Alpha (a) is used to measure the error for decisions concerning true null hypotheses. What is beta (ß) error used to measure?

Answers

Answer 1

Answer:

Alpha (α) is used to measure the error for decisions concerning true null hypotheses, while beta (ß) is used to measure error for decisions concerning false null hypotheses.

Step-by-step explanation:

Suppose we have events X and Y.

1. If it is said that X equals Y, when X is actually not equal to Y, α is used in this case, the null hypotheses.

2. If X is said to not be equal to Y, when X is actually equal to Y, β is used in this case, the false null hypotheses.


Related Questions

Consider the surface f(x,y) = 21 - 4x² - 16y² (a plane) and the point P(1,1,1) on the surface.

Required:
a. Find the gradient of f.
b. Let C' be the path of steepest descent on the surface beginning at P, and let C be the projection of C' on the xy-plane. Find an equation of C in the xy-plane.
c. Find parametric equations for the path C' on the surface.

Answers

Answer:

A) ( -8, -32 )

Step-by-step explanation:

Given function : f (x,y) = 21 - 4x^2 - 16y^2

point p( 1,1,1 ) on surface

Gradient of F

attached below is the detailed solution

Simplify . 7+ the square root of 6(3+4)-2+9-3*2^2 The solution is

Answers

Answer:

7+sqrt(37)

Step-by-step explanation:

7+sqrt(6*(3+4)-2+9-3*2^2)=7+sqrt(6*7+7-3*4)=7+sqrt(42+7-12)=7+sqrt(37)

What is the value of the product (3 – 2i)(3 + 2i)?

Answers

Answer:

13

Step-by-step explanation:

(3 - 2i)(3 + 2i)

Expand

(9 + 6i - 6i - 4i^2)

Add

(9 - 4i^2)

Convert i^2

i^2 = ([tex]\sqrt{-1}[/tex])^2 = -1

(9 - 4(-1))

Add

(9 + 4)

= 13

Answer:

13.

Step-by-step explanation:

(3 - 2i)(3 + 2i)

= (3 * 3) + (-2i * 3) + (2i * 3) + (-2i * 2i)

= 9 - 6i + 6i - 4[tex]\sqrt{-1} ^{2}[/tex]

= 9 - 4(-1)

= 9 + 4

= 13

Hope this helps!

Find all values of x on the graph of f(x) = 2x3 + 6x2 + 7 at which there is a horizontal tangent line.

Answers

Answer:

the equation is not correct, u have to write like

ax'3+bx'2+cx+d

Answer:

x=-2 and x=0

Step-by-step explanation:

So I know it isn't x=-3 and x=0. So my guess is that it is x=0 and x=-2 and heres why.

First, I find the derivative of f(x)=2x^3+6x^2+7 which is 6x^2+12x

Then, I plugged in all the values of x's I had and I found out that you get 0 for -2 and 0 when you plug them in

So, in conclusion I believe the answer to be x=-2 and x=0

AB is dilated from the origin to create A'B' at A' (0, 8) and B' (8, 12). What scale factor was AB dilated by?

Answers

Answer:

4

Step-by-step explanation:

Original coordinates:

A (0, 2)

B (2, 3)

The scale is what number the original coordinates was multiplied by to reach the new coordinates

1. Divide

(0, 8) ÷ (0, 2) = 4

(8, 12) ÷ (2, 3) = 4

AB was dilated by a scale factor of 4.

Which graph shows the polar coordinates (-3,-) plotted

Answers

Graph 1 would be the answer

A soccer player has made 3 of her last 10 field goals, which is a field goal percentage of 30%. How many more consecutive field goals would she need to make to raise her field goal percentage to 50%?

Answers

Answer:

4 consecutive goals

Step-by-step explanation:

If 3 of last 10 field goals = 30%

Which is equivalent to

(Number of goals scored / total games played) * 100%

(3 / 10) * 100% = 30%

Number of consecutive goals one has to score to raise field goal to 50% will be:

Let y = number of consecutive goals

[(3+y) / (10+y)] * 100% = 50%

[(3+y) / (10+y)] * 100/100 = 50/100

[(3+y) / (10+y)] * 1 = 0.5

(3+y) / (10+y) = 0.5

3+y = 0.5(10 + y)

3+y = 5 + 0.5y

y - 0.5y = 5 - 3

0.5y = 2

y = 2 / 0.5

y = 4

Therefore, number of consecutive goals needed to raise field goal to 50% = 4

Oregon State University is interested in determining the average amount of paper, in sheets, that is recycled each month. In previous years, the average number of sheets recycled per bin was 59.3 sheets, but they believe this number may have increase with the greater awareness of recycling around campus. They count through 79 randomly selected bins from the many recycle paper bins that are emptied every month and find that the average number of sheets of paper in the bins is 62.4 sheets. They also find that the standard deviation of their sample is 9.86 sheets. What is the value of the test-statistic for this scenario

Answers

Answer:

The test statistic is [tex]t = 2.79[/tex]

Step-by-step explanation:

From the question we are told that

    The population mean is [tex]\mu = 59.3[/tex]

    The sample size is  [tex]n = 79[/tex]

    The  sample mean is  [tex]\= x = 62.4[/tex]

    The  standard deviation is  [tex]\sigma = 9.86[/tex]

Generally the test statistics is mathematically represented as

            [tex]t = \frac{\= x - \mu }{ \frac{ \sigma}{ \sqrt{n} } }[/tex]

substituting values

          [tex]t = \frac{ 62.2 - 59.3 }{ \frac{ 9.86}{ \sqrt{ 79} } }[/tex]

          [tex]t = 2.79[/tex]

consider the bevariate data below about Advanced Mathematics and English results for a 2015 examination scored by 14 students in a particular school.The raw score of the examination was out of 100 marks.
Questions:
a)Draw a scatter graph
b)Draw a line of Best Fit
c)Predict the Advance Mathematics mark of a student who scores 30 of of 100 in English.
d)calculate the correlation using the Pearson's Correlation Coefficient Formula
e) Determine the strength of the correlation

Answers

Answer:

Explained below.

Step-by-step explanation:

Enter the data in an Excel sheet.

(a)

Go to Insert → Chart → Scatter.

Select the first type of Scatter chart.

The scatter plot is attached below.

(b)

The scatter plot with the line of best fit is attached below.

The line of best fit is:

[tex]y=-0.8046x+103.56[/tex]

(c)

Compute the value of x for y = 30 as follows:

[tex]y=-0.8046x+103.56[/tex]

[tex]30=-0.8046x+103.56\\\\0.8046x=103.56-30\\\\x=\frac{73.56}{0.8046}\\\\x\approx 91.42[/tex]

Thus, the Advance Mathematics mark of a student who scores 30 out of 100 in English is 91.42.

(d)

The Pearson's Correlation Coefficient is:

[tex]r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot \sum X^{2}-(\sum X)^{2}][n\cdot \sum Y^{2}-(\sum Y)^{2}]}}[/tex]

  [tex]=\frac{14\cdot 44010-835\cdot 778}{\sqrt{[14\cdot52775-(825)^{2}][14\cdot 47094-(778)^{2}]}}\\\\= -0.7062\\\\\approx -0.71[/tex]

Thus, the Pearson's Correlation Coefficient is -0.71.

(e)

A correlation coefficient between ± 0.50 and ±1.00 is considered as a strong correlation.

The correlation between Advanced Mathematics and English results is -0.71.

This implies that there is a strong negative correlation.

99 litres of gasoline oil is poured into a cylindrical drum of 60cm in diameter. How deep is the oil in the drum? ​

Answers

Answer:

  35 cm

Step-by-step explanation:

The volume of a cylinder is given by ...

  V = πr²h

We want to find h for the given volume and diameter. First, we must convert the given values to compatible units.

  1 L = 1000 cm³, so 99 L = 99,000 cm³

  60 cm diameter = 2 × 30 cm radius

So, we have ...

  99,000 cm³ = π(30 cm)²h

  99,000/(900π) cm = h ≈ 35.01 cm

The oil is 35 cm deep in the drum.

The odds in favor of a horse winning a race are 7:4. Find the probability that the horse will win the race.

Answers

Answer:

7/11 = 0.6363...

Step-by-step explanation:

7 + 4 = 11

probability of winning: 7/11 = 0.6363...

The probability that the horse will in the race is [tex]\mathbf{\dfrac{7}{11}}[/tex]

Given that the odds  of the horse winning the race is 7:4

Assuming the ratio is in form of a:b, the probability of winning the race can be computed as:

[tex]\mathbf{P(A) = \dfrac{a}{a+b}}[/tex]

From the given question;

The probability of the horse winning the race is:

[tex]\mathbf{P(A) = \dfrac{7}{7+4}}[/tex]

[tex]\mathbf{P(A) = \dfrac{7}{11}}[/tex]

Learn more about probability here:

https://brainly.com/question/11234923?referrer=searchResults

evaluate the expression 4x^2-6x+7 if x = 5

Answers

Answer:

77

Step-by-step explanation:

4x^2-6x+7

Let x = 5

4* 5^2-6*5+7

4 * 25 -30 +7

100-30+7

7-+7

77

For a certain instant lottery game, the odds in favor of a win are given as 81 to 19. Express the indicated degree of likelihood as a probability value between 0 and 1 inclusive.

Answers

Answer: 0.81

Step-by-step explanation:

[tex]81:19\ \text{can be written as the fraction}\ \dfrac{81}{81+19}=\dfrac{81}{100}=\large\boxed{0.81}[/tex]

If f(x) = 2x2 – 3x – 1, then f(-1)=

Answers

ANSWER:
Given:f(x)=2x^2-3x-1
Then,f(-1)=2(-1)^2-3(-1)-1
f(-1)=2(1)+3-1
f(-1)=5-1
f(-1)=4


HOPE IT HELPS!!!!!!
PLEASE MARK BRAINLIEST!!!!!

The value of function at x= -1 is f(-1) = 4.

We have the function as

f(x) = 2x² - 3x -1

To find the value of f(-1) when f(x) = 2x² - 3x -1, we substitute x = -1 into the expression:

f(-1) = 2(-1)² - 3(-1) - 1

      = 2(1) + 3 - 1

      = 2 + 3 - 1

      = 4.

Therefore, the value of function at x= -1 is f(-1) = 4.

Learn more about Function here:

https://brainly.com/question/32020999

#SPJ6

A fair die is tossed once, what is the probability of obtaining neither 5 nor 2?​

Answers

Answer:

4/6 or 66.666...%

Step-by-step explanation:

If you want to find the probability of obtaining neither a 5 nor a 2 you find how many times they occur and add them together in this case 5 occurs once and 2 also occurs once out of 6 numbers so 1/6 + 1/6 equals 2/6, you now know that 4/6 of them won't be a 5 nor a 2 and because it is a fair die the likelihood of it falling on a number is the same for all sides so the answer is 4/6 or 66.67%.

Which of the following is an even function? f(x) = (x – 1)2 f(x) = 8x f(x) = x2 – x f(x) = 7

Answers

Answer:

f(x) = 7

Step-by-step explanation:

f(x) = f(-x) it is even

-f(x)=f(-x) it is odd

f(x) = (x – 1)^2 neither even nor odd

f(x) = 8x   this is a line  odd functions

f(x) = x^2 – x  neither even nor odd

f(x) = 7  constant  this is an even function

Answer:

answer is f(x)= 7

Step-by-step explanation:

just took edge2020 test

Evaluate integral _C x ds, where C is
a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6)
b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Answers

Answer:

a.    [tex]\mathbf{36 \sqrt{5}}[/tex]

b.   [tex]\mathbf{ \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}[/tex]

Step-by-step explanation:

Evaluate integral _C x ds  where C is

a. the straight line segment x = t, y = t/2, from (0, 0) to (12, 6)

i . e

[tex]\int \limits _c \ x \ ds[/tex]

where;

x = t   , y = t/2

the derivative of x with respect to t is:

[tex]\dfrac{dx}{dt}= 1[/tex]

the derivative of y with respect to t is:

[tex]\dfrac{dy}{dt}= \dfrac{1}{2}[/tex]

and t varies from 0 to 12.

we all know that:

[tex]ds=\sqrt{ (\dfrac{dx}{dt})^2 + ( \dfrac{dy}{dt} )^2}} \ \ dt[/tex]

[tex]\int \limits _c \ x \ ds = \int \limits ^{12}_{t=0} \ t \ \sqrt{1+(\dfrac{1}{2})^2} \ dt[/tex]

[tex]= \int \limits ^{12}_{0} \ \dfrac{\sqrt{5}}{2}(\dfrac{t^2}{2}) \ dt[/tex]

[tex]= \dfrac{\sqrt{5}}{2} \ \ [\dfrac{t^2}{2}]^{12}_0[/tex]

[tex]= \dfrac{\sqrt{5}}{4}\times 144[/tex]

= [tex]\mathbf{36 \sqrt{5}}[/tex]

b. the parabolic curve x = t, y = 3t^2, from (0, 0) to (2, 12)

Given that:

x = t  ; y = 3t²

the derivative of  x with respect to t is:

[tex]\dfrac{dx}{dt}= 1[/tex]

the derivative of y with respect to t is:

[tex]\dfrac{dy}{dt} = 6t[/tex]

[tex]ds = \sqrt{1+36 \ t^2} \ dt[/tex]

Hence; the  integral _C x ds is:

[tex]\int \limits _c \ x \ ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \ dt[/tex]

Let consider u to be equal to  1 + 36t²

1 + 36t² = u

Then, the differential of t with respect to u is :

76 tdt = du

[tex]tdt = \dfrac{du}{76}[/tex]

The upper limit of the integral is = 1 + 36× 2² = 1 + 36×4= 145

Thus;

[tex]\int \limits _c \ x \ ds = \int \limits _0 \ t \ \sqrt{1+36 \ t^2} \ dt[/tex]

[tex]\mathtt{= \int \limits ^{145}_{0} \sqrt{u} \ \dfrac{1}{72} \ du}[/tex]

[tex]= \dfrac{1}{72} \times \dfrac{2}{3} \begin {pmatrix} u^{3/2} \end {pmatrix} ^{145}_{1}[/tex]

[tex]\mathtt{= \dfrac{2}{216} [ 145 \sqrt{145} - 1]}[/tex]

[tex]\mathbf{= \dfrac{1}{108} [ 145 \sqrt{145} - 1]}}[/tex]

Please answer this correctly without making mistakes

Answers

Answer:

355/12

Step-by-step explanation:

Answer:

355/12mi

Step-by-step explanation:

9 1/2 = 19/2

20 1/12 = 241/12

19/2 + 241/12 = 355/12mi

anyone can help me with these questions?
please gimme clear explanation :)​

Answers

Step-by-step explanation:

The limit of a function is the value it approaches.

In #37, as x approaches infinity (far to the right), the curve f(x) approaches 1.  As x approaches negative infinity (far to the left), the curve f(x) approaches -1.

lim(x→∞) f(x) = 1

lim(x→-∞) f(x) = -1

In #38, as x approaches infinity (far to the right), the curve f(x) approaches 2.  As x approaches negative infinity (far to the left), the curve f(x) approaches -3.

lim(x→∞) f(x) = 2

lim(x→-∞) f(x) = -3

A raffle offers one $8000.00 prize, one $4000.00 prize, and five $1600.00 prizes. There are 5000 tickets sold at $5 each. Find the expectation if a person buys one ticket.

Answers

Answer:

The expectation is  [tex]E(1 )= -\$ 1[/tex]

Step-by-step explanation:

From the question we are told that  

     The first offer is  [tex]x_1 = \$ 8000[/tex]

     The second offer is  [tex]x_2 = \$ 4000[/tex]

      The third offer is  [tex]\$ 1600[/tex]

      The number of tickets is  [tex]n = 5000[/tex]

      The  price of each ticket is  [tex]p= \$ 5[/tex]

Generally expectation is mathematically represented as

             [tex]E(x)=\sum x * P(X = x )[/tex]

     [tex]P(X = x_1 ) = \frac{1}{5000}[/tex]    given that they just offer one

    [tex]P(X = x_1 ) = 0.0002[/tex]    

 Now  

     [tex]P(X = x_2 ) = \frac{1}{5000}[/tex]    given that they just offer one

     [tex]P(X = x_2 ) = 0.0002[/tex]    

 Now  

      [tex]P(X = x_3 ) = \frac{5}{5000}[/tex]    given that they offer five

       [tex]P(X = x_3 ) = 0.001[/tex]

Hence the  expectation is evaluated as

       [tex]E(x)=8000 * 0.0002 + 4000 * 0.0002 + 1600 * 0.001[/tex]

      [tex]E(x)=\$ 4[/tex]

Now given that the price for a ticket is  [tex]\$ 5[/tex]

The actual expectation when price of ticket has been removed is

      [tex]E(1 )= 4- 5[/tex]

      [tex]E(1 )= -\$ 1[/tex]

Choose the algebraic description that maps ΔABC onto ΔA′B′C′ in the given figure. Question 9 options:
A) (x, y) → (x, y – 6)
B) (x, y) → (x – 6, y)
C) (x, y) → (x, y + 6)
D) (x, y) → (x + 6, y)

Answers

Answer:

  B) (x, y) → (x – 6, y)

Step-by-step explanation:

Each x-value in the image is 6 less than in the pre-image. Each y-value is the same. That means x gets mapped to x-6, and y gets mapped to y:

  (x, y) → (x – 6, y)

g A random sample of size 16 taken from a normally distributed population revealed a sample mean of 50 and a sample variance of 36. The upper limit of a 95% confidence interval for the population mean would equal:

Answers

Answer:

The  upper limit is    

                   [tex]k = 52.94[/tex]

Step-by-step explanation:

From the question we  told that

     The  sample size is [tex]n = 16[/tex]

      The sample mean is  [tex]\= x = 50[/tex]

      The sample variance is  [tex]\sigma ^2 = 36[/tex]

For  a  95% confidence interval the confidence level is  95%

Given that the confidence level is 95% then the level of significance is  mathematically evaluated  as  

             [tex]\alpha = 100 - 95[/tex]

              [tex]\alpha = 5 \%[/tex]

              [tex]\alpha = 0.05[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table(reference- math dot armstrong dot edu), the value is  

              [tex]Z_{\frac{ \alpha }{2} } = 1.96[/tex]

             

Generally the margin of error is mathematically represented as

             [tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma}{\sqrt{n} }[/tex]

 Here  [tex]\sigma[/tex] is the standard deviation which is mathematically evaluated as

                  [tex]\sigma = \sqrt{\sigma^2}[/tex]

substituting values

                  [tex]\sigma = \sqrt{36}[/tex]

=>                [tex]\sigma = 6[/tex]

So

                    [tex]E = 1.96 * \frac{6}{\sqrt{16} }[/tex]

                     [tex]E = 2.94[/tex]

The 95% confidence interval is mathematically represented as

                 [tex]\= x - E < \mu < \= x + E[/tex]

substituting values

                [tex]50 -2.94 < \mu <50 +2.94[/tex]

                [tex]47.06 < \mu <52.94[/tex]

The  upper limit is    

                   [tex]k = 52.94[/tex]

   

                 

Let f(x) = x - 1 and g(x) = x^2 - x. Find and simplify the expression. (f + g)(1) (f +g)(1) = ______

Answers

Answer:

The simplified answer of the given expression is 1.

Step-by-step explanation:

When you see (f + g)(x), then it means that you are going to add f(x) and g(x) together. So, we are going to add the terms together that are given in the problem. We are also given the value of x which is 1. So, we are going to combine this information together so we can simplify the expression.

(f + g)(1)

f(x) = x - 1

g(x) = x²

(f + g)(1) = (1 - 1) + (1²)

Simplify the terms in the parentheses.

(f + g)(1) = 0 + 1

Add 0 and 1.

(f + g)(1) = 1

So, (f + g)(1) will have a simplified answer of 1.

solve the equation ​

Answers

Answer:

x = 10

Step-by-step explanation:

2x/3 + 1 = 7x/15 + 3

(times everything in the equation by 3 to get rid of the first fraction)

2x + 3 = 21x/15 + 9

(times everything in the equation by 15 to get rid of the second fraction)

30x+ 45 = 21x + 135

(subtract 21x from 30x; subtract 45 from 135)

9x = 90

(divide 90 by 9)

x = 10

Another solution:

2x/3 + 1 = 7x/15 + 3

(find the LCM of 3 and 15 = 15)

(multiply everything in the equation by 15, then simplify)

10x + 15 = 7x + 45

(subtract 7x from 10x; subtract 15 from 45)

3x = 30

(divide 30 by 3)

x = 10

2/5 ( 1/3 x− 15/8 )− 1/3 ( 1/2 − 2/3 x)

Answers

Answer:

16/45x-11/12

Step-by-step explanation:

Multiply across

2/15x-30/40-1/6+2/9x=

Get common denominators of like terms

6/45x+10/45x-9/12-2/12=

Combine like terms

16/45x-11/12

The simplified expression is: (16/45)x - (11/12)

To simplify the given expression, we'll follow the steps:

Step 1: Distribute the fractions through the parentheses.

Step 2: Simplify the expression by combining like terms.

Let's proceed with the simplification:

Step 1: Distribute the fractions through the parentheses:

2/5 * (1/3x - 15/8) - 1/3 * (1/2 - 2/3x)

Step 2: Simplify the expression:

To distribute 2/5 through (1/3x - 15/8):

2/5 * 1/3x = 2/15x

2/5 * (-15/8) = -15/20 = -3/4

So, the first part becomes: 2/15x - 3/4

To distribute -1/3 through (1/2 - 2/3x):

-1/3 * 1/2 = -1/6

-1/3 * (-2/3x) = 2/9x

So, the second part becomes: -1/6 + 2/9x

Now, the entire expression becomes:

2/15x - 3/4 - 1/6 + 2/9x

Step 3: Combine like terms:

To combine the terms with "x":

2/15x + 2/9x = (2/15 + 2/9)x

Now, find the common denominator for (2/15) and (2/9), which is 45:

(2/15 + 2/9) = (6/45 + 10/45) = 16/45

So, the combined x term becomes:

(16/45)x

Now, combine the constant terms:

-3/4 - 1/6 = (-18/24 - 4/24) = -22/24

To simplify -22/24, we can divide both numerator and denominator by their greatest common divisor (which is 2):

-22 ÷ 2 = -11

24 ÷ 2 = 12

So, the combined constant term becomes:

(-11/12)

Putting it all together, the simplified expression is:

(16/45)x - (11/12)

To know more about expression:

https://brainly.com/question/33660485

#SPJ2

Complete question is:

Simplify the given expression: 2/5 ( 1/3 x− 15/8 )− 1/3 ( 1/2 − 2/3 x)

You are going to your first school dance! You bring $20,
and sodas cost $2. How many sodas can you buy?
Please write and solve an equation (for x sodas), and
explain how you set it up.

Answers

Answer:

10

Step-by-step explanation:

Let the no. of sodas be x

Price of each soda = $2

Therefore, no . of sodas you can buy = $2x

2x=20

=>x=[tex]\frac{20}{2}[/tex]

=>x=10

you can buy 10 sodas

Answer: 10 sodas

Step-by-step explanation:

2x = 20       Divide both sides by 2  

x = 10

If I brought 20 dollars and I  want to by only sodas and each sodas cost 2 dollars, then I will divide the total amount of money that I brought  by 2 to find out how many sodas I could by.

Figure out if the figure is volume or surface area.​

(and the cut out cm is 4cm)

Answers

Answer:

Surface area of the box = 168 cm²

Step-by-step explanation:

Amount of cardboard needed = Surface area of the box

Since the given box is in the shape of a triangular prism,

Surface area of the prism = 2(surface area of the triangular bases) + Area of the three rectangular lateral sides

Surface area of the triangular base = [tex]\frac{1}{2}(\text{Base})(\text{height})[/tex]

                                                           = [tex]\frac{1}{2}(6)(4)[/tex]

                                                           = 12 cm²

Surface area of the rectangular side with the dimensions of (6cm × 9cm),

= Length × width

= 6 × 9

= 54 cm²

Area of the rectangle with the dimensions (9cm × 5cm),

= 9 × 5

= 45 cm²

Area of the rectangle with the dimensions (9cm × 5cm),

= 9 × 5

= 45 cm²

Surface area of the prism = 2(12) + 54 + 45 + 45

                                           = 24 + 54 + 90

                                           = 168 cm²

find the 5th term in the sequence an=n÷n+1

Answers

Answer:

The 5th term of a sequence is defined as the term with n = 5.  So for this sequence, a sub 5 = 5/6

Please Solve
F/Z=T for Z

Answers

Answer:

F /T = Z

Step-by-step explanation:

F/Z=T

Multiply each side by Z

F/Z *Z=T*Z

F = ZT

Divide each side by T

F /T = ZT/T

F /T = Z

Answer:

[tex]\boxed{\red{ z = \frac{f}{t} }}[/tex]

Step-by-step explanation:

[tex] \frac{f}{z} = t \\ \frac{f}{z} = \frac{t}{1} \\ zt = f \\ \frac{zt}{t} = \frac{f}{t} \\ z = \frac{f}{t} [/tex]

A normal distribution has a mean of 30 and a variance of 5.Find N such that the probability that the mean of N observations exceeds 30.5 is 1%.​

Answers

Answer:

109

Step-by-step explanation:

Use a chart or calculator to find the z-score corresponding to a probability of 1%.

P(Z > z) = 0.01

P(Z < z) = 0.99

z = 2.33

Now find the sample standard deviation.

z = (x − μ) / s

2.33 = (30.5 − 30) / s

s = 0.215

Now find the sample size.

s = σ / √n

s² = σ² / n

0.215² = 5 / n

n = 109

Other Questions
what is the number of x #1 why is it BNo idea someone help plz In your discussion post explain what history is, and how you view history. Do you think history is an important topic to learn about? Why or why not? 50 POINTS! What is the product of complex conjugates? A. The product of complex conjugates is a difference of two squares and is always a real number. B. The product of complex conjugates is the same as the product of opposites. C. The product of complex conjugates is a sum of two squares and is always a real number. D. The product of complex conjugates may be written in standard form as a+bi where neither a nor b is zero. 2) The product (5+i)(5i) is a real number, 26. What are the factors (5+i) and (5i) called? A. imaginary numbers B. imaginary units C. complex conjugates D. complex numbers 3) What is the sum of the complex numbers 9i and 5i? A. 14+2i B. 142i C. 14+2i D. 142i 4) What is the product of the complex numbers 8i and 5i? A. 40i B. 40 C. 40i D. 40 Which of these questions can be answered using science? Is human travel beyond our solar system possible? Should the use of green energy be increased? What is the best vacation spot? Which is the best online store? A company's net sales are $787,030, its costs of goods sold are $439,160, and its net income is $106,280. Its gross margin ratio equals: From her purchased bags, Rory counted 110 red candies out of 550 total candies. Using a 90% confidence interval for the population proportion, what are the lower and upper limit of the interval? Answer choices are rounded to the thousandths place. Rocket Shoe Company is planning a one-month campaign for August to promote sales of one of its two shoe products. A total of $113,000 has been budgeted for advertising, contests, redeemable coupons, and other promotional activities. The following data have been assembled for their possible usefulness in deciding which of the products to select for the campaign. Cross-Trainer Shoe Running ShoeUnit selling price $41 $45 Unit production costs: Direct materials $(8) $(10) Direct labor (3) (3) Variable factory overhead (2) (3) Fixed factory overhead (3) (4) Total unit production costs $(16) $(20) Unit variable selling expenses (13) (12) Unit fixed selling expenses (8) (4) Total unit costs $(37) $(36) Operating income per unit $4 $9No increase in facilities would be necessary to produce and sell the increased output. It is anticipated that 24,000 additional units of cross-trainer shoes or 20,000 additional units of running shoes could be sold without changing the unit selling price of either product.Required:Prepare a differential analysis report presenting the additional revenue and additional costs anticipated from the promotion of cross-trainer shoes and running shoes. Which is the length of the hypotenuse of the right triangle? Round your answer to the nearest tenth of a centimeter. What is the prime factorization of 270? How many planes exist that pass through points A, B,and C?O123 D( Geese fly in V formation. The V forms a right angle that has 16 geese on 1 side and 12 geese on the other side. How many gesse would fill in the gap between the ends of each sides of the V formation? Solve for x: 2x+1= -3x+36 somebody has phoned them change it into passive The microwaves in a microwave oven are produced in a special tube called a magnetron. The electrons orbit the magnetic field at 2.4 GHz, and as they do so they emit 2.4 GHz electromagnetic waves. What is the strength of the magnetic field? Given: AB tangent at D, AD = OD = 4 Find: Area of the shaded region During the year, Octagon produced 8,000 units, used 24,000 direct labor hours, and incurred variable overhead of $120,000. Budgeted variable overhead for the year was $90,000. The hours allowed per unit are 2. The standard variable overhead rate is $3.00 per direct labor hour. The variable overhead spending variance is: Group of answer choices $48,000 U. $61,000 U. None of these $27,000 U. $54,000 F. l have never?married Explain how the great awakening marked a key transition from the lukewarm style of religion fostered by "established" (tax-supported) colonial churches to the strong commitment required by the "voluntary" (member-supported) churches that became the american norm. true or false and to what extent: the great awakening played a prominent role in promoting the american revolution? The bond has a 12% annual coupon rate, a $1,000 par value, it matures in 15 years and pays coupon quarterly. The current bond price is $900. What is the bonds annual yield? A. 14.28% B. None of the answers is correct C. 13.60% D. 12.85%