Answer:
The value is [tex]N = 3.708*10^{7} \ \ atoms[/tex]
Explanation:
From the question we are told that
The pressure is [tex]P = 1.53 *10^{-7} \ N/m^2[/tex]
The temperature is [tex]T = 26 + 273 = 299 \ K[/tex]
The volume is 1 cubic cm = [tex]1 * 10^{-6} m^3[/tex]
Generally according to the ideal gas law we have that
[tex]PV = NkT[/tex]
here k is the Boltzmann constant with a value [tex]k = 1.38 *10^{-23} \ J/K[/tex]
=> [tex]N = \frac{PV}{ k T}[/tex]
=> [tex]N = \frac{ 1.53 *10^{-7} * (1* 10^{-6})}{ 1.38*10^{-23} * 299}[/tex]
=> [tex]N = 3.708*10^{7} \ \ atoms[/tex]
Which best identifies the requirements for work to be performed? an object that has a force acting on it an object that is moving and has no net force a force acting on a motionless object a force that moves an object
Answer:
a force that moves an object
Explanation:
the formula for work is force * distance
This question involves the concepts of work, force, and displacement.
The statement that best identifies the requirements for work to be performed is "a force that moves an object".
Work is defined as the product of force applied on an object and the distance moved by the object. Mathematically,
Work = (Force)(Displacement)
Hence, both the applied force and the displacement of the object as a result of the application of the force is necessary for the work to be done. If any one of these values becomes zero, the work automatically becomes zero, which means no work is performed.
Learn more about work here:
https://brainly.com/question/4095205
In order to waken a sleeping child, the volume on an alarm clock is doubled. Under this new scenario, how much more energy will be striking the child's ear drums each second?
Answer:4 times more energy will be striking the childbearing
Explanation:
Because Volume is directly proportional to amplitude of sound. Energy is proportional to amplitude squared. If you triple the amplitude, you multiply the energy by 4
Please help!
Much appreciated!
Answer:
your question answer is 22°
A spherical balloon has a radius of 6.95m and is filled with helium. The density of helium is 0.179 kg/m3, and the density of air is 1.29 kg/m3. The skin and structure of the balloon has a mass of 960kg . Neglect the buoyant force on the cargo volume itself. Determine the largest mass of cargo the balloon can lift.
Answer:
602.27 kg
Explanation:
The computation of the largest mass of cargo the balloon can lift is shown below:-
Volume of helium inside the ballon= (4 ÷ 3) × π × r^3
= (4 ÷ 3) × 3.14 × 6.953
= 1406.19 m3
Mass the balloon can carry = volume × (density of air-density of helium)
= 1406.19 × (1.29-0.179)
= 1562.27 kg
Mass of cargo it can carry = Mass it can carry - Mass of structure
= 1562.27 - 960
= 602.27 kg
A flat loop of wire consisting of a single turn of cross-sectional area 7.30 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.60
Answer:
-0.73mA
Explanation:
Using amphere's Law
ε =−dΦB/ dt
=−(2.6T)·(7.30·10−4 m2)/ 1.00 s
=−1.9 mV
Using ohms law
ε=V =IR
I = ε/ R =−1.9mV/ 2.60Ω =−0.73mA
An interference pattern is produced by light with a wavelength 520 nm from a distant source incident on two identical parallel slits separated by a distance (between centers) of 0.440 mm.
1. If the slits are very narrow, what would be the angular position of the first-order, two-slit, interference maxima?
2. What would be the angular position of the second-order, two-slit, interference maxima in this case?
3. Let the slits have a width 0.310 mm . In terms of the intensity I0 at the center of the central maximum, what is the intensity at the angular position of θ1?
4. What is the intensity at the angular position of θ2?
Answer:
1) θ = 0.00118 rad, 2) θ = 0.00236 rad , 3) I / I₀ = 0.1738, 4) I / Io = 0.216
Explanation:
In the double-slit interference phenomenon it is explained for constructive interference by the equation
d sin θ = m λ
1) the first order maximum occurs for m = 1
sin θ = λ / d
θ = sin⁻¹ λ / d
let's reduce the magnitudes to the SI system
λ = 520 nm = 520 10⁻⁹ θ = 0.00118 radm
d = 0.440 mm = 0.440 10⁻³ m ³
let's calculate
θ = sin⁻¹ (520 10⁻⁹ / 0.44 10⁻³)
θ = sin⁻¹ (1.18 10⁻³)
θ = 0.00118 rad
2) the second order maximum occurs for m = 2
θ = sin⁻¹ (m λ / d)
θ = sin⁻¹ (2 5¹20 10⁻⁹ / 0.44 10⁻³)
θ = 0.00236 rad
3) To calculate the intensity of the interference spectrum, the diffraction phenomenon must be included, so the equation remains
I = I₀ cos² (π d sin θ /λ ) sinc² (pi b sin θ /λ )
where the function sinc = sin x / x
and b is the width of the slits
we caption the values
x = π 0.310 10⁻³ sin 0.00118 / 520 10⁻⁹)
x = 2.21
I / I₀ = cos² (π 0.44 10⁻³ sin 0.00118 / 520 10⁻⁹) (sin (2.21) /2.21)²
remember angles are in radians
I / I₀ = cos² (3.0945) [0.363] 2
I / I₀ = 0.9978 0.1318
I / I₀ = 0.1738
4) the maximum second intensity is
I / I₀ = cos² (π d sinθ / λ) sinc² (πb sin θ /λ)
x =π 0.310 10⁻³ sin 0.00236 / 520 10⁻⁹)
x = 4.41
I / Io = cos² (π 0.44 10⁻³ sin 0.00236 / 520 10⁻⁹) (sin 4.41 / 4.41)²
I / Io = cos² 6.273 0.216
I / Io = 0.216
.
5. The speed of a transverse wave on a string is 170 m/s when the string tension is 120 ????. To what value must the tension be changed to raise the wave speed to 180 m/s?
Answer:
The tension on string when the speed was raised is 134.53 N
Explanation:
Given;
Tension on the string, T = 120 N
initial speed of the transverse wave, v₁ = 170 m/s
final speed of the transverse wave, v₂ = 180 m/s
The speed of the wave is given as;
[tex]v = \sqrt{\frac{T}{\mu} }[/tex]
where;
μ is mass per unit length
[tex]v^2 = \frac{T}{\mu} \\\\\mu = \frac{T}{v^2} \\\\\frac{T_1}{v_1^2} = \frac{T_2}{v_2^2}[/tex]
The final tension T₂ will be calculated as;
[tex]T_2 = \frac{T_1 v_2^2}{v_1^2} \\\\T_2 = \frac{120*180^2}{170^2} \\\\T_2 = 134.53 \ N[/tex]
Therefore, the tension on string when the speed was raised is 134.53 N
Currents in DC transmission lines can be 100 A or higher. Some people are concerned that the electromagnetic fields from such lines near their homes could pose health dangers.
A. For a line that has current 150 A and a height of 8.0 m above the ground, what magnetic field does the line produce at ground level? Express your answer in teslas.
B. What magnetic field does the line produce at ground level as a percent of earth's magnetic field which is 0.50 G?
C. Is this value of magnetic field cause for worry? Choose your answer below.
i. Yes. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field.
ii. No. Since this field is much lesser than the earth's magnetic field, it would be expected to have less effect than the earth's field.
iii. Yes. Since this field is much greater than the earth's magnetic field, it would be expected to have more effect than the earth's field.
iv. No. Since this field does not differ a lot from the earth's magnetic field, it would be expected to have almost the same effect as the earth's field.
Answer:
Explanation:
magnetic field due to an infinite current carrying conductor
B = k x 2I / r where k = 10⁻⁷ , I is current in conductor and r is distance from wire
putting the given data
B = 10⁻⁷ x 2 x 100 / 8
= 25 x 10⁻⁷ T .
B )
earth's magnetic field = .5 gauss
= .5 x 10⁻⁴ T
= 5 x 10⁻⁵ T
percent required = (25 x 10⁻⁷ / 5 x 10⁻⁵) x 100
= 5 %
C )
ii. No. Since this field is much lesser than the earth's magnetic field, it would be expected to have less effect than the earth's field.
What is the power P of the eye when viewing an object 61.0 cm away? Assume the lens-to-retina distance is 2.00 cm , and express the answer in diopters.
Answer:
The power of the eye is 51.64 diopters
Explanation:
The power of the eye is given by;
[tex]P = \frac{1}{f} = \frac{1}{d_o} +\frac{1}{d_i}[/tex]
where;
P is the power of the eye in diopter
f is the focal length of the eye
[tex]d_o[/tex] is the distance between the eye and the object
[tex]d_i[/tex] is the distance between the eye and the image
Given;
[tex]d_o[/tex] = 61.0 cm = 0.61 m
[tex]d_i[/tex] = 2.0 cm = 0.02 m
[tex]P = \frac{1}{d_o} +\frac{1}{d_i} \\\\P = \frac{1}{0.61} + \frac{1}{0.02} \\\\P = 51.64 \ D[/tex]
Therefore, the power of the eye is 51.64 diopters.
The power P of the eye when viewing an object 61.0 cm away is 51.639D
The power of a lens is a reciprocal of its focal length and it is expressed as:
[tex]P=\frac{1}{f}[/tex]
According to the mirror formula
[tex]\frac{1}{f} =\frac{1}{d_i} +\frac{1}{d_0}[/tex]
where
[tex]d_i[/tex] is the distance from the lens to the image = 61.0cm = 0.61m
[tex]d_0[/tex] is the distance from the lens to the object = 2.00cm = 0.02m
[tex]P=\frac{1}{f} =\frac{1}{0.02} +\frac{1}{0.61}\\P=50+1.639\\P=51.639D[/tex]
Hence the power P of the eye when viewing an object 61.0 cm away is 51.639D
Learn more here: https://brainly.com/question/14870552
From a static hot air balloon, a 10kg projectile is launched at a speed of 10m / s upwards. If the balloon has a mass of 90kg. What is the final velocity of the latter? Select one:
a. 0.57m / s down
b. 2.56m / s down
c. 1.11m / s down
d. 2.03m / s down
e. 3.15m / s down
Answer:
c. 1.11 m/s down
Explanation:
Momentum is conserved.
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
Assuming the balloon and projectile are originally at rest:
(90 kg) (0 m/s) + (10 kg) (0 m/s) = (90 kg) v + (10 kg) (10 m/s)
0 kg m/s = (90 kg) v + 100 kg m/s
v = -1.11 m/s
A bar magnet is dropped from above and falls through the loop of wire. The north pole of the bar magnet points downward towards the page as it falls. Which statement is correct?a. The current in the loop always flows in a clockwise direction. b·The current in the loop always flows in a counterclockwise direction. c. The current in the loop flows first in a clockwise, then in a counterclockwise direction. d. The current in the loop flows first in a counterclockwise, then in a clockwise direction. e. No current flows in the loop because both ends of the magnet move through the loop.
Answer:
b. The current in the loop always flows in a counterclockwise direction.
Explanation:
When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.
The current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.
The given problem is based on the concept and fundamentals of magnetic bars. When a magnet falls through a loop of wire, it induces an induced current on the loop of wire. There is some magnitude of current induced in the wire.
This induced current is due to the motion of the magnet through the loop, which cause a change in the flux linkage of the magnet. According to Lenz law, the induced current acts in such a way as to repel the force or action that produces it. For this magnet, the only opposition possible is to stop its fall by inducing a like pole on the wire loop to repel its motion down. An induced current that flows counterclockwise in the wire loop has a polarity that is equivalent to a north pole on a magnet, and this will try to repel the motion of the magnet through the coil. Also, when the magnet goes pass the wire loop, this induced north pole will try to attract the south end of the magnet, all in a bid to stop its motion downwards.Thus, we can say that the current in the loop always flows in a counterclockwise direction. Hence, option (b) is correct.
Learn more about the magnetic field here:
https://brainly.com/question/14848188
The entropy of any substance at any temperature above absolute zero is called the: Select the correct answer below:
a. absolute entropy
b. Third Law entropy
c. standard entropy
d. free entropy
e. none of the above
Answer:
b. Third Law entropy
Explanation:
Third law entropy: In physics, the term "third law entropy" or "the third law of thermodynamics" states that the specific entropy of a particular system at "absolute zero" is considered as a "well-defined constant". It occurs because any system at "zero temperature" tends to exists or persists in its "ground state" in order for the entropy to be determined or described only by the "degeneracy" of the given ground state.
In the question above, the correct answer is option b.
In a velocity selector having electric field E and magnetic field B, the velocity selected for positively charged particles is v= E/B. The formula is the same for a negatively charged particles.
a. True
b. False
Answer:
True or False
Explanation:
Because.....
easy 50% chance you are right
You have a lightweight spring whose unstretched length is 4.0 cm. First, you attach one end of the spring to the ceiling and hang a 1.8 g mass from it. This stretches the spring to a length of 5.1 cm . You then attach two small plastic beads to the opposite ends of the spring, lay the spring on a frictionless table, and give each plastic bead the same charge. This stretches the spring to a length of 4.3 cm .
Requried:
What is the magnitude of the charge (in nC) on each bead?
Answer:
2.2nC
Explanation:
Call the amount by which the spring’s unstretched length L,
the amount it stretches while hanging x1
and the amount it stretches while on the table x2.
Combining Hooke’s law with Newton’s second law, given that the stretched spring is not accelerating,
we have mg−kx1 =0, or k = mg /x1 , where k is the spring constant. On the other hand,
applying Coulomb’s law to the second part tells us ke q2/ (L+x2)2 − kx2 = 0 or q2 = kx2(L+x2)2/ke,
where ke is the Coulomb constant. Combining these,
we get q = √(mgx2(L+x2)²/x1ke =2.2nC
A soccer ball of mass 0.4 kg is moving horizontally with a speed of 20 m/s when it is kicked by a player. The kicking force is so large that the ball flies up at an angle of 30 degrees above the ground. The player however claims (s)he aimed her/his foot at a 40 degree angle above the ground. Calculate the average kicking force magnitude and the final speed of the ball, if you are given that the foot was in contact with the ball for one hundredth of a second.
Answer:
v_{f} = 74 m/s, F = 230 N
Explanation:
We can work on this exercise using the relationship between momentum and moment
I = ∫ F dt = Δp
bold indicates vectors
we can write this equations in its components
X axis
Fₓ t = m ( -v_{xo})
Y axis
t = m (v_{yf} - v_{yo})
in this case with the ball it travels horizontally v_{yo} = 0
Let's use trigonometry to write the final velocities and the force
sin 30 = v_{yf} / vf
cos 30 = v_{xf} / vf
v_{yf} = vf sin 30
v_{xf} = vf cos 30
sin40 = F_{y} / F
F_{y} = F sin 40
cos 40 = Fₓ / F
Fₓ = F cos 40
let's substitute
F cos 40 t = m ( cos 30 - vₓ₀)
F sin 40 t = m (v_{f} sin 30-0)
we have two equations and two unknowns, so the system can be solved
F cos 40 0.1 = 0.4 (v_{f} cos 30 - 20)
F sin 40 0.1 = 0.4 v_{f} sin 30
we clear fen the second equation and subtitles in the first
F = 4 sin30 /sin40 v_{f}
F = 3.111 v_{f}
(3,111 v_{f}) cos 40 = 4 v_{f} cos 30 - 80
v_{f} (3,111 cos 40 -4 cos30) = - 80
v_{f} (- 1.0812) = - 80
v_{f} = 73.99
v_{f} = 74 m/s
now we can calculate the force
F = 3.111 73.99
F = 230 N
Tech A says parallel circuits are like links in a chain. Tech B says total current in a parallel circuit equals the sum of the current flowing in each branch of the circuit. Who is correct?
Answer: Only Tech B is correct.
Explanation:
First, tech A is wrong.
The circuits that can be compared with links in a chain are the series circuit, and it can be related to the links in a chain because if one of the elements breaks, the current can not flow furthermore (because the elements in the circuit are connected in series) while in a parallel circuit if one of the branches breaks, the current still can flow by other branches.
Also in a parallel circuit, the sum of the currents of each path is equal to the current that comes from the source, so Tech B is correct, the total current is equal to the sum of the currents flowing in each branch of the circuit.
A spring with spring constant 15 N/m hangs from the ceiling. A ball is attached to the spring and allowed to come to rest. It is then pulled down 6.0 cm and released. If the ball makes 30 oscillations in 20 s, what are its (a) mass and (b) maximum speed?
Answer:
a
[tex]m = 0.169 \ kg[/tex]
b
[tex]|v_{max} |= 0.5653 \ m/s[/tex]
Explanation:
From the question we are told that
The spring constant is [tex]k = 14 \ N/m[/tex]
The maximum extension of the spring is [tex]A = 6.0 \ cm = 0.06 \ m[/tex]
The number of oscillation is [tex]n = 30[/tex]
The time taken is [tex]t = 20 \ s[/tex]
Generally the the angular speed of this oscillations is mathematically represented as
[tex]w = \frac{2 \pi}{T}[/tex]
where T is the period which is mathematically represented as
[tex]T = \frac{t}{n}[/tex]
substituting values
[tex]T = \frac{20}{30 }[/tex]
[tex]T = 0.667 \ s[/tex]
Thus
[tex]w = \frac{2 * 3.142 }{ 0.667}[/tex]
[tex]w = 9.421 \ rad/s[/tex]
this angular speed can also be represented mathematically as
[tex]w = \sqrt{\frac{k}{m} }[/tex]
=> [tex]m =\frac{k }{w^2}[/tex]
substituting values
[tex]m =\frac{ 15 }{(9.421)^2}[/tex]
[tex]m = 0.169 \ kg[/tex]
In SHM (simple harmonic motion )the equation for velocity is mathematically represented as
[tex]v = - Awsin (wt)[/tex]
The velocity is maximum when [tex]wt = \(90^o) \ or \ 1.5708\ rad[/tex]
[tex]v_{max} = - A* w[/tex]
=> [tex]|v_{max} |= A* w[/tex]
=> [tex]|v_{max} |= 0.06 * 9.421[/tex]
=> [tex]|v_{max} |= 0.5653 \ m/s[/tex]
A particle moves along line segments from the origin to the points (2, 0, 0), (2, 3, 1), (0, 3, 1), and back to the origin under the influence of the force field F(x, y, z).
Required:
Find the work done.
Answer:
the net work is zero
Explanation:
Work is defined by the expression
W = F. ds
Bold type indicates vectors
In this problem, the friction force does not decrease, therefore it will be zero.
Consequently for work on a closed path it is zero.
The work in going from the initial point (0, 0, 0) to the end of each segment is positive and when it returns from the point of origin the angle is 180º, therefore the work is negative, consequently the net work is zero
Find the current through a person and identify the likely effect on her if she touches a 120 V AC source in the following circumstances. (Note that currents above 10 mA lead to involuntarily muscle contraction.)
(a) if she is standing on a rubber mat and offers a total resistance of 300kΩ
(b) if she is standing barefoot on wet grass and has a resistance of only 4000kΩ
Answer:
A) 0.4 mA
B) 0.03 mA
Explanation:
Given that
voltage source, V = 120 V
to solve this question, we would be using the very basic Ohms Law, that voltage is proportional to the current and the resistance passing through the circuit, if temperature is constant.
mathematically, Ohms Law, V = IR
V = Voltage
I = Current
R = Resistance
from question a, we were given 300kΩ, substituting this value of resistance in the equation, we have
120 = I * 300*10^3 Ω
making I the subject of the formula,
I = 120 / 300000
I = 0.0004 A
I = 0.4 mA
Question said, currents above 10 mA causes involuntary muscle contraction, this current is way below 10 mA, so nothing happens.
B, we have Resistance, R = 4000kΩ
Substituting like in part A, we have
120 = I * 4000*10^3 Ω
I = 120 / 4000000
I = 0.00003 A
I = 0.03 mA
This also means nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA
The current through a person will be:
a) 0.4 mA
b) 0.03 mA
Given:
Voltage, V = 120 V
Ohm's Law:It states that the voltage or potential difference between two points is directly proportional to the current or electricity passing through the resistance, and directly proportional to the resistance of the circuit.
Ohms Law, V = I*R
where,
V = Voltage
I = Current
R = Resistance
a)
Given: Resistance= 300kΩ
[tex]120 = I * 300*10^3 ohm\\\\I = 120 / 300000\\\\I = 0.0004 A[/tex]
Thus, current will be, I = 0.4 mA
b)
Given: R = 4000kΩ
[tex]120 = I * 4000*10^3 ohm\\\\I = 120 / 4000000\\\\I = 0.00003 A[/tex]
Thus, current will be, I = 0.03 mA
From calculations, we observe that nothing happens, because 0.03 mA is very much lesser compared to in the 10 mA.
Find more information about Current here:
brainly.com/question/24858512
If R = 20 Ω, what is the equivalent resistance between points A and B in the figure?
Answer:
c. 70 Ω
Explanation:
The R and R resistors are in parallel. The 2R and 2R resistors are in parallel. The 4R and 4R resistors are in parallel. Each parallel combination is in series with each other. Therefore, the equivalent resistance is:
Req = 1/(1/R + 1/R) + 1/(1/2R + 1/2R) + 1/(1/4R + 1/4R)
Req = R/2 + 2R/2 + 4R/2
Req = 3.5R
Req = 70Ω
There is a hydraulic system that by means of a 5 cm diameter plunger to which a 5 N force is applied and that force is transmitted by means of a fluid to a 1 meter diameter plunger. Determine how much force can be lifted by the 1 m diameter plunger,
1) - 234 N
2) - 800 N
3) - 636 N
4) - 600 N
Explanation:
Pressure is the same for both plungers.
P = P
F / A = F / A
F / (¼ π d²) = F / (¼ π d²)
F / d² = F / d²
5 N / (0.05 m)² = F / (1 m)²
F = 2000 N
None of the options are correct.
What happens when two polarizers are placed in a straight line, one behind the other? A. They allow light to pass only if they are polarized in exactly the same direction. B. They block all light if they are polarized in exactly the same direction. C. They allow light to pass only if their directions of polarizations are exactly 90° apart. D. They block all light if their directions of polarizations are exactly 90° apart. E. They block all light if their directions of polarizations are either exactly the same or exactly 90° apart.
Answer:
C
They allow light to pass only if their directions of polarizations are exactly 90° apart.
Which is produced around a wire when an electrical current is in the wire? magnetic field solenoid electron flow electromagnet
Answer:
A. magnetic field
Explanation:
The magnetic field is produced around a wire when an electrical current is in the wire because of the magnetic effect of the electric current therefore the correct answer is option A .
What is a magnetic field ?A magnetic field could be understood as an area around a magnet, magnetic material, or an electric charge in which magnetic force is exerted.
As given in the problem statement we have to find out what is produced around a wire when an electrical current is in the wire.
The magnetic field is produced as a result when an electrical current is passed through the conducting wire .
Option A is the appropriate response because a wire's magnetic field is created when an electrical current flows through it due to the magnetic influence of the electric current .
Learn more about the magnetic fields here, refer to the link given below;
brainly.com/question/23096032
#SPJ6
W is the work done on the system, and K, U, and Eth are the kinetic, potential, and thermal energies of the system, respectively. Any energy not mentioned in the transformation is assumed to remain constant; if work is not mentioned, it is assumed to be zero.
1. Give a specific example of a system with the energy transformation shown.
W→ΔEth
2. Give a specific example of a system with the energy transformation shown.
a. Rolling a ball up a hill.
b. Moving a block of wood across a horizontal rough surface at constant speed.
c. A block sliding on level ground, to which a cord you are holding on to is attached .
d. Dropping a ball from a height.
Answer:
1) a block going down a slope
2) a) W = ΔU + ΔK + ΔE, b) W = ΔE, c) W = ΔK, d) ΔU = ΔK
Explanation:
In this exercise you are asked to give an example of various types of systems
1) a system where work is transformed into internal energy is a system with friction, for example a block going down a slope in this case work is done during the descent, which is transformed in part kinetic energy, in part power energy and partly internal energy that is represented by an increase in the temperature of the block.
2)
a) rolling a ball uphill
In this case we have an increase in potential energy, if there is a change in speed, the kinetic energy also increases, if the change in speed is zero, there is no change in kinetic energy and there is a change in internal energy due to the stationary rec in the point of contact
W = ΔU + ΔK + ΔE
b) in this system work is transformed into internal energy
W = ΔE
c) There is no friction here, therefore the work is transformed into kinetic energy
W = ΔK
d) if you assume that there is no friction with the air, the potential energy is transformed into kinetic energy
ΔU = ΔK
An inductor is hooked up to an AC voltage source. The voltage source has EMF V0 and frequency f. The current amplitude in the inductor is I0.
Part A
What is the reactance XL of the inductor?
Express your answer in terms of V0 and I0.
Part B
What is the inductance L of the inductor?
Express your answer in terms of V0, f, and I0.
Answer:
a. The reactance of the inductor is XL = V₀/I₀
b. The inductance of the inductor is L = V₀/2πfI₀
Explanation:
PART A
Since the voltage across the inductor V₀ = I₀XL where V₀ = e.m.f of voltage source, I₀ = current amplitude and XL = reactance of the inductor,
XL = V₀/I₀
So, the reactance of the inductor is XL = V₀/I₀
PART B
The inductance of the inductor is gotten from XL = 2πfL where f = frequency of voltage source and L = inductance of inductor
Since XL = V₀/I₀ = 2πfL
V₀/I₀ = 2πfL
L = V₀/2πfI₀
So the inductance of the inductor is L = V₀/2πfI₀
A) The reactance XL of the inductor : [tex]\frac{V_{0} }{I_{0} }[/tex]
B) The Inductance L of the inductor : [tex]\frac{V_{0} }{2\pi fl_{0} }[/tex]
A) Expressing the Reactance of the inductor
Voltage across the Inductor = V₀ = I₀XL ---- ( 1 )
Where : V₀ = emf voltage , I₀ = current
from equation ( 1 )
∴ XL ( reactance ) = [tex]\frac{V_{0} }{I_{0} }[/tex]
B ) Expressing the Inductance of the Inductor
Inductance of an inductor is expressed as : XL = 2πfL
from part A
XL = [tex]\frac{V_{0} }{I_{0} }[/tex] = 2πfL
∴ The inductance L of the Inductor expressed in terms of V₀, F and I₀
L = [tex]\frac{V_{0} }{2\pi fl_{0} }[/tex]
Hence we can conclude that The reactance XL of the inductor : [tex]\frac{V_{0} }{I_{0} }[/tex] and The Inductance L of the inductor : [tex]\frac{V_{0} }{2\pi fl_{0} }[/tex] .
Learn more : https://brainly.com/question/25208405
Categorize each ray tracing statement as relating to ray 1, ray 2, or ray 3.
A. Drawn from the top of the object so that it passes through the center of the lens at the optical axis.
B. Drawn from the top of the object so that it passes through the focal point on the same side of the lens as the object.
C. Drawn parallel to the optical axis from the top of the object.
D. Ray bends parallel to the optical axis.
E. Ray bends so that it passes through the focal point on the opposite side of the lens as the object.
F. Ray does not bend.
Answer:
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
Explanation:
In this exercise you are asked to relate each with the answers
In general, in the optics diagram,
* Ray 1 is a horizontal ray that after stopping by the optical system goes to the focal point
* Ray 2 is a ray that passes through the intercept point between the optical axis and the system and does not deviate
* Ray 3 is a ray that passes through the focal length and after passing the optical system, it comes out horizontally.
With these statements, let's review the answers
statement 1 with answer C
statement 2 with answer F
statement 3 with answer B
Statement 1 with E
Statement 2 with A
Statement 3 with D
An electron moving at 3.94 103 m/s in a 1.23 T magnetic field experiences a magnetic force of 1.40 10-16 N. What angle does the velocity of the electron make with the magnetic field? There are two answers between 0° and 180°. (Enter your answers from smallest to largest.)
Answer:
10.4⁰ and 169.6⁰Explanation:
The force experienced by the moving electron in the magnetic field is expressed as F = qvBsinθ where;
q is the charge on the electron
v is the velocity of the electron
B is the magnetic field strength
θ is the angle that the velocity of the electron make with the magnetic field.
Given parameters
F = 1.40*10⁻¹⁶ N
q = 1.6*10⁻¹⁹C
v = 3.94*10³m/s
B = 1.23T
Required
Angle that the velocity of the electron make with the magnetic field
Substituting the given parameters into the formula:
1.40*10⁻¹⁶ = 1.6*10⁻¹⁹ * 3.94*10³ * 1.23 * sinθ
1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁹⁺³sinθ
1.40*10⁻¹⁶ = 7.75392 * 10⁻¹⁶sinθ
sinθ = 1.40*10⁻¹⁶/7.75392 * 10⁻¹⁶
sinθ = 1.40/7.75392
sinθ = 0.1806
θ = sin⁻¹0.1806
θ₁ = 10.4⁰
Since sinθ is positive in the 1st and 2nd quadrant, θ₂ = 180-θ₁
θ₂ = 180-10.4
θ₂ = 169.6⁰
Hence, the angle that the velocity of the electron make with the magnetic field are 10.4⁰ and 169.6⁰
Calculate the electromotive force produced by each of the battery combinations shown in the figure, if the emf of each is 1.5 V.
Answer:
A) 1.5 V
B) 4.5 V
Explanation:
A) Batteries in parallel have the same voltage as an individual battery.
V = 1.5 V
B) Batteries in series have a voltage equal to the sum of the individual batteries.
V = 1.5 V + 1.5 V + 1.5 V
V = 4.5 V
A 10kg block with an initial velocity of 10 m/s slides 1o m across a horizontal surface and comes to rest. it takes the block 2 seconds to stop. The stopping force acting on the block is about
Answer:
-50N
Explanation:
F=ma=m(Vf-Vi)/t
m=10kgVf=0m/sVi=10m/st=2sF=(10)(-10)/(2)=-50N
So the force acting on the block is -50N, where the negative sign simply tells us that the force is opposite to the direction of movement.
An electron moves on a circular orbit in a uniform magnetic field of 7.83×10-4 T. The kinetic energy of the electron is 55.3 eV. What is the diameter of the orbit?
Answer:
3.9E-8
Explanation:
We know that
Mv²/r = Bqv
So
r= mv/Bq
But E is 1/2mv² which is 5.53eV
m²v² =2m x 5.53eV
mv = √( 2 x 9.1E-31)
So
r= √( 2 x9.1E-31 x 5.53)/ 7.83x10^-4 x1.6E-19
= 3.9x10-8cm
Explanation: