Answer:all three of them achieve the sales target together in 120 days.
Step-by-step explanation:
Given: Adam and Paul an achieve the sales target of the company in 30 days, Paul and Charles In 40 days while Charles and Adam In 60 days.
Then, the number of days taken by all of them to achieve the sales target together = [tex]\dfrac1{30}+\dfrac{1}{40}+\dfrac{1}{60}[/tex]
[tex]=\dfrac{1}{120}[/tex] [LCM(30,40,60)=120]
Thus, all three of them achieve the sales target together in 120 days.
What is the remainder of 26 divided by 53.3
WILL GIVE BRAINLIEST
Answer:
0.48780487804
What is the equivalent recursive definition for an = 12+ (n - 1)3?
A. a1 = 3, An = An-1 + 12
B. a1 = 12, An = 30n-1
C. a1 = 12, Un = On-1 +3
D. a1 = n, an= 1201-1+3
Answer:
[tex]A_1 = 12[/tex]
[tex]A_n = A_{n-1} + 3[/tex]
Step-by-step explanation:
Given
[tex]A_n =12+(n-1)3[/tex]
Required
Write as recursive
We have:
[tex]A_n =12+(n-1)3[/tex]
Open bracket
[tex]A_n =12+3n-3[/tex]
[tex]A_n =12-3+3n[/tex]
[tex]A_n =9+3n[/tex]
Calculate few terms
[tex]A_1 =9+3*1 = 9 + 3 = 12[/tex]
[tex]A_2 =9+3*2 = 9 + 6 = 15[/tex]
[tex]A_3 =9+3*3 = 9 + 9 = 18[/tex]
The above shows that the rule is to add 3.
So, we have:
[tex]A_1 = 12[/tex]
[tex]A_n = A_{n-1} + 3[/tex]
I need help with this pls help and write the Correct answer
Alice has a total of 12 dimes and nickels.She h as 2 more nickels than dimes. Write an equation
Answer:
Step-by-step explanation: She has 2 more nickels then dimes not 2 times more therefore answers B and D are incorrect. C is incorrect because it has that there are 2 more dimes than nickels. A is correct because it says that there are c dimes, and then c +2 nickels.
A privately owned lake contains two types of game fish, bass and trout. The owner provides two types of food, A and B, for these fish. Bass require 2 units of food A and 4 units of food B,
and trout require 5 units of food A and 2 units of food B. If the owner has 400 units of each food, find the maximum number of fish the lake can support.
fish
Need Help?
Read
Watch it
Answer:
133 fishes
Step-by-step explanation:
Units of food A = 400 units
Units of food B = 400 units
Fish Bass required 2 units of A and 4 units of B.
Fish Trout requires 5 units of A and 2 units of B.
i. For food A,
total units of food A required = 2 + 5
= 7 units
number of bass and trout that would consume food A = 2 x [tex]\frac{400}{7}[/tex]
= 114.3
number of bass and trout that would consume food A = 114
ii. For food B,
total units of food B required = 4 + 2
= 6 units
number of bass and trout that would consume food B = 2 x [tex]\frac{400}{6}[/tex]
= 133.3
number of bass and trout that would consume food B = 133
Thus, the maximum number of fish that the lake can support is 133.
An item was marked down 64% from its original price, x. The amount discounted was $30. Which equation can be
used to find the original price?
0.64(x) = 30
0.64(30) = x
30 +0.64 = x
x + 0.064 = 30
Answer:
0.64(x) = 30
Step-by-step explanation:
Hope that's correct.
can someone answer this please
Answer:
x = 14
Step-by-step explanation:
Please note, the word trapezium is a synonym for the word trapezoid.
This problem gives one the area of the trapezoid, a well as one of the measurements of a base and the height of the figure. One is asked to find the length of the other base. This can be done by using the formula to find the area of a trapezoid. This formula is the following,
[tex]A=(h)(\frac{b_1+b_2}{2})[/tex]
Where (A) represents the area of a trapezoid, ([tex]b_1[/tex]) and ([tex]b_2[/tex]) represents the bases and (h) represents the height. Substitute in the given values and solve for the unknown base.
[tex]b_1=7\\h=6\\A=84[/tex]
[tex]A=(h)(\frac{b_1+b_2}{2})\\[/tex]
Substitute,
[tex]84=6(\frac{7+b_2}{2})\\[/tex]
Inverse operations,
[tex]84=6(\frac{7+b_2}{2})[/tex]
[tex]14=\frac{7+b_2}{2}[/tex]
[tex]28=7+b_2[/tex]
[tex]14=b_2[/tex]
I’ll give brainliest
Answer:
y = 1.19x
Step-by-step explanation:
y is the dependent variable (total cost)
x is the independent variable (number of pounds)
A stamp gets more expensive each year. It increases in value by 60 % each year. Wha
is the growth FACTOR?
9514 1404 393
Answer:
1.60
Step-by-step explanation:
The growth factor is 1 more than the growth rate:
1 + 60% = 1 + 0.60 = 1.60 = growth factor
please help. no links!
Answer:
I think B
Step-by-step explanation:
121.346° is more close to 121.3°, than 121.4°
if i'm wrong, the i'm sorry
3. The simple interest on $6,000 for 4 years is $1,680. *
Find the area of the sector in
terms of pi.
90°
24
Area = [?]
Enter
Step-by-step explanation:
area of a circle is r x r x pi
so one quarter of it us r x r x pi /4
Solve the solution as an ordered pair
X + 9 = y
X = 4y - 6
Answer:
-10, -1
Step-by-step explanation:
See Image below:)
What is the probability that a randomly selected day in the summer will be rainy if it’s cloudy?
Answer:
0.872
Step-by-step explanation:
Given that :
P(cloudy) = P(C) = 0.94
P(cloudy and rainy) = P(C n R) = 0.82
Probability that a given day will be rainy if it is cloudy ; this is a conditional probability problem:
Recall ; P(A|B) = P(AnB) / P(B)
P(R|C) = P(C n R) / P(C) = 0.82 / 0.94 = 0.872
Choose which two numbers the following will fall between: *
V156 PLEASE HELP ME FASTTTTT
[tex]\sf\purple{A.\:Between \:12\:and\:13.}[/tex] ✅
[tex]\large\mathfrak{{\pmb{\underline{\red{Step-by-step\:explanation}}{\orange{:}}}}}[/tex]
[tex] \sqrt{156} \\ = 12.4899 \\ = 12.49[/tex]
Therefore, [tex] \sqrt{156} [/tex] will fall in between 12 and 13.
[tex]\large\mathfrak{{\pmb{\underline{\orange{Happy\:learning }}{\orange{!}}}}}[/tex]
Three consecutive even integers are such that the square of the third is 76 more than the square of the second. Find the three integers.
Let n represent the interger l, the three consective intergers are represented by
[tex]n[/tex]
[tex]n + 2[/tex]
[tex]n + 4[/tex]
The second one represent
[tex](n + 2) {}^{2} + 76 =( n + 4) {}^{2} [/tex]
Simplify both sides
[tex]n {}^{2} + 4n + 4 + 76 = {n}^{2} + 8n + 16[/tex]
[tex] {n}^{2} + 4n + 4 = {n}^{2} + 8n - 60[/tex]
[tex]4n + 4 = 8n - 60[/tex]
[tex]4n + 64= 8n[/tex]
[tex]64= 4n[/tex]
[tex]n = 16[/tex]
The intergers are 16,18,20
Use Hooke's Law to determine the work done by the variable force in the spring problem. A force of 450 newtons stretches a spring 30 centimeters. How much work is done in stretching the spring from 30 centimeters to 60 centimeters?
Answer:
The work done is 202.50Nm
Step-by-step explanation:
Given
[tex]F =450N[/tex]
[tex]x_1 = 30cm[/tex]
[tex]x_2 = 60cm[/tex]
Required
The work done
First, we calculate the spring constant (k)
[tex]F = kx_1[/tex]
[tex]450N = k *30cm[/tex]
[tex]k = \frac{450N}{30cm}[/tex]
[tex]k =15N/cm[/tex]
So:
[tex]F = kx_1[/tex]
[tex]F(x) = 15x[/tex]
The work done using Hooke's law is:
[tex]W =\int\limits^a_b {F(x)} \, dx[/tex]
This gives:
[tex]W =\int\limits^{60}_{30} {15x} \, dx[/tex]
Rewrite as:
[tex]W =15\int\limits^{60}_{30} {x} \, dx[/tex]
Integrate
[tex]W =15 \frac{x^2}{2}|\limits^{60}_{30}[/tex]
This gives:
[tex]W =15 *\frac{60^2 - 30^2}{2}[/tex]
[tex]W =15 *\frac{2700}{2}[/tex]
[tex]W =15 *1350[/tex]
[tex]W =20250N-cm[/tex]
Convert to Nm
[tex]W =\frac{20250Nm}{100}[/tex]
[tex]W =202.50Nm[/tex]
If the length of EG is 22, find the length of a EQ
Answer:
A. 11
Step-by-step explanation:
EQ is half of EG
so 22/2 = 11
Suri and Carter want to start saving for the future. they each invest $4,000 into a certificate of deposit account. suri's investment earns 3% interest compounded annually. Carter's investment is 3% simple interest.
Two formulas:
Compound interest - A = P(1 + r/n)^nt
Simple interest = A = P(1 + rt)
A - final amount
P - initial principal balance
r - interest rate
n - number of times interest applied per time period
t - number of time periods elapsed
Suri --
A = 4,000(1+0.03/1)^5
A = $4,637.09
Carter --
A = 4,000(1+0.03*5)
A = $4,600
In 5 years, Suri makes $37.09 more than Carter
3p(2p - 9) - 2p(-9 + p)
Answer:
4p² - 9p
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
Brackets Parenthesis Exponents Multiplication Division Addition Subtraction Left to RightDistributive Property
Algebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
3p(2p - 9) - 2p(-9 + p)
Step 2: Simplify
[Distributive Property] Distribute 3p: 6p² - 27p - 2p(-9 + p)[Distributive Property] Distribute -2p: 6p² - 27p + 18p - 2p²[Subtraction] Combine like terms (p²): 4p² - 27p + 18p[Addition] Combine like terms (p): 4p² - 9pNO LINKS!!!
What is the volume of this solid?
220 cubic units.
Answer:
Solution given:
for small cylinder
r=1
and for large cylinder
R=5+1=6
height for both [h]=2
Now
Volume of solid=πR²h-πr²h=πh(R²-r²)
=3.14*2(6²-1²)=219.8 =220 units ³.
Small cylinder is r=1
Large cylinder is R= 5+1 =6
Height (h) =2
Volume of solid,
→ πR²h-πr²h
→ πh(R²-r²)
→ 3.14 × 2(6²-1²)
→ 219.8
→ 220 cubic units
Powers are repeated ___________________.
multiplications
mark me brainliesttt :))
the sumof 8pq and -17 pq is
Answer:
= -9pq
Step-by-step explanation:
=8pq + (-17pq)
=8pq-17pq
= -9pq
Use the following image to determine the measure of arc GH.
Answer:
Arc GH = 78°
Step-by-step explanation:
Inscribed angle = m<GIH = 39°
Measure of arc related to inscribed angle = arc GH = ?
Thus:
m<GIH = ½(arc GH) => Inscribed angles theorem
Substitute
39° = ½(arc GH)
Multiply both sides by 2
2*39° = arc GH
78° = arc GH
Arc GH = 78°
find the derivative
f (x ) = (x-5)^2 (3-x)^2
Given:
The function is
[tex]f(x)=(x-5)^2(3-x)^2[/tex]
To find:
The derivative of the given function.
Solution:
Chain rule of differentiation:
[tex][f(g(x))]'=f'(g(x))g'(x)[/tex]
Product rule of differentiation:
[tex][f(x)g(x)]'=f(x)g'(x)+g(x)f'(x)[/tex]
We have,
[tex]f(x)=(x-5)^2(3-x)^2[/tex]
Differentiate with respect to x.
[tex]f'(x)=(x-5)^2\dfrac{d}{dx}(3-x)^2+(3-x)^2\dfrac{d}{dx}(x-5)^2[/tex]
[tex]f'(x)=(x-5)^2[2(3-x)(0-1)]+(3-x)^2[2(x-5)(1-0)][/tex]
[tex]f'(x)=(x^2-10x+25)(-6+2x)+(9-6x+x^2)(2x-10)[/tex]
[tex]f'(x)=(x^2)(-6)+(-10x)(-6)+(25)(-6)+(x^2)(2x)-10x(2x)+25(2x)+(9)(2x)+(-6x)(2x)+x^2(2x)+9(-10)+(-6x)(-10)+x^2(-10)[/tex]
On further simplification, we get
[tex]f'(x)=-6x^2+60x-150+2x^3-20x^2+50x+18x-12x^2+2x^3-90+60x-10x^2[/tex]
[tex]f'(x)=(2x^3+2x^3)+(-6x^2-20x^2-12x^2-10x^2)+(60x+50x+18x+60x)+(-90-150)[/tex]
[tex]f'(x)=4x^3-48x^2+188x-240[/tex]
Therefore, the derivative of the given function is [tex]f'(x)=4x^3-48x^2+188x-240[/tex].
Katy runs a day care center . So far this year , the enrollment has consisted of 2 toddlers and 8 children of other ages . Considering this data, how many of the next 20 children to enroll should you expect to be toddlers?
Answer:
You should expect 4 of the next 20 children to enroll to be toddlers.
Step-by-step explanation:
This question is solved by proportions.
So far:
We have that of 2 + 8 = 10 children, 2 are toddlers, so the proportion of toddlers is 2/10 = 0.2.
How many of the next 20 children to enroll should you expect to be toddlers?
0.2 out of 20, so: 0.2*20 = 4
You should expect 4 of the next 20 children to enroll to be toddlers.
what is the mean mark of 847 ÷ 30?
Answer:
Step-by-step explanation:
Suppose a quadratic equation is given as follows:
(k – 1)x² + x + 1 = 0
Select all values of k for which the above equation has two real and unequal roots
0
.25
0.5
0.75
1
1.25
1.5
1.75
Answer:
k>1.25
Step-by-step explanation:
The given quadratic equation is :
(k – 1)x² + x + 1 = 0
We need to find all values of k for which the above equation has two real and unequal roots.
For a quadratic equation ax²+bx+c=0, for real and unequal roots,
b²-4ac>0
Here, a = (k-1), b = 1 and c = 1
Put all the values,
1²-4×(k-1)1>0
1-4k+4>0
5-4k>0
k>1.25
S, k can take values more than 1.25. Hence, it can take values 1.5, 1.75.
wich one is the answer
Without using mathematical table or calculator simplify 3 4/9 ÷(5 1/3 _ 2 3/4) + 5 9/10
Answer:
[tex]{ \tt{3 \frac{4}{9} \div (5 \frac{1}{3} - 2 \frac{3}{4}) + 5 \frac{9}{10} }} \\ \\ = { \tt{ \frac{31}{9} \div ( \frac{16}{3} - \frac{11}{4} ) + \frac{59}{10} }} \\ \\ = { \tt{ \frac{31}{9} \div ( \frac{31}{12} ) + \frac{59}{10} }} \\ \\ { \tt{ = \frac{4}{3} + \frac{59}{10} }} \\ \\ { \bf{ = \frac{217}{30} }} \\ \\ { \boxed{ \tt{answer : 7 \frac{7}{30} }}} \\ \\ { \underline{ \blue{ \tt{becker ⚜jnr}}}}[/tex]
Answer:
[tex]7 \frac{7}{30}[/tex]
Step-by-step explanation:
[tex]3 \frac{4}{9} \div ( 5\frac{1}{3} - 2 \frac{3}{4}) + 5 \frac{9}{10}\\\\\frac{31}{9} \div (\frac{16}{3} - \frac{11}{4} ) + \frac{59}{10} \\\\\\Solving \ using \ BODMAS\\\\First \ Solve \ expression \ inside \ Bracket \\\\\frac{31}{9} \div (\frac{(16 \times 4) - ( 11 \times 3)}{12}) + \frac{59}{10} \\\\\frac{31}{9} \div (\frac{64- 33)}{12}) + \frac{59}{10} \\\\\frac{31}{9} \div \frac{31}{12} + \frac{59}{10} \\\\\\ \\\\\\Next \ solve \ Dvision \\\\\frac{\frac{31}{9}}{\frac{31}{12}} + \frac{59}{10}\\\\[/tex]
[tex](\frac{31}{9}} \times {\frac{12}{31}) + \frac{59}{10}[/tex]
[tex]\frac{4}{3} + \frac{59}{10}\\\\ Now \ solve \ final \ expression \\\\\\\frac{(4 \times 10) + ( 59 \times 3)}{30}\\\\\frac{40 + 177}{30}\\\\\frac{217}{30}\\\\7 \frac{7}{30}[/tex]