linear expansion for aluminum, and 8.5x10-6 (°C)-1 for titanium

Answers

Answer:

The temperature is [tex]T = -106 ^oC[/tex]

Explanation:

From the question we are told that

   The temperature is [tex]T_1 = T_t= T_a=15^oC[/tex]

   The  diameter is  [tex]d_1 = 0.5001 cm[/tex]

    The diameter of the hole [tex]d_2 = 0.500 \ cm[/tex]

    The coefficient of linear expansion for aluminum is [tex]\alpha _1 = 25 *10^{-6} \ ^oC^{-1}[/tex]

    The coefficient of linear expansion for  titanium is [tex]\alpha _2 = 8.5 *10^{-6} \ ^o C^{-1}[/tex]

According to the law of linear expansion

     [tex]d = d_o (1 + \alpha \Delta T )[/tex]

Where [tex]d_o[/tex] represents the original diameter

  So for aluminum

          [tex]d_a = d_1 (1 + \alpha_1 (T- T_a) )[/tex]

Where [tex]d_a[/tex] is the new diameter of aluminum

          [tex]T_a[/tex] is the new temperature of the aluminum

So for titanium

      [tex]d_t = d_2 (1 + \alpha_1 (T- T_t) )[/tex]

Where [tex]d_t[/tex] is the new diameter of  titanium

          [tex]T_t[/tex] is the new temperature of the aluminum

So for the aluminum rivets to fit into the holes

     [tex]d_a = d_t[/tex]

=>  [tex]d_1 (1 + \alpha_1 (T- T_a) ) = d_2 (1 + \alpha_2 (T- T_t) )[/tex]

       Making T the subject of the formula

     [tex]T = \frac{(d_1 - d_2 ) + (d_2 *\alpha_2 T_t) - d_1 \alpha_1 * T_a }{d_2 \alpha_2 - d_1 \alpha_1 }[/tex]

    Substituting values

     [tex]T = \frac{(0.501 - 0.500 ) + (0.500 *(8.5*10^{-6}) * 15) - 0.500* (25*10^{-6}) * 15 }{0.500 * (8.5 *10^{-6}) - 0.501 * (25 *10^{-6}) }[/tex]

    [tex]T = -106 ^oC[/tex]

Help ill give you brainliest !!!

Answers

Answer:

1. B

2. A

3. C

4. B

5. A

6. Muscular strength is different than muscular endurance because of the fact that muscular strength is the amount of force that can be exerted in one instance. Muscular endurance is how long that you can exert that force without being completely exhausted.

7. Some benefits to strength training is the increase in muscular endurance. There is also the benefit of better muscular strength.

Explanation:

Which is the correct representation of the right-hand rule for a current flowing to the right?

Answers

Answer:

The third image

Explanation:

The one with the thumb pointing to the right

Answer:

3, correct on Edge 2020

What types of mediums are involved in the energy transfer

Answers

Answer:

In electromagnetic waves, energy is transferred through vibrations of electric and magnetic fields. In sound waves, energy is transferred through vibration of air particles or particles of a solid through which the sound travels. In water waves, energy is transferred through the vibration of the water particles.

10) Two students want to use a 12-meter long rope to create standing waves. They first measure the speed at which a single wave pulse moves from one end of the rope to another and find that it is 36 m/s. What frequency must they vibrate the rope at to create the second harmonic

Answers

Answer:

To create a second harmonic the rope must vibrate at the frequency of 3 Hz

Explanation:

First we find the fundamental frequency of the rope. The fundamental frequency is the frequency of the rope when it vibrates in only 1 loop. Therefore,

f₁ = v/2L

where,

v = speed of wave = 36 m/s

L = Length of rope = 12 m

f₁ = fundamental frequency

Therefore,

f₁ = (36 m/s)/2(12 m)

f₁ = 1.5 Hz

Now the frequency of nth harmonic is given in general, as:

fn = nf₁

where,

fn = frequency of nth harmonic

n = No. of Harmonic = 2

f₁ = fundamental frequency = 1.5 Hz

Therefore,

f₂ = (2)(1.5 Hz)

f₂ = 3 Hz

A particle is projected at an angle 60 degrees to the horizontal with a speed of 20m/s. (i) calculate total time of flight of the particle. (i) speed of the particle at its maximum height

Answers

Answer:

Time of flight=3.5 seconds

Speed at maximum height is 0

Explanation:

Φ=60°

initial velocity=u=20m/s

Acceleration due to gravity=g=9.8 m/s^2

Total time of flight=T

Final speed=v

question 1:

T=(2 x u x sinΦ)/g

T=(2 x 20 x sin60)/9.8

T=(2 x 20 x 0.8660)/9.8

T=34.64/9.8

T=3.5 seconds

Question 2

Speed at maximum height is 0

Other Questions
Given segment CE and point D that lies on CE, find CD if CE= 11, CD= -16-3x, and ED= -13-2x Line segment BD is a diameter of circle E.What is the measure of arc BC?B3978510E102C129D Book 9 The CyclopsAs soon as Dawn appeared, fresh and rosy-fingered, I assembled my company and spoke to them. My good friends, I said, for the time being stay here, while I go in my ship with my crew to find out what kind of men are over there, and whether they are aggressive savages with no sense of right or wrong or hospitable and god-fearing people.Then I climbed into my ship and told my men to follow me and loose the hawsers. They came on board at once, took their places at the oars and all together struck the white surf with the blades. It was no great distance to the mainland. As we approached its nearest point, we made out a cave close to the sea, with a high entrance overhung by laurels. Here large flocks of sheep and goats were penned at night, and round the mouth a yard had been built with a great wall of quarried stones and tall pines and high-branched oaks. It was the den of a giant, who pastured his flocks alone, a long way away from anyone else, and had no truck with others of his kind but lived aloof in his own lawless way. And what a formidable monster he was! He was quite unlike any man who eats bread, more like some wooded peak in the high hills, standing out alone apart from the others.At this point, I told the rest of my loyal companions to stay there on guard by the ship, but I myself picked out the twelve best men in the company and advanced. I took with me in a goatskin some dark and mellow wine which had been given to me by Maronson of Euanthes, the priest of Apollo, the tutelary god of Ismarus, because we had protected him and his child and wife out of respect for his office. He lived in a wooded grove sacred to Phoebus Apollo. This man had given me some fine presents: seven talents of wrought gold, with a mixing-bowl of solid silver, and he drew off for me a dozen jars of mellow unmixed wine as well. It was a wonderful drink. It had been kept secret from all his serving-men and maids, in fact from everyone in the house but but himself, his good wife and a housekeeper. To drink this red and honeyed vintage, he would pour one cupful of wine into twenty of water, and the bouquet that rose from the bowl was pure heaven those were occasions when abstinence could have no charms.Well, I filled a big goatskin with this wine and also took some food in a bag with me; for I had an instant foreboding that we were going to find ourselves face to face with some barbarous being of colossal strength and ferocity, uncivilized and unprincipled. It took us very little time to reach the cave, but we did not find its owner at home: he was tending his fat sheep in the pastures. So we went inside and looked in amazement at everything. There were baskets laden with cheeses, and the folds were thronged with lambs and kids, each group the spring ones, the summer ones, and the new-born ones being separately penned. All his well-made vessels, the pails and bowls he used for milking, were swimming with whey.To start with my men begged me to let them take away some of the cheeses, then come back, drive the kids and lambs quickly out of the pens down to the good ship, and so set sail across the salt water. But though it would have been far better so, I was not to be persuaded. I wished to see the owner of the cave and had hopes of some friendly gifts from my host. But when he did appear, my men were not going to find him a very likeable character.Now Answer the question- - Odysseus tells his crew that he is about to visit the island. Choose the best paraphrase for his statement to his crew.A- I want to fight the savages and put the fear of God in them.B- I am sure to find good people amongst my crew.C- I will sail to the island to see if the inhabitants are welcoming or hostile.D- I have to discover which members of my crew are good and which ones are bad. - Drag the tiles to the correct boxes to complete the pairs.Match each word with its synonym.predictundertakingcharactercancelsmeardispositionplease help Put the events leading to Lincolns second in Inaugural address in sequence order Pllsssssss hellllllppp ASAP!!!!!!??? A function ___ is an expression that defines a function.a. Valueb. Rulec. Statementd. Relation What is the mean absolute deviation of this data set? 26, 31, 32, and 39 What was major problem during the Harding administration All of the following contributed to the economic crisis of the 1970s EXCEPTa. the Watergate scandal.b. rising prices.c. the Arab oil embargo.d. rising unemployment. Find the measures of the vertical angles shown. Show all work for full credit. Which statements describe gridlines on a map? Select three options. They are measured in degrees. They set up a reference system. They make straight lines on a globe. They run north to west and south to east. They divide Earth into four equal parts. A potential difference of 24 V is applied to a 150-ohm resistor. How much current flows through the resistor? What type of irony is present? When this movie opens, we see a town and the setting appears to be early-Colonial America (i.e. the Puritans). The town is attacked regularly by creepy rat-like monsters in red cloaks. One of the members of the town falls very ill, and they need to send someone to another town for medical supplies. They choose to send a blind girl in the town, who leaves on her journey, having to run from the monsters. When she reaches the main road, a truck picks her up and we realize that the setting is not early-American but present day! Simplify the radicals in the given expression: 8^3a^4b^3c^2-14ab^3ac^2 8abac^2-14ab^3ac^2 8a^2ba^3b-14abc^3a 8ab^3ac^2-14ab^3ac^2 8a^2bcb-14abcai've gotten the answer it is "8ab^3ac^2-14ab^3ac^2" A car can travel 480 miles on a full tank of petrol. The tank holds 60 litres. A driver fills the tank and sets off on a journey. How many litres of petrol will be left when the car has travelled 360 miles? Describe both taxable income and personal exemptions. (Economics) 1. In the story, which of the following items turned togold, first foreshadows the damaging consequencesof the Golden Touch?A The window-curtainB. The handkerchiefC The spectaclesD Marygold's rose(For the story The Golden Touch) if anyone has done the commonlit please tell me if you got this question right and the answers Which scatter plot shows that the number of gallons of milk sold decreased as the price per gallon increased? A pharmacy uses 4 x 10 to -3 liter of an ingredient in one dose of medication. The ingredient comes in a 2 liter bottle. How many doses can be made with one bottle?