Find an equation of the line through the given pair of points. (-7,-5) and (-1,-9) The equation of the line is (Simplify your answer. Type an equation using x and y as the variables. Use integers or fractions for any numbers in the equation.) please help
Answer:
The equation of the line is y = -2/3x - 29/3
Step-by-step explanation:
The slope of these points (-7,-5) and (-1,-9) is m = -2/3
Once you plug that into the y = mx + b equation, you can see that the y-intercept is -29/3.
Put all of that into the y = mx + b equation and you'll get --> y = -2/3x - 29/3
What are the new vertices of quadrilateral KLMN if the quadrilateral is translated two units to the right and four units upward?
A)
K′ = (–2,0), L′ = (1,0), M′ = (1,–3), N′ = (–2,–3)
B)
K′ = (–2,2), L′ = (1,2), M′ = (1,–1), N′ = (–2,–1)
C)
K′ = (–0,0), L′ = (3,0), M′ = (3,–1), N′ = (0,–1)
D)
K′ = (–2,–2), L′ = (1,–2), M′ = (1,–5), N′ = (–2,–5)
9514 1404 393
Answer:
B) K′ = (–2,2), L′ = (1,2), M′ = (1,–1), N′ = (–2,–1)
Step-by-step explanation:
Translation 2 units right adds 2 to the x-coordinate.
Translation 4 units upward adds 4 to the y-coordinate.
The translation can be represented by the relation ...
(x, y) ⇒ (x +2, y +4)
__
You can choose the correct answer by looking at the translation of K.
K(-4, -2) ⇒ K'(-4+2, -2+4) = K'(-2, 2) . . . . . matches choice B
(2i+1)/(1+i) is equal to
Answer:
Step-by-step explanation:
(1 + 2i) / (1 + i) Rationalize the denominator.
(1 + 2i)(1+i) / (1 + i)(1-i) Remove the brarckets
(1 + i + 2i - 2) / (1 - i + i - i^2) Combine
-1 + 3i / (2) i^2 = - 1 in the denominator
add 10 and g, then subtract f from the result
Answer:
(10+g) -f
Step-by-step explanation:
Add 10 and g
10 +g
Subtract f from the result
(10+g) -f
The sum of two numbers is 21. Five times the first number added to 2 times the second number is 66. Find the two numbers.
5 2/10 x -10 1/3
WILL GIVE BRAINLIEST!!!
Answer:
[tex]106 \frac{3}{5}[/tex]
Explanation:
Convert any mixed numbers to fractions.
Reduce fractions where possible.
Then your initial equation becomes:
[tex]\frac{26}{5} \times \frac{-31}{3}[/tex]
Next, apply the fractions formula for multiplication. Formula below:
[tex]\dfrac{a}{b} \times \dfrac{c}{d} = \dfrac{a \times c}{b \times d}[/tex]
[tex]= \frac{26 \times -41}{5 \times 2}= \frac{-1066}{10}[/tex]
Simplifying -1066/10, (you can do this by using division) the answer is:
[tex]106 \frac{3}{5}[/tex]
Answer:
-3 1/3
Step-by-step explanation:
5 2/10 x -10 1/3
10/10 x -10/3
1 x-10/3
-10/3
-3 1/3
your question is unclear. I think I understand it correctly
If y varies inversely with the square of x, and y = 26 when x = 4, find y when x = 2.
A. 13
B. 52
C. 208
D. 104
Answer:
D. 104
Step-by-step explanation:
[tex]y \: \alpha \: \frac{1}{ {x}^{2} } \\ \\ y = \frac{k}{ {x}^{2} } [/tex]
when y is 26, x is 4:
[tex]26 = \frac{k}{ {(4)}^{2} } \\ k = 416[/tex]
when x is 2:
[tex]y = \frac{416}{ {x}^{2} } \\ \\ y = \frac{416}{ {(2)}^{2} } \\ y = 104[/tex]
Answer:
D; 104
This is the correct answer
Suppose an average student can answer 6 homework questions in 30 minutes. If X follows an exponential distribution and measures the length of time between starting two homework questions. What is the value of μ?
Answer:
10
Step-by-step explanation:
Make a ratio like
6 : 30
2 : x
Then cross multiple
6x = 60
Make x subject formula
x = 10
I hope it helped
what is the least common factor for 9 8 7
Answer:504
This is the answer
504
Given f (x) = 3x - 5 find f (x - 2)
Answer:
3x-11
Step-by-step explanation:
f (x) = 3x - 5
f(x-2)
Replace x in the function with x-2
f (x-2) = 3(x-2) - 5
=3x-6 -5
=3x-11
The diagram shows APQR. Which term describes point S?
Answer:
c) centroid
Step-by-step explanation:
what is the value of g
Answer:
the value of g is gram .
may this answer is helpful for you
A pole that is 3 m tall casts a shadow that is 1.23 m long. At the same time, a nearby building casts a shadow that is 42.75 m long. How tall is the building? round your answer to the nearest meter.
Answer:
Hello,
Just using the theorem of Thalès,
Step-by-step explanation:
Let say h the hight of the building
[tex]\dfrac{h}{3} =\dfrac{42.75}{1.23}\\\\h=104.268296...\approx{104(m)}[/tex]
For a given function ƒ(x) = x2 – x + 1, the operation –ƒ(x) = –(x2 – x + 1) will result in a
A) reflection across the x-axis.
B) horizontal shrink.
C) reflection across the y-axis.
D) vertical shrink.
Given:
The function is:
[tex]f(x)=x^2-x+1[/tex]
To find:
The result of the operation [tex]-f(x)=-(x^2-x+1)[/tex].
Solution:
If [tex]g(x)=-f(x)[/tex], then the graph of f(x) is reflected across the x-axis to get the graph of g(x).
We have,
[tex]f(x)=x^2-x+1[/tex]
The given operation is:
[tex]-f(x)=-(x^2-x+1)[/tex]
So, it will result in a reflection across the x-axis.
Therefore, the correct option is A.
Answer:
A) reflection across the x-axis.
Step-by-step explanation: I took the test
Twice a certain number is subtracted from 9 times the number. The result is 21. Find the number.
Answer:
3
Step-by-step explanation:
Let x represent the number.
Create an equation to represent the situation, and solve for x:
9x - 2x = 21
7x = 21
x = 3
So, the number is 3.
Thank you guys fir the help
Can someone please help me with this
9514 1404 393
Answer:
21. D
22. C
Step-by-step explanation:
21. The expansion of the given expression is ...
[tex]\displaystyle -\frac{1}{2}\left(-\frac{3}{2}x+6x+1\right)-3x=\frac{3}{4}x-3x-\frac{1}{2}-3x\\\\=\left(\frac{3}{4}-3-3\right)x-\frac{1}{2}=\boxed{-5\frac{1}{4}x-\frac{1}{2}}[/tex]
__
22. The least likely team to make the championship game is the one with the lowest probability.
3/8 < 1/2 < 2/3 < 4/5
The Bulldogs are least likely to play in the championship game.
the cost of using 19 hcf of water is $36.48 and the cost of using 32 hcf is 56.63 what is the cost of using 28 hcf of water?
Answer:
$54.32
Step-by-step explanation:
19=$36.48/19 =1.94
1=$1.94 * 28= 54.32
28=54.32
Please I need the answer ASAP!!!!
Step-by-step explanation:
D
*not sure about this answer pls tell me i ak right or wrong
14. The data below show the average ages and number of volunteer hours for five randomly chosen persons. Given the equation of the regression line is y' = 9.309x - 167.012, predict the number of hours a person will volunteer if her age is 27.5 years. Age, x Volunteer Hours, y 24.9 66.5 25.6 70.0 26.1 74.8 27.3 89.6 27.0 82.6
The Predicted time a person will serve is "88.9855 months". A complete solution is provided below.
Given equation is,
→ [tex]\hat{y}=9.309x - 167.012[/tex]
Her age,
→ x = 27.5 years
By substituting the value of "x" in the given equation, we get the predicted time,
hence,
→ [tex]\hat{y}=9.309\times 27.5 - 167.012[/tex]
[tex]= 255.9975- 167.012[/tex]
[tex]=88.9855 \ months[/tex]
Thus the above is the right answer
Learn more:
https://brainly.com/question/1783478
Find x. Round your answer to the nearest tenth of a degree.
Answer: x=52.6°
Step-by-step explanation:
To find the value of x, we have to use our SOHCAHTOA. We can eliminate sine and cosine because both uses hypotenuse, which is not labelled. Therefore, we use tangent.
[tex]tan(x)=\frac{17}{13}[/tex]
To find x, we want to use inverse tangent.
[tex]x=tan^{-1}(\frac{17}{13} )[/tex] [plug into calculator]
[tex]x=52.6[/tex]
Now, we know that x=52.6°.
I need help with these questions
9514 1404 393
Answer:
17. 25 mile per gallon
18. Eduardo did should have divided by -4.
Step-by-step explanation:
17. The least mileage will be had when the most gas is used to go a given distance. For the given distance, the most gas that could have been used (without adding any) is 18 gallons. Then the least mileage is ...
(450 mi)/(18 gal) = 25 mi/gal
__
18. The appropriate method for solving this inequality is ...
-4x/(-4) < 120/(-4) . . . . divide both sides by -4 (and reverse the > symbol)
x < -30
The step Eduardo took of adding 4 will give ...
-4x +4 > 124 . . . . . puts him one step farther away from a solution
Eduardo chose an operation to perform that did not get him closer to a solution.
Need the value of P please
Answer:
B. 35°
Step-by-step explanation:
First, find the two interior angles that are adjacent to angles 90° and 125° respectively.
Thus:
Interior angle 1: 180° - 90° = 90° (linear pair)
Interior angle 2: 180° - 125° = 55° (linear pair)
P + 90° + 55° = 180° (sum of interior angles in a triangle)
P + 145° = 180°
Subtract 145° from each side
P = 180° - 145°
P = 35°
If you were asked to measure the success of a campaign to fight for human rights, what criteria would you use?
Step-by-step explanation:
Many factors would be used to assess the effectiveness of a human rights campaign, including the following:
Social Influence. Direct Interpersonal Reach. Participant Observation. Reputation. Volume of Search & Interest. Website Traffic.
National Research.
In ∆ ABC,AD is the altitude from A to BC .Angle B is 48°,angle C is 52° and BC is 12,8 cm. Determine the length of AD
9514 1404 393
Answer:
7,6 cm
Step-by-step explanation:
The law of sines can be used to find the length AB.
AB/sin(C) = BC/sin(A)
A = 180° -48° -52° = 80°
AB = BC·sin(C)/sin(A) = 12,8·sin(52°)/sin(80°)
The sine function can be used to find AD from AB.
AD/AB = sin(48°)
AD = AB·sin(48°) = 12,8·sin(48°)sin(52°)/sin(80°)
AD ≈ 7,61 cm
__
The dimension of interest is ha in the attachment, the height from vertex A.
A card is drawn from a well shuffled deck of 52 cards what is the probability of drawing an ace or a six
Answer:
8/52
Step-by-step explanation:
The first thing to do is write it out;
How many aces are in a deck and how many sixes?
There are 4 of each so, 4+4 = 8 therefore our beginning ratio will be;
8/52 cards are going to be an ace or a six.
what is 4 and 5???????
Answer:
586 cm^3 and 486 in^2
Step-by-step explanation:
4) The volume of the triangular prims is (1/2)*(a*c*h) = 0.5*(8*9*16)=586 cm^3
5) Wrapping paper needed is equal to the surface area of the cube, 6s^2=486 in^2
A physical trainer decides to collect data to see if people are actually weight changing weight during the shelter in place. He believes there will not be a meaningful change in weight due to the shelter in place order. He randomly chooses a sample of 30 of his clients. From each client, he records their weight before the shelter in place order, and again 10 days after the order. A summary of the data is below.
The trainer claims, "on average, there is no difference in my clients' weights before and after the shelter in place order." Select the pair of hypotheses that are appropriate for testing this claim.
H0: µd = 0
H1: µd < 0 (claim)
H0: µd = 0 (claim)
H1: µd ≠ 0
H0: µd ≠ 0 (claim)
H1: µd = 0
H0: µd = 0 (claim)
H1: µd > 0
H0: µd = 0
H1: µd > 0 (claim)
H0: µd = 0
H1: µd ≠ 0 (claim)
H0: µd = 0 (claim)
H1: µd < 0
H0: µd ≠ 0
H1: µd = 0 (claim)
b) Select the choice that best describes the nature and direction of a hypothesis test for this claim.
This is a right-tail t-test for µd.
This is a right-tail z-test for µd.
This is a two-tail t-test for µd.
This is a two-tail z-test for µd.
This is a left-tail t-test for µd.
This is a left-tail z-test for µd.
c) Find the standardized test statistic for this hypothesis test. Round your answer to 2 decimal places.
d) Find the P-value for this hypothesis test. Round your answer to 4 decimal places.
e) Using your previous calculations, select the correct decision for this hypothesis test.
Fail to reject the alternative hypothesis.
Reject the alternative hypothesis.
Fail to reject the claim.
Reject the claim.
Fail to reject the null hypothesis.
Reject the null hypothesis.
f) Consider the following statements related to the trainer's claim. Interpret your decision in the context of the problem (ignoring the claim) and interpret them in the context of the claim.
Answer:
H0: µd = 0 (claim)
H1: µd ≠ 0
This is a two-tail t-test for µd
Step-by-step explanation:
This is a paired (dependent) sample test, with its hypothesis is written as :
H0: µd = 0
H1: µd ≠ 0
From the equality sign used in the hypothesis declaration, a not equal to ≠ sign in the alternative hypothesis is used for a two tailed t test
The data isn't attached, however bce the test statistic cannot be obtained. However, the test statistic formular for a paired sample is given as :
T = dbar / (Sd/√n)
dbar = mean of the difference ; Sd = standard deviation of the difference.
3/4 of the households in a rural area have pets. how many households have pets in this area if there are 1500 total households
Answer:
1,125 households would have pets in the area.
Step-by-step explanation:
We have 1,500 total households. We also know that 3/4 (or 0.75) of these households have pets. We would multiply 1,500 by 0.75 (which is equal to 3/4), resulting in 1,125. Therefore, 1,125 households would have pets in the area.
Answer:
1125 households
Step-by-step explanation:
3/4 of total households in area = # of households that have pets in the area
3/4 of 1500 = # of households that have pets in the area
3/4 · 1500 = # of households that have pets in the area
75/100 · 1500 = # of households that have pets in the area
0.75 · 1500 = 1125
1125 households
help with q25 please. Thanks.
First, I'll make f(x) = sin(px) + cos(px) because this expression shows up quite a lot, and such a substitution makes life a bit easier for us.
Let's apply the first derivative of this f(x) function.
[tex]f(x) = \sin(px)+\cos(px)\\\\f'(x) = \frac{d}{dx}[f(x)]\\\\f'(x) = \frac{d}{dx}[\sin(px)+\cos(px)]\\\\f'(x) = \frac{d}{dx}[\sin(px)]+\frac{d}{dx}[\cos(px)]\\\\f'(x) = p\cos(px)-p\sin(px)\\\\ f'(x) = p(\cos(px)-\sin(px))\\\\[/tex]
Now apply the derivative to that to get the second derivative
[tex]f''(x) = \frac{d}{dx}[f'(x)]\\\\f''(x) = \frac{d}{dx}[p(\cos(px)-\sin(px))]\\\\ f''(x) = p*\left(\frac{d}{dx}[\cos(px)]-\frac{d}{dx}[\sin(px)]\right)\\\\ f''(x) = p*\left(-p\sin(px)-p\cos(px)\right)\\\\ f''(x) = -p^2*\left(\sin(px)+\cos(px)\right)\\\\ f''(x) = -p^2*f(x)\\\\[/tex]
We can see that f '' (x) is just a scalar multiple of f(x). That multiple of course being -p^2.
Keep in mind that we haven't actually found dy/dx yet, or its second derivative counterpart either.
-----------------------------------
Let's compute dy/dx. We'll use f(x) as defined earlier.
[tex]y = \ln\left(\sin(px)+\cos(px)\right)\\\\y = \ln\left(f(x)\right)\\\\\frac{dy}{dx} = \frac{d}{dx}\left[y\right]\\\\\frac{dy}{dx} = \frac{d}{dx}\left[\ln\left(f(x)\right)\right]\\\\\frac{dy}{dx} = \frac{1}{f(x)}*\frac{d}{dx}\left[f(x)\right]\\\\\frac{dy}{dx} = \frac{f'(x)}{f(x)}\\\\[/tex]
Use the chain rule here.
There's no need to plug in the expressions f(x) or f ' (x) as you'll see in the last section below.
Now use the quotient rule to find the second derivative of y
[tex]\frac{d^2y}{dx^2} = \frac{d}{dx}\left[\frac{dy}{dx}\right]\\\\\frac{d^2y}{dx^2} = \frac{d}{dx}\left[\frac{f'(x)}{f(x)}\right]\\\\\frac{d^2y}{dx^2} = \frac{f''(x)*f(x)-f'(x)*f'(x)}{(f(x))^2}\\\\\frac{d^2y}{dx^2} = \frac{f''(x)*f(x)-(f'(x))^2}{(f(x))^2}\\\\[/tex]
If you need a refresher on the quotient rule, then
[tex]\frac{d}{dx}\left[\frac{P}{Q}\right] = \frac{P'*Q - P*Q'}{Q^2}\\\\[/tex]
where P and Q are functions of x.
-----------------------------------
This then means
[tex]\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + p^2\\\\\frac{f''(x)*f(x)-(f'(x))^2}{(f(x))^2} + \left(\frac{f'(x)}{f(x)}\right)^2 + p^2\\\\\frac{f''(x)*f(x)-(f'(x))^2}{(f(x))^2} +\frac{(f'(x))^2}{(f(x))^2} + p^2\\\\\frac{f''(x)*f(x)-(f'(x))^2+(f'(x))^2}{(f(x))^2} + p^2\\\\\frac{f''(x)*f(x)}{(f(x))^2} + p^2\\\\[/tex]
Note the cancellation of -(f ' (x))^2 with (f ' (x))^2
------------------------------------
Let's then replace f '' (x) with -p^2*f(x)
This allows us to form ( f(x) )^2 in the numerator to cancel out with the denominator.
[tex]\frac{f''(x)*f(x)}{(f(x))^2} + p^2\\\\\frac{-p^2*f(x)*f(x)}{(f(x))^2} + p^2\\\\\frac{-p^2*(f(x))^2}{(f(x))^2} + p^2\\\\-p^2 + p^2\\\\0\\\\[/tex]
So this concludes the proof that [tex]\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2 + p^2 = 0\\\\[/tex] when [tex]y = \ln\left(\sin(px)+\cos(px)\right)\\\\[/tex]
Side note: This is an example of showing that the given y function is a solution to the given second order linear differential equation.