Answer:
[tex]F = 39.47[/tex]
Step-by-step explanation:
Given
[tex]n = 30[/tex] --- observations
[tex]p = 1[/tex] -- variables
[tex]SSR = 1,297[/tex]
[tex]SSE= 920[/tex]
Required
The F statistic
This is calculated using:
[tex]F = \frac{SSR}{p} \div \frac{SSE}{n - p -1}[/tex]
[tex]F = \frac{1297}{1} \div \frac{920}{30 - 1 -1}[/tex]
[tex]F = \frac{1297}{1} \div \frac{920}{28}[/tex]
[tex]F = 1297 \div \frac{920}{28}[/tex]
Rewrite as:
[tex]F = 1297 * \frac{28}{920}[/tex]
[tex]F = \frac{1297 *28}{920}[/tex]
[tex]F = \frac{36316}{920}[/tex]
[tex]F = 39.47[/tex]
If A = {x, y, z} then the number of non-empty subsets of A is ________.
a) 8 b) 5 c) 6 d) 7
Answer:
(d) 7
Step-by-step explanation:
The total number of subsets that can be derived from a set with n elements is given by;
2ⁿ
Out of these subsets, there is one empty set. Therefore, the total number of non-empty subsets is given by;
2ⁿ - 1
Given:
A = {x, y, z}
Set A has 3 elements. This means that n = 3
Therefore, the total number of subsets that can be derived from set A is
2ⁿ = 2³ = 8
One of these 8 subsets is an empty set, therefore, the total number of non-empty subsets of A is;
2ⁿ - 1 = 2³ - 1
8 - 1 = 7
This can be checked by writing all the possible subsets of A as follows;
∅
{x}
{y}
{z}
{x, y}
{y, z}
{x, z}
{x, y, z}
Removing the empty set ∅, the non-empty subsets of A are;
{x}
{y}
{z}
{x, y}
{y, z}
{x, z}
{x, y, z}
I’ll mark u plz help
Answer:
D is the answer
Step-by-step explanation:
all sides and angles are equal
hope it helps!! let me know if it does
Which of the following is a like radical to cube rt of 7x
Answer:
[tex]\sqrt[3]{7x}[/tex]
Step-by-step explanation:
Given
[tex]7x[/tex]
Required
The radical statement
Cube root is represented as:
[tex]\sqrt[3]{}[/tex]
Considering [tex]7x[/tex], the expression is:
[tex]\sqrt[3]{7x}[/tex]
The half-life of a newly discovered radioactive element is 30 seconds. To the nearest tenth of a second, how long will it take for a sample of 9 grams to decay to 0.72 grams
Answer:
It will take about 109.3 seconds for nine grams of the element to decay to 0.72 grams.
Step-by-step explanation:
We can write a half-life function to model our function.
A half-life function has the form:
[tex]\displaystyle A=A_0\left(\frac{1}{2}\right)^{t/d}[/tex]
Where A₀ is the initial amount, t is the time that has passes (in this case seconds), d is the half-life, and A is the amount after t seconds.
Since the half-life of the element is 30 seconds, d = 30. Our initial sample has nine grams, so A₀ is 9. Substitute:
[tex]\displaystyle A=9\left(\frac{1}{2}\right)^{t/30}[/tex]
We want to find the time it will take for the element to decay to 0.72 grams. So, we can let A = 0.72 and solve for t:
[tex]\displaystyle 0.72=9\left(\frac{1}{2}\right)^{t/30}[/tex]
Divide both sides by 9:
[tex]\displaystyle 0.08=\left(\frac{1}{2}\right)^{t/30}[/tex]
We can take the natural log of both sides:
[tex]\displaystyle \ln(0.08)=\ln\left(\left(\frac{1}{2}\right)^{t/30}\right)[/tex]
By logarithm properties:
[tex]\displaystyle \ln(0.08)=\frac{t}{30}\ln(0.5)[/tex]
Solve for t:
[tex]\displaystyle t=\frac{30\ln(0.08)}{\ln(0.5)}\approx109.3\text{ seconds}[/tex]
So, it will take about 109.3 seconds for nine grams of the element to decay to 0.72 grams.
HELP HELP HELP MATH⚠️⚠️⚠️⚠️⚠️
Find four consecutive integers with the sum of 2021
Answer:
This problem has not solution
Step-by-step explanation:
lets the integers be:
x
x+1
x+2
x+3
so:
x+(x+1)+(x+2)+(x+3)=2021
x+x+x+x+1+2+3=2021
4x+6=2021
4x=2021-6=2015
x=2015/4=503.75
x is not a integer
A farmer picks pumpkins from a large field. The farmer makes samples of 260 pumpkins and inspects them. If one in fifty pumpkins are not fit to market and will be saved for seeds, what is the standard deviation of the mean of the sampling distribution of sample proportions?
Answer:
[tex]\mu = 5.2[/tex]
[tex]\sigma = 2.257[/tex]
Step-by-step explanation:
Given
[tex]n = 260[/tex] -- samples
[tex]p = \frac{1}{50}[/tex] --- one in 50
Solving (a): The mean
This is calculated as:
[tex]\mu = np[/tex]
[tex]\mu = 260 * \frac{1}{50}[/tex]
[tex]\mu = 5.2[/tex]
Solving (b): The standard deviation
This is calculated as:
[tex]\sigma = \sqrt{\mu * (1-p)}[/tex]
[tex]\sigma = \sqrt{5.2 * (1-1/50)}[/tex]
[tex]\sigma = \sqrt{5.2 * 0.98}[/tex]
[tex]\sigma = \sqrt{5.096}[/tex]
[tex]\sigma = 2.257[/tex]
A boy leaves station X on a bearing of 035' to station Y. which is 21km away. He then travels to another station Z on a bearing of 125 degrees . If Z is directly East of X, what is the distance from X to his present position?
9514 1404 393
Answer:
36.6 km
Step-by-step explanation:
We assume the initial bearing of the boy is 35°. Then he will make a 90° turn to a heading of 125°. A diagram shows the distance of interest is the hypotenuse of a right triangle in which 35° is the angle opposite the side of length 21 km.
The relevant trig relation is ...
Sin = Opposite/Hypotenuse
sin(35°) = (21 km)/XZ
XZ = (21 km)/sin(35°) ≈ 36.61 km
The distance from X to Z is about 36.61 km.
_____
The attached diagram has the angles measured in the usual way for a Cartesian plane: CCW from the +x axis. This will correspond to bearing measures if we relabel the axes so that +x is North, and +y is East.
An automatic machine inserts mixed vegetables into a plastic bag. Past experience revealed that some packages were underweight and some were overweight, but most of them had satisfactory weight.
Weight % of Total Underweight 2.5 Satisfactory 90.0 Overweight 7.5a) What is the probability of selecting and finding that all three bags are overweight?b) What is the probability of selecting and finding that all three bags are satisfactory?
Answer:
a) 0.000016 = 0.0016% probability of selecting and finding that all three bags are overweight.
b) 0.729 = 72.9% probability of selecting and finding that all three bags are satisfactory
Step-by-step explanation:
The condition of the bags in the sample is independent of the other bags, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
a) What is the probability of selecting and finding that all three bags are overweight?
2.5% are overweight, which means that [tex]p = 0.025[/tex]
3 bags means that [tex]n = 3[/tex]
This probability is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.025)^{3}.(0.975)^{0} = 0.000016[/tex]
0.000016 = 0.0016% probability of selecting and finding that all three bags are overweight.
b) What is the probability of selecting and finding that all three bags are satisfactory?
90% are satisfactory, which means that [tex]p = 0.9[/tex]
3 bags means that [tex]n = 3[/tex]
This probability is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.9)^{3}.(0.1)^{0} = 0.729[/tex]
0.729 = 72.9% probability of selecting and finding that all three bags are satisfactory
What is the value of y?
Enter your answer, as an exact value, in the box.
Answer:
y=4√3 units
Step-by-step explanation:
Hi there!
We are given ΔABC, which is a right triangle (m<C=90°), m<A=60°, AB=8, and BC=y
We need to find the value of y (BC)
The side AB is the hypotenuse of the (the side opposite from the right angle).
BC is a leg, which is a side that makes up the right angle.
Now, if we have a right triangle that has one of the acute angles as 60°, the side OPPOSITE from that 60° angle (in this case, BC) is equal to [tex]\frac{a\sqrt{3}}{2}[/tex], where a is the length of the hypotenuse
Since we have the hypotenuse given as 8, the length of BC (y) is [tex]\frac{8\sqrt{3}}{2}[/tex], or 4√3
so y=4√3 units
Hope this helps!
FREE
Circle O has a circumference of approximately 250 ft.
What is the approximate length of the diameter, d?
O 40 ft
O 80 ft
O 125 ft
O 250 ft
Save and Exit
Next
Submit
Mark this and return
Answer:
Step-by-step explanation:
circumference = πd ≅ 250 ft
d ≅ 250/π ≅80 ft
calculate the cost of 4 liters of gasoline if 10 Liters of gasoline cost $8.20 (using proportional relationship).
A . $3.28
B. $4.20
C. $8.20
D.$10
f(x)=2x1 + 16x2 + 7x3 + 4x4 -> min
Step-by-step explanation:
f(x)=(2x-1)square=0
it can be 0 or greater than 0
Hence,maximum value of (2x- 1)square=0
maximum value of (2x- 1square)+3=0+3=3
What is the value of x in the figure below? If necessary, round your answer to
the nearest tenth of a unit.
X
15
D 4 B
A. 7.7
B. 3.8
O C. 15
D. 4
Answer:
Step-by-step explanation:
Which would result in a lower price to first discount an item by 10% and then by a further 15%, OR to first discount an item by 15% and then by a further 10%. Justify your reasoning.
Answer:
Neither one. They will both result in the same price.
Step-by-step explanation:
To discount an item 10%, you charge 90% of the price of the item. To find 90% of a price, you multiply the price by 0.9.
To discount an item 15%, you charge 85% of the price of the item. To find 85% of a price, you multiply the price by 0.85.
Since multiplication is commutative, multiplying a number by 0.9 and then by 0.85 is the same as multiplying the number by 0.85 first and then by 0.9.
Let's say the item costs x.
Take off the 10% discount first: 0.9x
Now take off the 15% discount: 0.85 * (0.9x)
Now do it the other way.
Take off the 15% discount first: 0.85x
Now take off the 10% discount: 0.9 * (0.85x)
Since 0.85 * 0.9 * x = 0.9 * 0.85 * x, the results are the same.
Answer: neither
5. In 2015, Texas led the nation in the percentage of people who lacked health insurance (21.6% of the population). It is known that, nationally, 5% of patients account for 50% of the costs of healthcare. These are the “high cost” patients Assume* that: Being a high cost patient and being uninsured are independent characteristics Insured and uninsured people become “patients” at the same rate The uninsured and high cost patients in Texas are evenly distributed across the state, and that high cost patients are evenly distributed across insured and uninsured patient populations a. What is the probability that a patient in a Texas healthcare facility will be a high cost patient who is uninsured?
Answer: 0.108
Step-by-step explanation:
Since the probability of the uninsured is 21.6% of the population, then the probability of insured will be:
= 1 - 21.6%
= 78.4%
The probability of high cost patients is 5%. Therefore, the probability that a patient in a Texas healthcare facility will be a high cost patient who is uninsured will be:
= 5% × 21.6%
= 0.05 × 0.216
= 0.108
when price of indomie noodles was lowered from #50 to #40 per unit, quantity demanded increases from 400 to 600 units per week. calculate the coefficient of price elasticity of demand and determine whether by lowering price this firm has made a wise decision
Answer:
The price elasticity of demand is -10
Step-by-step explanation:
Given
[tex]p_1,p_2 = 50,40[/tex]
[tex]q_1,q_2 = 400,500[/tex]
Solving (a): The coefficient of price elasticity of demand (k)
This is calculated as:
[tex]k = \frac{\triangle q}{\triangle p}[/tex]
So, we have:
[tex]k = \frac{500 - 400}{40 - 50}[/tex]
[tex]k = \frac{100}{-10}[/tex]
[tex]k = -10[/tex]
Because |k| > 0, then we can conclude that the company made a wise decision.
what is the formula for triangle
Answer:
A = 1/2 b × h
Step-by-step explanation:
hope it helps !!!!
Answer:
The formula for the area of a triangle is 1/2bh.
find the slope and y-intercept of line 3x +y -9=0
Answer:
x-intercept(s):(3,0)
y-intercept(s):(0,9)
Step-by-step explanation:
Test 21,753 for divisibility by 2,3,5,9 and 10
Answer:
Step-by-step explanation:
21,753
at unit place=3 not an even number,not equal to 5 and not equal to 0
so 21,753 is not divisible by 2,5 and 10
again
2+1+7+5+3=18 divisible by 3 and 9.
so 21,753 is divisible by 3 and 9.
On a coordinate plane, 2 triangles are shown. The first triangle has points A (negative 1, negative 2), B (negative 4, negative 2), C (negative 1, negative 4). The second triangle has points A prime (1, 2), B prime (4, 2), C prime (1, 4). What rule describes the rotation about the origin? (x, y) → How many degrees was the figure rotated about the origin?
9514 1404 393
Answer:
(x, y) ⇒ (-x, -y)180°Step-by-step explanation:
Each image point has its signs reversed from the pre-image point.
(x, y) ⇒ (-x, -y) . . . . describes the rotation
Rotation from the third quadrant (A) to the first quadrant (A') is a rotation of 180°.
Answer:
3rd and 2nd option
Step-by-step explanation:
The cardinal number of {200, 201, 202, 203, ..., 1099}
Answer:
I have not been able to answer it sorry
when a force of 400N is applied on a body at angle of 60 degree to the horizontal displacement,the body covers a distance of 8m.what is the work done?
Answer:
1600N
Step-by-step explanation:
Force = 400 N
Angle with horizontal = 60°
Displacement in horizontal direction = 8 m
work done formula when angle is included: Force * distance * cos(angle)
400 * 8 * cos(60)
= 400 * 8 * 1/2
= 1600N
The following figure appears in a math workbook. Students are asked to reflect the polygon across the line, then rotate it 90 degrees clockwise . Which figure shows the result of the two transformations?
Answer:
C
Step-by-step explanation:
tracing paper is your friend
Suppose a large shipment of televisions contained 9% defectives. If a sample of size 393 is selected, what is the probability that the sample proportion will differ from the population proportion by less than 3%
Answer:
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose a large shipment of televisions contained 9% defectives
This means that [tex]p = 0.09[/tex]
Sample of size 393
This means that [tex]n = 393[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.09*0.91}{393}} = 0.0144[/tex]
What is the probability that the sample proportion will differ from the population proportion by less than 3%?
Proportion between 0.09 - 0.03 = 0.06 and 0.09 + 0.03 = 0.12, which is the p-value of Z when X = 0.12 subtracted by the p-value of Z when X = 0.06.
X = 0.12
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.12 - 0.09}{0.0144}[/tex]
[tex]Z = 2.08[/tex]
[tex]Z = 2.08[/tex] has a p-value of 0.9812
X = 0.06
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.0144}[/tex]
[tex]Z = -2.08[/tex]
[tex]Z = -2.08[/tex] has a p-value of 0.0188
0.9812 - 0.0188 = 0.9624
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%
Hannah ran 12 laps for 8 days. How many laps did she run in total if she take a break of 1 complete day and 1 half day.
Answer:
The correct answer would be - 9.75 laps (if runs 12 laps in 8 days) or 78 laps (if 12 laps each day for 8 days)
Step-by-step explanation:
Given:
a) Laps covered in 8 days = 12
interval = 1 and half day
total laps = ?
Solution:
To know the total laps with intervals we need to calculate the laps run each day :
= 12/8 laps per day
= 3/2 laps per day
Now multiply the daily run with days
= (3/2)*6.5 (due to 8 - 1.5 = 6,5 days)
= 9.75 laps
B) Given:
Laps covered in 8 days = 12*8 =96
interval = 1 and half day
total laps = ?
Solution:
To know the total laps with intervals we need to calculate the laps run each day :
= 96/8 laps per day
= 12laps per day
Now multiply the daily run with days
= 12*6.5 (due to 8 - 1.5 = 6,5 days)
= 78 laps
for a science fair project javier is recording the amount of water that evaporate from a bucket in a month he creates a table like this i will give point for the best answer
week 1 2/16 inch
week 2 1/16 inch
week 3 3/16 inch
week 4 2/16 inch
how much water had evaported from the bucket at the end of week 2
what was the total amount of water that evaported in the four weeks
if javier orignally put 4 inches of water in the bucket how many inches of water were left after the experment was completed
Answer: [tex]\dfrac{3}{16},\ \dfrac{1}{2}, \dfrac{7}{2}\ \text{inch}[/tex]
Step-by-step explanation:
Given
Javier created a table for the amount of water evaporated in each week
After two weeks, the amount of water evaporated is
[tex]\Rightarrow \dfrac{2}{16}+\dfrac{1}{16}\\\\\Rightarrow \dfrac{2+1}{16}=\dfrac{3}{16}\ \text{inch}[/tex]
Total amount of water evaporated in four weeks is
[tex]\Rightarrow \dfrac{2}{16}+\dfrac{1}{16}+\dfrac{3}{16}+\dfrac{2}{16}\\\\\Rightarrow \dfrac{2+1+3+2}{16}=\dfrac{8}{16}\\\Rightarrow \dfrac{1}{2}\ \text{inch}[/tex]
If Javier originally puts 4 inches of water, amount of water left in the bucket
[tex]\Rightarrow 4-\dfrac{1}{2}\\\\\Rightarrow \dfrac{4\times 2}{2}-\dfrac{1}{2}\\\\\Rightarrow \dfrac{8-1}{2}=\dfrac{7}{2}\ \text{inch}[/tex]
Why is underfind the square root of a negative number?
Answer:
The square root of a negative number is undefined, because anything times itself will give a positive (or zero) result. Note: Zero has only one square root (itself). Zero is considered neither positive nor negative
Answer:
sjshzhshshdhdgdgdhdhdgshshshshshwywhwhw
I need help please it’s for math
Answer:
139
Step-by-step explanation:
Since the given is a parallelogram then angle <D and angle <B are equal angles
10x - 21 = 9x - 5
10x - 9x = 21 - 5
x = 16 replace x with 16 to find the measure of angle <B
16*9 - 5 = 139
Explain how to divide a decimal by a decimal
Answer:
To divide a decimal by another decimal:
Move the decimal point in the divisor to the right until it is a whole number.
Move the decimal point in the dividend to the right by the same number of places as the decimal point was moved to make the divisor a whole number.
Then divide the new dividend by the new divisor
Step-by-step explanation:
see in the example
Un automóvil consume 4 galones de gasolina al recorrer 180 kilómetros y para recorrer 900 kilómetros necesita 20 galones ¿cuántos kilómetros recorre por galón? ¿Cuantos galones consumirá en 2700 kilómetros?
Answer:
45 km por galón
60 galones en 2700 Km
Step-by-step explanation:
180 / 4
45 km por galón
900 / 45
20 galones
2700 / 45
60 galones en 2700 Km