Answer:
verdadero
Explanation:
porque esoo [tex]\lim_{n \to \infty} a_n x_{123} \frac{x}{y} \sqrt[n]{x} x^{2} \sqrt{x} \pi \neq \lim_{n \to \infty} a_n \left[\begin{array}{ccc}1&2&3\\4&5&6\\7&8&9\end{array}\right] \int\limits^a_b {x} \, dx \left \{ {{y=2} \atop {x=2}} \right.[/tex]
A mixture of 3 moles of N2, 5 moles of CO2, and 10moles of Cl2 exert a total pressure of 1120 mmHg. What is the partial pressure of CO2?
Answer:
A mixture of 3 moles of N2, 5 moles of CO2, and 10moles of Cl2 exert a total pressure of 1120 mmHg. What is the partial pressure of CO2?
Explanation:
According to Dalton's law of partial pressures:
The partial pressure of a gas can be determined by using the formula:
[tex]the partial pressure of a gas = mole fraction of the gas * total pressure[/tex]
Partial pressure of CO2:
[tex]partial pressure of CO2= total pressure * mole fraction of CO2\\\\Mole fraction of CO2=\frac{number of moles of CO2}{total number of moles of all the gases} \\mole fraction of CO2=\frac{5mol}{3mol+5mol+10mol} = 5/18\\Partial pressure of CO2=\frac{5}{18} * 1120mmHg\\ =311.1mmHg[/tex]
Hence, the partial pressure of CO2 is 311.1mmHg.
Question:
What is the molar concentration of 1.29 mol of KCL dissolved in 350 mL of solution?
Answer:
M = 3.69 M.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the molar concentration of the 1.29 moles of KCl in 350 mL of solution by recalling the mathematical definition of molarity as the division of the moles by the volume in liters, in this case 0.350 L; thus, we proceed as follows:
[tex]M=\frac{1.29mol}{0.350L}\\\\M=3.69M[/tex]
Which gives molar units, M, or just mol/L.
Regards!
A 10 M concentrated stock solution of NaCl was used to prepare 5 liters of diluted 1 M solution. Which of the following statements is true about the process used to achieve this required dilution?
The volume of stock solution used was less than 0.4 liters.
The volume of stock solution used was more than 5 liters.
The volume of the solvent used was less than 0.4 liters.
The volume of the solvent used was less than 5 liters.
Answer: D.) The volume of stock solution used was more than 5 liters
Explanation:
Answer:
b
Explanation:
i got it
Draw the curved arrows showing a proton transfer reaction, and draw the products of that proton transfer. Do not include the Li counterion, and lone pairs are not required in the products.
Answer:
Draw the curved arrows showing a proton transfer reaction, and draw the products of that proton transfer. Do not include the Li counterion, and lone pairs are not required in the products and the question is hsown below:
Explanation:
The proton from water is abstracted by butyl carbanion and hydroxide ion is formed from water.
The reaction is shown below in the attachment.
Chrysanthenone is an unsaturated ketone. If Chrysanthenone has M+ = 150 and contains 2 double bond(s) and 2 ring(s); what is its molecular formula? Enter the formula in the form CH first, then all other atoms in alphabetical order; do not use subscripts. The formula is case-sensitive.
Answer:
the Molecular formula will be; C10H14O
Explanation:
Given the data in the question;
Chrysanthenone is an unsaturated ketone,
it has M+ = 150 and contains 2 double bond(s) and 2 ring(s).
molecular formula = ?
we know that ketone contain 1 oxygen and mass of oxygen is 16
so mass of the C and H remaining will be;
⇒ 150 - 16 = 134
Now we determine the number of C atoms;
⇒ 134 / 13 = 10
hydrocarbon with 10 hydrogen atom have CnH2n+2 means
⇒ ( 10 × 2 ) +2 = 22 hydrogens
But then we have 3 unsaturation meaning 6 hydrogens less and also we have ring meaning 2 more hydrogens
⇒ 22 - 6 - 2 = 14
Hence the Molecular formula will be; C10H14O
What are the characteristics of ionic compounds?
Answer:
the characteristics of ionic compounds are :
1.They form crystals.
2.They are hard and brittle.
Answer:
they form crystals.
they have high melting and boiling points.
they are hard and brittle.
they are good insulators.
when dissolve in water...they dissociate Into ions.
How does activation energy affect a chemical reaction?
Answer:
It determines how difficult it is to start the reaction.
Explanation:
cuáles son las características de la luz y en qué consisten
Answer:
Cuáles son las características de la luz y en qué consisten?
Explanation:
La luz es una radiación que se propaga en forma de ondas. Las ondas que se pueden propagar en el vacío se llaman ONDAS ELECTROMAGNÉTICAS. La luz es una radiación electromagnética
in
What are common features in
relation to electron arrangement
across a period and down a group
Igor s elements on the periodic
table.
Answer:
The order of sub-energy levels ( s » p » d » f )
The number of orbitals ( s » 2 ), ( p » 6), ( d» 10), ( f » 14 )
Determine whether the compounds below could be used to prepare an buffer solution. Items (6 items) (Drag and drop into the appropriate area below) acetic acid Ka-1.8x10-5 ammonia Kb= 1.8x10 carbonic acid Ka-4.3x107 chlorous acid: calcium Ka-1.1x10-2 sulfuric acid hydroxide Categories CANNOT be used Drag and drop here Drag and drop here
Answer:
Acetic acid, carbonic acid and chlorous acid with calcium hydroxide
Ammonia with sulfuric acid
Explanation:
A buffer is an aqueous mixture of a weak acid and its conjugate base or vice versa.
Weak acids reacts with strong bases to produce the conjugate base. In the right amount, you can produce a buffer. In the same way, you can produce a buffer from the mixture of weak bases with strong acids.
In the problem, you have weak acids (acetic acid, carbonic acid, chlorous acid), one weak base (ammonia), one strong base (calcium hydroxide) and one strong acid (Sulfuric acid).
Thus, the mixtures that can produce a buffer are:
Acetic acid, carbonic acid and chlorous acid with calcium hydroxide
And:
Ammonia with sulfuric acid
Compounds X and Y both have the formula C7H14. Both X and Y react with one molar equivalent of hydrogen in the presence of a palladium catalyst to form 2-methylhexane. The heat of hydrogenation of X is greater than that of Y. Both X and Y react with HCl to give the same single C7H15Cl compound as the major product. What is the structure of X?
Answer:
See explanation and image attached
Explanation:
Alkenes undergo hydrogenation to give the corresponding alkanes. Where the structure of the original alkene is unknown, we can deduce the structure of the alkene from the structure of the products obtained when it undergoes various chemical reactions.
Now, the fact that we obtained 2-methylhexane upon hydrogenation and the two compounds had different heats of hydrogenation means that the two compounds were geometric isomers. The original compounds must have been cis-2-methyl-3-hexene and trans-2-methyl-3-hexene.
When reacted with HCl, the same compound C7H15Cl is formed because the stereo chemistry is removed.
However, we know that the trans isomer is more stable than the cis isomer hence the cis isomer always has a higher heat of hydrogenation than the trans isomer. Thus X is cis-2-methyl-3-hexene.
Write an equation for the proton transfer reaction that occurs when the following acid reacts with water. Draw curved arrows that show a mechanism for the proton transfer, and modify the given structures to draw the resulting products.
Answer: hello your question has some missing data attached below is the complete question.
answer:
attached below
Explanation:
Attached below is the mechanism for proton transfer
a) HBr
H₃O + Br⁻
b) attached below
c) attached below
i need help, do you mind helping me?
classify the following compounds as chiral, achiral (but not meso), or meso. 1st structure: _________ 2nd structure: _________ 3rd structure: _________
Answer:
1st structure - Meso
2nd structure - Chiral
3rd structure - achiral
Explanation:
In the 1st structure there is nitrogen atom bonded with 4 different groups. It is Meso compound. In the second structure a carbon atom is attached with hydroxide molecule OH and has four different environment. It is Chiral compound. In the third structure no atom have different atom or group surrounding it. Therefore it is Achiral compound.
How many atoms of nitrogen are in Fe2(NO4)2?
the number of nitrogen atoms in the compound is two
What is the concentration of a solution that is made by diluting 50.0 mL of a 0.40 M NaCl solution to a final volume of 1000.0 mL?
Answer:
The correct answer is 0.020 M.
Explanation:
To solve this problem, we can use the equation M1V1 = M2V2, where M represents the molarity of the solution and V represents the volume of solution. Since we are given that the original solution is 50 mL and 0.40 M, these values are V1 and M1, respectively. The solution after dilution has a volume of 1000 mL, so this value is V2. We are solving for the molarity after dilution, which represents M2.
If we plug in the values specified above, we get the following:
M1V1 = M2V2
(0.40 M)(50.0 mL) = (M2)(1000.0 mL)
Solving for M2, we get:
M2 = 0.020 M
Notice that our answer has 2 significant figures because 0.40 has 2 significant figures, the least of any values given in the problem.
Therefore, the answer is 0.020 M.
Hope this helps!
Part C
Read about an improved version of an atmospheric water generator e, and write a
one-paragraph description of this technology.
Answer:
Atmospheric water generator is used in regions that have scarcity of water or have polluted water. These generators are reliable sources of clean and safe water and hence reduces dependency on bottled water.
Atmospheric water generator extract water from the air (humid air) through condensation. Extracted water then cools down to temperature below its dew point thereby producing potable drinking water.
Explanation:
Atmospheric water generator is used in regions that have scarcity of water or have polluted water. These generators are reliable sources of clean and safe water and hence reduces dependency on bottled water.
Atmospheric water generator extract water from the air (humid air) through condensation. Extracted water then cools down to temperature below its dew point thereby producing potable drinking water.
Answer:
A device that collects water from humid ambient air is known as an atmospheric water generator. Condensation is the process of extracting water vapor from the air by chilling it below its dew point, exposing it to desiccants, or pressurizing it. An AWG, unlike a dehumidifier, is meant to make the water drinkable. Because there is nearly always a little amount of water in the air that may be collected, AWGs are useful in situations where clean drinking water is difficult or impossible to get. Cooling and desiccants are the two most common ways used.
Explanation:
ii Chlorine trifluoride is an extremely reactive substance and, for
instance, reacts explosively with water. The products of the reaction
are hydrofluoric acid, hydrochloric acid and oxygen gas. Write
an equation, including state symbols, for the reaction of chlorine
trifluoride with water.
Answer:
ClF₃(g) + 2 H₂O(l) ⇒ 3 HF(aq) + HCl(aq) + O₂(g)
Explanation:
Let's consider the unbalanced equation for the reaction between chlorine trifluoride and water to form hydrofluoric acid, hydrochloric acid and oxygen gas.
ClF₃(g) + H₂O(l) ⇒ HF(aq) + HCl(aq) + O₂(g)
We will balance it using the trial and error method.
First, we will balance F atoms by multiplying HF by 3.
ClF₃(g) + H₂O(l) ⇒ 3 HF(aq) + HCl(aq) + O₂(g)
Then, we will balance H atoms by multiplying H₂O by 2.
ClF₃(g) + 2 H₂O(l) ⇒ 3 HF(aq) + HCl(aq) + O₂(g)
This equation is balanced.
cấu hình electron của nguyên tử Ca
Explanation:
Do đó cấu hình electron của canxi là: 1s2 2s2 2p6 3s2 3p6 4s2.
a. Giải thích vì sao tính bazơ tăng từ LiOH đến CsOH?
Identify whether longhand notation or noble-gas notation was used in each case below.
Iron (Fe): [Ar]4s23d6
Answer: The given electronic configuration is long hand notation.
Explanation:
Long-hand notation of representing electronic configuration is defined as the arrangement of total number of electrons that are present in an element.
Noble-gas notation of representing electronic configuration is defined as the arrangement of valence electrons in the element. The core electrons are represented as the previous noble gas of the element that is considered.
The given electronic configuration of potassium (K):
The above configuration has all the electrons that are contained in the nucleus of an element. Thus, this configuration is a long-hand notation.
1. You find a separatory funnel set up in a fume hood. There are clearly two visible layers. Describe a method you could use to determine which layer is the aqueous layer.
Answer:
You find a separatory funnel set up in a fume hood. There are clearly two visible layers. Describe a method you could use to determine which layer is the aqueous layer.
Explanation:
In the separating funnel, the liquid with less density exists at the top layer and the liquid with greater density will exist at the bottom layer.
To identify the aqueous layer, add a bit of water to the separating funnel.
Then, observe where the water will go and mix.
If it mixes with the bottom layer, then the bottom layer is the aqueous layer.
If water mixes with the top layer, then top layer is the aqueous layer.
A method we could use to determine which layer is the aqueous layer is by adding 2-4 drops of water in the separatory funnel.
Explanation:
A separatory funnel is a glass apparatus used in labs to separate two immiscible liquids from each other.The two liquids will be present distinctly in form of two different layers one on the other.The liquid at the bottom is with higher density in comparison to the liquid layer at the top which is with lower density.It is mainly used to separate the layer of organic compounds from the aqueous layer.One way to determine the aqueous layer in the separatory funnel is to add 2-4 drops of water to the separatory funnel and observe in which layer the water drops get invisible that is mixed up.The layer in which water drop mixes will experience a small increase in its volume and that will be the aqueous layer.Water drops will not mix with the organic layer can be easily observed with eyes.So, from this, we can conclude that a method we could use to determine which layer is the aqueous layer is by adding 2-4 drops of water in the separatory funnel.
Learn more about separatory funnel here;
brainly.com/question/5536204?referrer=searchResults
brainly.com/question/5999552?referrer=searchResults
Which scientist developed the first model of the atom that showed the structure of the inside of an atom
Answer:
Which scientist developed the first model of the atom that showed the structure of the inside of an atom
Ernest Rutherford
You have 4 litres of a 3.0 mol/L solution of NaCl in a
chemical store room.
How many moles of NaCl are present? *
0.75 mol
1.33 mol
12 mol
M = 3.0 mol/L
V = 4 L
Required:n
Solution:M = n / V
n = MV
n = (3.0 mol/L)(4 L)
n = 12 mol
Therefore, the number of moles of NaCl present is 12 mol.
#ILoveChemistry
#ILoveYouShaina
Answer 12 mol
Explanation: [tex]C_{M} = \frac{n}{V} ==> n = C_{M} *V=4*3=12 mol[/tex]
calculate the mass in 4.05*10^22 molecules of calcium phosphate
Answer:
m = 20.9 g.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to solve this problem by recalling both the Avogadro's number for the calculation of the moles in the given molecules of calcium phosphate and the molar mass of this compound in order to secondly calculate the mass as shown on the following setup:
[tex]m=4.05x10^{22}molecules*\frac{1mol}{6.022x10^{23}}*\frac{310.18g}{1mol}\\\\m=20.9g[/tex]
Regards!
what is electron configuration of oxygen in its excited state
Answer:
[tex]1 {s}^{2} 2 {s}^{2} 2 {p}^{4} [/tex]
OR
[tex]2 : 6[/tex]
Answer:
If we look at the ground state (electrons in the energetically lowest available orbital) of oxygen, the electron configuration is [tex]1s^{2} 2s^{2} 2p^{4}[/tex] . If the element were to become excited, the electron could occupy an infinite number of orbitals. However, in most texts, the example will be the next available one. So for oxygen, it might look like this: [tex]1s^{2} 2s^{2} 2p^{3}3s^{1}[/tex] - where the valence electron now occupies the 3s orbital in an excited (i.e. not ground) state.
So, the electron configuration of oxygen in its excited state is [tex]1s^{2} 2s^{2} 2p^{3}3s^{1}[/tex].
1. Rank the following solutions from least polar to most polar. Rank on a scale of 1-4: 1 being the least polar and 4 being the most polar. _______ 50% ISOPROPANOL / H2O _______ 25% ISOPROPANOL / H2O _______ PURE WATER _______ ISOPROPANOL / H2O
Answer:
50% ISOPROPANOL / H2O - 1
25% ISOPROPANOL / H2O - 2
Pure water - 4
ISOPROPANOL / H2O - 3
Explanation:
More Isopropanol concentration is least polar. When the isopropanol is mixed with water its polarity increases. Pure water is most polar. The polarity of a substance is dependent on its ability to bent and mold in the shape as required.
Calculate the number of moles of gas in a basketball inflated to a total pressure of 1.65 atm with a volume of 3.2 L at 250C. ( K = oC + 273)
Answer:
0.123 mol
Explanation:
Step 1: Convert 250 °C to Kelvin
We will use the following expression.
K = °C + 273
K = 250 + 273 = 523 K
Step 2: Calculate the number of moles of gas (n)
A gas occupies a container with volume (V) 3.2 L at a temperature (T) of 523 K and pressure (P) of 1.65 atm. We can calculate the number of moles of the gas using the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.65 atm × 3.2 L / (0.0821 atm.L/mol.K) × 523 K = 0.123 mol
what is thermodynamics ???
don't explain .-. !!!
Answer:
the scientific study of the relations between heat and other forms of energy
Write the empirical formula for at least four ionic compounds that could be formed from the following ions:
a). PO3−4
b). NH+4
c). Fe3+
d). ClO−3
Answer:
a. Na₃PO₄
b. NH₄Cl
c. FeCl₃
d. KClO₃
Explanation:
a. Sodium tetraoxophosphate(V) Na₃PO₄
3Na⁺ + PO₄³⁻ → Na₃PO₄
b. Ammonium Chloride NH₄Cl
NH₄⁺ + Cl⁻ → NH₄Cl
c. Iron(III)chloride
Fe³⁺ + Cl⁻ → FeCl₃
d. Potassium trioxochlorate(V) KClO₃
K⁺ + ClO₃⁻ → KClO₃