Answer:
not D
Step-by-step explanation:
Answer:
C.
Step-by-step explanation:
HELPPPP, which expression is it?
Answer: D
Step-by-step explanation:
formula=V=(π)r2h
The amount of water dispensed by a water dispenser is normally distributed,
with a mean of 11.60 ounces and a standard deviation of 0.15 ounces. In
which range will the amount of water dispensed be found 68% of the time?
A. 11.30 ounces to 11.90 ounces
B. 11.15 ounces to 12.05 ounces
C. 11.45 ounces to 11.75 ounces
D. 11.00 ounces to 12.20 ounces
SUBMIT
Answer:
The correct answer is - C. 11.45 ounces to 11.75 ounces.
Step-by-step explanation:
According to the empirical rule of the distribution for 68% falls under the normal curve falls within 1 standard deviation of the mean.
That is:
μ±δ
From the given information, the mean is
μ = 11.60
and the standard deviation is
δ = 0.15
We substitute the given parameters to obtain;
11.60±0.15
11.75 and 11.45
This means the lower limit is
11.45
and the upper limit is
11.75
Please help me to solve this question pleaseee
Answer:
Step-by-step explanation:
1) ML // JK , MK is transversal,
∠LMK = ∠MKJ {Alternate interior angles are congruent}
∠LMK = 30°
In ΔMKO,
30 + 115 + ∠ JLM = 180 {Angle sum property of triangle}
145 +∠ JLM = 180
∠ JLM = 180 - 145
∠ JLM = 35°
2) AB // CD , AC is transversal
∠DCA = ∠BAC {Alternate interior angles are congruent}
∠DCA = 23
∠BCD = ∠DCA + ∠BCA
= 23 + 37
= 60
3) EF // HG ; FH is transversal
∠FHG = ∠HFE {Alternate interior angles are congruent}
∠FHG = 77
4) ZY // WX ; WY is transversal
∠ZYW = ∠XWY {Alternate interior angles are congruent}
= 65
ZY // WX ; WY is transversal
∠ZWY = ∠WYX {Alternate interior angles are congruent}
= 36
In ΔWZY
36 + 65 + ∠z = 180
101 +∠Z = 180
∠Z = 180 - 101
∠Z = 79
WILL MARK BRAINLIEST! Can someone please help! I don't understand some of these questions :(
Answer:
18
Step-by-step explanation:
The interior and exterior angle of a polygon is supplementary
let interior be I
let exterior be E
I + E = 180
Since the interior angle is 8 times that of an exterior angle,
8E + E = 180 [replacing I with 8E]
9E = 180
E = 20
The exterior angle is 20 degrees
I + E = 180
I + 20 = 180
I = 160
The interior angle is 160 degrees.
The equation to find the interior angle of a polygon with 'n' number of sides is:
I = ( (n − 2) × 180 ) ⁄ n
We know the interior angle, so plug it in and solve for n:
160 = ( (n − 2) × 180 ) ⁄ n
160n = (n − 2) × 180
160n = 180n − 360
-20n = -360
n = 18
HELPPPP PLSSSS Which is true about the polynomial ? It is a binomial with a degree of 2. It is a binomial with a degree of 3. It is a trinomial with a degree of 2. It is a trinomial with a degree of 3.
i am not getting it what are you asking
10. Two planes are flying one directly behind the other. Both planes are at an alttude of 1.7 miles. The angle
of depression to the airport from the plane closer to the airport is 58. The angle of depression to the
airport from the plane farther from the airport is 37. What is the distance between the two planes to the
nearest tenth of a mile?
A 1.0
B 23 -
C 12
D Not here
please help with these two questions!!
6√5 + 3√6 = 6√5 + 3√6 [cannot be simplified]
; roots do not contain any perfect squares, and the roots are not similar.
6√5(3√6) = 18√30 [can be simplified]
; although roots do not contain any perfect squares, the product rule can be applied to create a singular expression.
HURRY PLEASEE!!!! TAKING AN EXAM !! AND ITS TIMED!!! WILL GIVE BRAINLIEST!!
which rule represents the translation from the pre image ∆abc to ∆a'b'c'?
(x,y)-->(x+7,y+6)
(x,y)-->(x+7,y-6)
(x,y)-->(x-6,y+7)
(x,y)-->(x+6,y+7)
Answer:
B (x+7, y-6)
Step-by-step explanation:
It goes right 7 and down 6
Answer:
(x,y) --> (x+7, y-6)
Step-by-step explanation:
Good luck with your exam! :DD
Solve the following inequality: |x + 1| <_3
<_ = greater than or equal to
Answer:
x <= -4 or x >= 2
Step-by-step explanation:
so, it actually says
|x+1| >= 3
so, then, this is valid for all x >= 2 (then x+1 is 3 or higher), and for all x <= -4 (then x+1 is -3 or lower, and |x+1| is still 3 or higher)
Each side of a pentagon is 10 cm greater than the previous side. If the perimeter of this pentagon is 500 cm, find the lengths of the sides.
Answer: See explanation
Step-by-step explanation:
The perimeter of a pentagon is gotten through the summation of its five sides. Let the first side be represented by x. Since each side of a pentagon is 10 cm greater than the previous side, then the sides will be:
First side = x
Second side = x + 10
Third side = x + 10 + 10 = x + 20
Forth side = x + 30
Fifty side = x + 40
Therefore,
x + (x + 10) + (x + 20) + (x + 30) + (x + 40) = 500
5x + 100 = 500
5x = 500 - 100
5x = 400
x = 400/5
x = 80
Therefore, the lengths will be:
First side = x = 80cm
Second side = x + 10 = 80 + 10 = 90cm
Third side = x + 20 = 80 + 20 = 100cm
Forth side = x + 30 = 80 + 30 = 110cm
Fifty side = x + 40 = 80 + 40 = 120cm
2/3 of a number is 11 work out half the number
Answer:
33/4
Step-by-step explanation:
Let n = number
2/3 * n = 11
Multiply each side by 3/2
3/2 * 2/3 n = 11 * 3/2
n = 33/2
We want to find 1/2 of n
1/2 * 33/2 = 33/4
Margaret took a trip to Italy. She had to convert US dollars to euros to pay for her expenses there. At the time she was traveling, the conversion rate was represented by the function , where n is the number of dollars and E(n) is the equivalent value in euros. Later, she traveled to Dubai and converted her remaining euros into the local currency, UAE dirhams. At that time, the conversion rate was represented by the function , where x is the number of euros and D(x) is the equivalent value in dirhams. Which function can be used to convert n dollars directly to dirhams?
The conversion rate US dollars to Euros is represented with the function:
E(n)=0.72n
n- number of dollars
E(n) - Euros as a function of US dollars
The conversion rate Euros to Dirhams is :
D(x)=5.10x
x- number of Euros
D(x)- Dirhams as a function of Euros
We are trying to find D(x) in terms of n.
D(x) = 5.10x
x can be rewritten as E(n)
D(x) = 5.10(E(n))
D(x) = 5.10(E(n))
D(x) = 5.10(0.72n)
D(x) = 3.672n
According to this the following statement is true:
A) (D x E)(n) = 5.10(0.72n)
Plz help me with this thank you
Answers:
One possible equation to solve is tan(x) = 4/15That solves to roughly 15 degrees==============================================================
Explanation:
Refer to the diagram below.
The segment AB is the player's height of 6 ft.
The segment CD is the hoop's height, which is 10 ft.
There is a point E on CD such that rectangle BACE forms. This will help us form ED later.
Angle EBD is what we're after, which I'll call x.
Since the free throw line is 15 ft from the basket, this means segments EB and AC are 15 ft each.
In rectangle BACE, the side EC is opposite AB. So both of those sides are 6 ft each.
Since CD = 10 and EC = 6, this must mean ED = CD-EC = 10-6 = 4.
---------------------------------------
To summarize, we found that ED = 4 and EB = 15.
We'll focus our attention entirely on triangle EBD
We have two known legs of the triangle, specifically the opposite and adjacent sides.
So we'll use the tangent ratio.
tan(angle) = opposite/adjacent
tan(B) = ED/EB
tan(x) = 4/15 .... is the equation to solve
x = arctan(4/15) .... same as inverse tangent or [tex]\tan^{-1}[/tex]
x = 14.931417 ..... make sure to be in degree mode
x = 15 ..... rounding to the nearest whole degree
So that unknown angle in the diagram is approximately 15 degrees
Solve for x. X/5-x/6=1/3 x = 10 x = 1/90 x = 1/10
Answer:
x=10
Step-by-step explanation:
I hope this will help you
Ilhan needs to write in function notation and evaluate this equation at the given value of the
independent variable. What answer should she get? 6x + y = 3; x=3
Answer:
it should be the second one I hope this help
17
x
3
8
Find the unknown side length, x. Write your answer in simplest radical form.
A 15
B. 5/10
C2/70
D. 4 37
==========================================================
Explanation:
It helps to add point labels. Let's place point A at the very top point of the triangle. Then point B will be at the 90 degree angle. Point C is the far left point. Lastly, point D is on segment BC such that DC = 3.
Since BC = 8 and CA = 17, we can use the pythagorean theorem to get...
(AB)^2 + (BC)^2 = (AC)^2
(AB)^2 + (8)^2 = (17)^2
(AB)^2 + 64 = 289
(AB)^2 = 289-64
(AB)^2 = 225
AB = sqrt(225)
AB = 15
Now focus on triangle ABD and apply the pythagorean theorem again to find side AD
(AB)^2 + (BD)^2 = (AD)^2
AD = sqrt( (AB)^2 + (BD)^2 )
AD = sqrt( (AB)^2 + (BC-CD)^2 )
AD = sqrt( (15)^2 + (8-3)^2 )
AD = sqrt(250)
AD = sqrt(25*10)
AD = sqrt(25)*sqrt(10)
AD = 5*sqrt(10) .... answer is choice B
Please help ASAP!!!!
========================================================
Explanation:
The two points mentioned in bold are midpoints of segments AB and AC respectively.
To find the coordinates of a midpoint, you add up the x coordinates and divide by 2. Do the same with the y coordinates.
For example, points A and B are at (7,6) and (1,-2)
If we add up the x coordinates and divide by 2, then we get (7+1)/2 = 4. Do the same for the y coordinates to get (6+(-2))/2 = 2. So that's how (4,2) is the midpoint of segment AB. You'll use similar logic to find that (8,2) is the midpoint of segment AC.
A slight alternative is that once you find one midpoint is (4,2), you can draw a horizontal line until you reach (8,2). We're using the idea that the midsegment is parallel to BC which is also horizontal.
(⅔)-⁴ (two over three to the power minus 4)
I need answer asap pleaseeeee
Answer:
81/16
Step-by-step explanation:
(⅔)-⁴
81/16
= 5.0625
What is the value of y?
Answer:
C, 40 degrees
Step-by-step explanation:
All the angles of a triangle add to 180 degrees according to the Triangle Sum Theorem.
Since all angles sum to 180, we can set all the values to add to 180.
We have:
[tex]2y+y+10+50=180[/tex]
Combining like terms, we have:
[tex]3y+60=180[/tex]
Subtracting 60 from both sides gets us
[tex]3y=120[/tex]
Dividing by 3 from both sides equals
[tex]y=40[/tex]
Answer:
I think the value of y is 40
Step-by-step explanation:
Here, 2y+ y+ 10+50=180°( sum of all angles of triangle)or, 3y+ 60=180or, 3y=180-60or, 3y=120or, y= 120÷3:.y= 40Calculate the sum of the first 30 terms in the sequence that begins with 70,65,60
[tex]\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\la\la\la\la\ddddddddddddddddddddddddddddddddcleverdddddd\ffffffffffffffffffffffffffffffffffffffff\pppppppppppppppppppppppppppppppppppp\ddddddddddddddddddd \displaystyle \Large \boldsymbol{} a_1=70 \ ; \ d=-5 \\\\S_n=\frac{a_1+a_n}{2} \cdot n \ ; \ a_n=a_1+(n-1)d \Longrightarrow \\\\\\ S_{30}=\frac{70+70-29\cdot5}{2} \cdot 30 =-75 \\\\\\Answer: S_{30}=-75[/tex]
When this open-ended cylinder is opened out, it forms a rectangle with a width of 25 cm. What is the area of the rectangle?.
Answer:
Just want the points
Step-by-step explanation:
What is the initial value of 34.2 x 3^x
Initial value is your y intercept, and to find that you just need to substitute 0 for x. Anything to the power of 0 is just 1. So you get 34.2(1), which means that your initial value is 34.2.
Solve the inequality and write the solution in interval notation:
x-6/x+5 <0
(-5, 6)
[-5, 6)
(-infinity,-5) U [6,infinity)
(-infinity,-5] U (6,infinity)
Answer:
A
Step-by-step explanation:
Firstly x cannot be -5 because the expression on th left would be undefined so it's only between choices a and c.
Create a number line with makes the expression on left 0 and undefined...so at 6 and -5 this happens.
-------(-5)--------(6)---------
Let's test the 3 intervals by choosing a value from that interval to see if all numbers from that interval will make the expression on left less than 0.
Number before -5 is -6:
(-6-6)/(-6+5)=-12/-1=12 >0 so this interval is not a part of our solution.
Number between -5 and 6 is 0:
(0-6)/(0+5)=-6/5<0 so this interval is a part of our solution
Number after 6 like 7:
(7-6)/(7+5)=1/12>0 so this interval is not a part of our solution.
The winner is everything between-5 and 6 so answer is A.
Determine the constant of variation for the direct variation given. (0, 0), (3, 12), (9, 36)
12
4
3
Answer:
4
Step-by-step explanation:
y = kx
Use point (3, 12).
12 = k * 3
k = 12/3 = 4
y = 4x
Answer: 4
Divide y by x:
12/3 = 4
36 / 9 = 4
The constant of variation is 4
HELPASAP (15 points)
A circle with an arc length of ____ centimeters is intercepted by a central angle of 3pi/4 radians has a radius of ____ centimeters.
1st Blank Options: 12pi, 4pi, 2pi
2nd Blank Options: 3, 16, 24
simplify the following
[tex]simplify \: the \: follwing \: \\ logx \: x9[/tex]
please I need help
Answer:
9
Step-by-step explanation:
Using the rules of logarithms
log[tex]x^{n}[/tex] = nlogx
[tex]log_{b}[/tex] b = 1
Then
[tex]log_{x}[/tex] [tex]x^{9}[/tex]
= 9[tex]log_{x}[/tex] x
= 9
Sally is serving lemonade to four friends. She is serving 4/7 cup per person.
Estimate how much lemonade she needs. Then calculate exactly how much she needs. What is the difference between the estimate and actual amount?
pls help, :)
Answer:
oi ngl levi is hawt I like your pfp ^^
Step-by-step explanation:
my name is Riley
A research historian is interested in finding sunken treasure in the Atlantic Ocean. She knows that her equipment is only good enough to recover items that are at a depth of 5 000 m or less. The speed of sound through the water is 1 530 m/s. While working, the sonar equipment detects a reflection that is of interest. The echo from the item takes 6.2 s to return to the sonar detector. Will she be able to retrieve this item?
Answer:
Yes, she will be able to retrieve the item
Step-by-step explanation:
The information with regards to the research historian interest in finding a sunken treasure are;
The depth from which the equipment can recover items = 5,000 m
The speed of sound through water, v = 1,530 m/s
The time it takes the echo from the item to return to the sonar detector, t = 6.2 s
Let d, represent the depth at which the item is located
Given that an echo travels from the sonar detector to the item and back to the sonar detector, the distance traveled by the sound wave which is received as an echo by the sonar detector = 2 × d
Velocity, v = Distance/time
∴ Distance = Velocity × Time
The distance traveled by the echo = 2 × d = v × t
2 × d = v × t
∴ 2 × d = 1,530 m/s × 6.2 s
d = (1,530 m/s × 6.2 s)/2 = 4,743 m
The depth at which the item is located, d = 4,743 m is less than the maximum depth the equipment can recover items, therefore, she will be able to retrieve the item.
Help anyone can help me do 16 and 17 question,I will mark brainlest.The no 16 question is find the area of the shaded region
Answer:
Question 16 = 22
Question 17 = 20 cm²
Step-by-step explanation:
Concepts:
Area of Square = s²
s = sideArea of Triangle = bh/2
b = baseh = heightDiagonals of the square are congruent and bisect each other, which forms a right angle with 90°
Segment addition postulate states that given 2 points A and C, a third point B lies on the line segment AC if and only if the distances between the points satisfy the equation AB + BC = AC.
Solve:
Question # 16
Step One: Find the total area of two squares
Large square: 5 × 5 = 25
Small square: 2 × 2 = 4
25 + 4 = 29
Step Two: Find the area of the blank triangle
b = 5 + 2 = 7
h = 2
A = bh / 2
A = (7) (2) / 2
A = 14 / 2
A = 7
Step Three: Subtract the area of the blank triangle from the total area
Total area = 29
Area of Square = 7
29 - 7 = 22
-----------------------------------------------------------
Question # 17
Step One: Find the length of PT
Given:
PR = 4 cmRT = 6 cmPT = PR + RT [Segment addition postulate]
PT = (4) + (6)
PT = 10 cm
Step Two: Find the length of S to PT perpendicularly
According to the diagonal are perpendicular to each other and congruent. Therefore, the length of S to PT perpendicularly is half of the diagonal
Length of Diagonal = 4 cm
4 ÷ 2 = 2 cm
Step Three: Find the area of ΔPST
b = PT = 10 cm
h = S to PT = 2 cm
A = bh / 2
A = (10)(2) / 2
A = 20 / 2
A = 10 cm²
Step Four: Find the length of Q to PT perpendicularly
Similar to step two, Q is the endpoint of one diagonal, and by definition, diagonals are perpendicular and congruent with each other. Therefore, the length of Q to PT perpendicularly is half of the diagonal.
Length of Diagonal = 4 cm
4 ÷ 2 = 2 cm
Step Five: Find the area of ΔPQT
b = PT = 10 cm
h = Q to PT = 2 cm
A = bh / 2
A = (10)(2) / 2
A = 20 / 2
A = 10 cm²
Step Six: Combine area of two triangles to find the total area
Area of ΔPST = 10 cm²
Area of ΔPQT = 10 cm²
10 + 10 = 20 cm²
Hope this helps!! :)
Please let me know if you have any questions
find the volume of each figure. Round to the nearest tenth if necessary.
Answer:
112
Step-by-step explanation:
The volume is given by l*b*h=4*4*7=112