A wooden ice box has a total area of 1.50 m2 amd walls with an average thickness of 2.0 cm. The box contains ice at 0.0 oC. The inside of the box is kept cold by melting ice. How much ice melts in one day if the ice box is kept in the shade of tree at 29 oC. (Assume the thermal conductivity of wood is 0.16 kJ/s m oC

Answers

Answer 1

Answer:

m = 9.1 x 10⁶ kg

Explanation:

First, we need to find the rate of heat transfer through the box to the ice. For this purpose, we use Fourier's Law of Heat Conduction:

Q = KA ΔT/L

where,

Q = Rate Of Heat Transfer = ?

K = Thermal Conductivity = 0.16 KW/m.°C = 160 W/m.°C

A = Area = 1.5 m²

ΔT = Difference in Temperature = 29°C - 0°C = 29°C

L = Thickness of wall = 2 cm = 0.002 m

Therefore,

Q = (160 W/m °C)(1.5 m²)(29°C)/(0.002 m)

Q = 3.48 x 10⁶ W

Now, we find the amount of heat transferred in one day to the ice:

q = Qt

where,

q = amount of heat = ?

t = time = (1 day)(24 h/1 day)(3600 s/1 h) = 86400 s

Therefore,

q = (3.48 x 10⁶ W)(8.64 x 10⁴ s)

q = 3 x 10¹¹ J

Now, for mass of ice melted in a day:

q = m H

m = q/H

where,

m = mass of ice melted in a day = ?

H = latent heat of fusion of ice = 3.3 x 10⁵ J/kg

Therefore,

m = (3 x 10¹¹ J)/(3.3 x 10⁵ J/kg)

m = 9.1 x 10⁶ kg


Related Questions

Consider a bus traveling to the west (negative x direction) that begins to slow down as it approaches a traffic light. Which statement concerning its acceleration in the x direction is correct

Answers

Complete question is;

Consider a bus traveling to the west (-x direction) begins to slow down as it approaches a traffic light. Which statement concerning its acceleration in the x direction is correct

a) The bus is decelerating and its acceleration is positive.

b) The bus is decelerating, and its acceleration is negative.

c) The acceleration is zero.

d) A statement cannot be made using the information given.

Answer:

Option A - bus is decelerating and acceleration is positive.

Explanation:

We are told that the bus is travelling in (negative x direction) and begins to slow down. Since the bus is slowing down, it means that the bus is undergoing a negative acceleration which is called deceleration.

Thus, the bus is decelerating.

Since it is moving in the negative x-axis, it means acceleration is now; -(-a) which gives +a.

Thus, bus is decelerating and acceleration is positive.

A golfer hits a 42 g ball, which comes down on a tree root and bounces straight up with an initial speed of 15.6 m/s. Determine the height the ball will rise after the bounce. Show all your work.

Answers

Answer:

12.2 m

Explanation:

Given:

v₀ = 15.6 m/s

v = 0 m/s

a = -10 m/s²

Find: Δy

v² = v₀² + 2aΔy

(0 m/s)² = (15.6 m/s)² + 2 (-10 m/s²) Δy

Δy = 12.2 m

[tex] \LARGE{ \boxed{ \rm{ \green{Answer:}}}}[/tex]

Given,

The initial speed is 15.6 m/s The mass of the ball is 42g = 0.042kg

Finding the initial kinetic energy,

[tex]\large{ \boxed{ \rm{K.E. = \frac{1}{2}m {v}^{2}}}}[/tex]

⇛ KE = (1/2)mv²

⇛ KE = (1/2)(0.042)(15.6)²

⇛ KE = 5.11 J

|| ⚡By conservation of energy, the potential energy at the highest point will also be 5.11 J, since there is no kinetic energy at the highest point because the ball is not moving (we neglect energy lost due to air resistance, heat, sound, etc.) ⚡||

So, we have:

[tex] \large{ \boxed{ \rm{P.E. = mgh}}}[/tex]

⇛ h = PE/(mg)

⇛ h = 5.11 J /(0.042 × 9.8)

⇛ h = 12.41 m

✏The ball will rise upto a height of 12.41 m

━━━━━━━━━━━━━━━━━━━━

A city of Punjab has a 15 percent chance of wet weather on any given day. What is the probability that it will take a week for it three wet weather on 3 separate days?

Answers

Answer: 0.0617

Explanation:

Given: The probability of wet weather on any given day in a city of Punjab : p=15%=0.15

Let X be a binomial variable that represents the number of days having wet weather.

Binomial probability formula : [tex]P(X=x)=^nC_xp^x(1-p)^x[/tex], where n= total outcomes, p = probability of success in each outcomes.

Here, n= 7 ( 1 week = 7 days)

The probability that it will take a week for it three wet weather on 3 separate days:

[tex]P(X=3)^=\ ^7C_3(0.15)^3(1-0.15)^{7-3}\\\\=\dfrac{7!}{3!(7-3)!}(0.15)^3(0.85)^4\\\\=\dfrac{7\times6\times5}{3\times2}\times 0.003375\times0.52200625\approx0.0617[/tex]

Hence, the required probability =0.0617

Electromagnetic radiation is more common than you think. Radio and TV stations emit radio waves when they broadcast their programs; microwaves cook your food in a microwave oven; dentists use X rays to check your teeth. Even though they have different names and different applications, these types of radiation are really all the same thing: electromagnetic (EM) waves, that is, energy that travels in the form of oscillating electric and magnetic fields. Which of the following statements correctly describe the various applications listed above?
a) All these technologies use radio waves, including low-frequency microwaves.
b) All these technologies use radio waves, including high-frequency microwaves.
c) All these technologies use a combination of infrared waves and high-frequency microwaves.
d) Microwave ovens emit in the same frequency band as some wireless Internet devices.
e) The radiation emitted by wireless Internet devices has the shortest wavelength of all the technologies listed above.
f) All these technologies emit waves with a wavelength in the range 0.10 to 10.0 m.
g) All the technologies emit waves with a wavelength in the range 0.01 to 10.0 km.

Answers

Answer:

d) Microwave ovens emit in the same frequency band as some wireless Internet devices.

Explanation:

Microwave are radio waves of short wavelength, from about 10 centimetres to one millimetre, in the Super High Frequency and the Extremely High Frequency bands. Microwaves can penetrate into materials and deposit their energy below the surface which is why is is used in microwave heating found in microwave oven. Transmission of data sometimes involves the use of microwaves to send and receive information over a long distance. Microwaves are the mainly used in radar, used for satellite communication, and wireless networking technologies such as Wi-Fi.

PLEASE HELP ANSWER FAST As the vibration of molecules decreases, the _____ of the substance decreases. 1.temperature 2.internal energy 3.kinetic energy 4.all of the above

Answers

I think 1 and 3 is absolutely right but im not sure about number 2.
I think the answer is 4 all of the above because as the vibration decrease automatically the kinetic energy decrease and the temperature is decrease because when the vibration of molecules decrease thats mean the substances is slightly become a solid and you can get a solid cube of liquid if you freeze them

A wire of 0.50m length is suspended by a pair of flexible leads in a uniform magnetic field of magnitude 0.98T. The vurrent in the wire is 2.0A in the direction shown. What is the mass of the wire if the current and the magnetic field are sufficient to remove the tension in the supporting leads?

Answers

Answer:

0.1 kg or 100 g

Explanation:

The length of the wire = 0.5 m

the field magnitude = 0.98 T

the current through the wire = 2.0 A

magnetic force due to a wire carrying current is

F = [tex]IlB[/tex]

where

F is the force

[tex]I[/tex] is the current = 2 A

[tex]l[/tex] is the length of the wire

B is the magnetic field strength

Substituting, we have

F = 2 x 0.5 x 0.98 = 0.98 N

This force balances the weight of the mass

weight = mg

where m is the mass of the wire

g is acceleration due to gravity = 9.81 m/s^2

therefore, weight = m x 9.81 = 9.81m

equating this weight with the force, we have

0.98 = 9.81m

m = 0.98/9.81 = 0.099 kg ≅ 0.1 kg or 100 g

Answer:

100 g

Explanation:

Determine the next possible thickness of the film (in nm) that will provide the proper destructive interference. The index of refraction of the glass is 1.58 and the index of refraction of the film material is 1.48.

Answers

Answer:

I know the answer

Explanation:

We want to choose the film thickness such that destructive interference occurs between the light reflected from the air-film interface (call it wave 1) and from the film-lens interface (call it wave 2). For destructive interference to occur, the phase difference between the two waves must be an odd multiple of half-wavelengths.

You can think of the phases of the two waves as second hands on a clock; as the light travels, the hands tick-tock around the clock. Consider the clocks on the two waves in question. As both waves travel to the air-film interface, their clocks both tick-tock the same time-no phase difference. When wave 1 is reflected from the air-film boundary, its clock is set forward 30 seconds; i.e., if the hand was pointing toward 12, it's now pointing toward 6. It's set forward because the index of refraction of air is smaller than that of the film.

Now wave 1 pauses while wave two goes into and out of the film. The clock on wave 2 continues to tick as it travels in the film-tick, tock, tick, tock.... Clock 2 is set forward 30 seconds when it hits the film-lens interface because the index of refraction of the film is smaller than that of the lens. Then as it travels back through the film, its clock still continues ticking. When wave 2 gets back to the air-film interface, the two waves continue side by side, both their clocks ticking; there is no change in phase as they continue on their merry way.

So, to recap, since both clocks were shifted forward at the two different interfaces, there was no net phase shift due to reflection. There was also no phase shift as the waves travelled into and out from the air-film interface. The only phase shift occured as clock 2 ticked inside the film.

Call the thickness of the film t. Then the total distance travelled by wave 2 inside the film is 2t, if we assume the light entered pretty much normal to the interface. This total distance should equal to half the wavelength of the light in the film (for the minimum condition; it could also be 3/2, 5/2, etc., but that wouldn't be the minimum thickness) since the hand of the clock makes one revolution for each distance of one wavelength the wave travels (right?).

What is the magnitude of the free-fall acceleration at a point that is a distance 2R above the surface of the Earth, where R is the radius of the Earth

Answers

Answer:

g' = g/9 = 1.09 m/s²

Explanation:

The magnitude of free fall acceleration at the surface of earth is given by the following formula:

g = GM/R²   ----- equation 1

where,

g = free fall acceleration

G = Universal Gravitational Constant

M = Mass of Earth

R = Distance between the center of earth and the object

So, in our case,

R = R + 2 R = 3 R

Therefore,

g' = GM/(3R)²

g' = (1/9) GM/R²

using equation 1:

g' = g/9

g' = (9.8 m/s)/9

g' = 1.09 m/s²

Answer:

The magnitude of the free-fall acceleration [tex]g_h = 1.09m/s^2[/tex]

Explanation:

Surface of earth,

[tex]g = \frac{GM}{R^2}\\\\g = 9.8m/s^2[/tex]

free fall acceleration at height h,

[tex]g_h = \frac{GM}{(R+h)^2}[/tex]

where

G = gravitational constant

R = Radius of earth

M = mass of earth

therefore,

[tex]\frac{g_h}{g} = \frac{\frac{GM}{(R+h)^2}}{\frac{GM}{R^2}}\\\\ \frac{g_h}{g} = \frac{R^2}{(R+h)^2}\\\\g_h = g\frac{R^2}{(R+h)^2}[/tex]

Where height h = 2R

[tex]g_h = 9.8\frac{R^2}{(R+2R)^2}\\\\g_h = 9.8\frac{R^2}{(3R)^2}\\\\g_h = 9.8\frac{R^2}{(9R^2}\\\\g_h = 1.09m/s^2[/tex]

For more information, visit

https://brainly.com/question/17162343

On the way to school, the bus speeds up from 20 m/s to 36 m/s in 4 seconds. What distance does the bus cover in this time frame

Answers

Answer:

Explanation:

initial velocity u = 20 m /s

final velocity v = 36 m /s

time taken t = 4 s .

acceleration = (v - u) / t

= (36 - 20) / 4

a = 4 m / s ²

from the formula

v² - u² = 2 a s  , s is distance covered .

putting the values

36² - 20² = 2 x 4 x s

1296 - 400 = 8 x s

s = 112 m .

Answer:112

Explanation:

you check the weather and find that the winds are coming from the west at 15 milers per hour. this information describes the winds

Answers

Answer:

Velocity

Explanation:

We finds that the winds are coming from the west at 15 miles per hour. This information shows the velocity of the wind. Since, velocity is a vector quantity. It has both magnitude and direction. 15 miles per hour shows the speed of wind and west shows the direction of wind motion.

Hence, the given information describes wind velocity.

What is the radiation pressure 1.5 m away from a 700 W lightbulb? Assume that the surface on which the pressure is exerted faces the bulb and is perfectly absorbing and that the bulb radiates uniformly in all directions.

Answers

Answer:

3.30 x 10^-7 Pascal

Explanation:

distance r = 1.5 m

power P = 700 W

the radiation pressure is given as

Pr = P/A*c

where

area of the surface A = 4πr^2

calculate for A

speed of light is c = 3×10^8  m/s

plugging above values in equation above gives

Pr = 3.30 x 10^-7 Pascal

A ferry boat sails east across a lake at 10 km/h. A woman is walking east on
the boat at 1.5 km/h. What is her speed relative to the boat?
A. 8.5 km/h west
B. 8.5 km/h east
C. 1.5 km/h east
O D. 1.5 km/h west

Answers

Answer:

B

8.5 km/h east

Explanation:

Relative velocity= Va -Vb

=10-1.5

=8.5 km/h east

The concept relative speed is used when two or more bodies moving with some speed are considered. The relative speed of woman to the boat is 8.5 km/h east. The correct option is B.

What is relative speed?

The relative speed of two bodies is defined as the sum of their speeds if they are moving in the opposite direction and it is the difference of their speeds if they are moving in the same direction.

The speed of the moving body with respect to the stationary body is known as the relative speed. The term relative means in comparison to. The relative speed is a scalar quantity.

Here both the boat and women are travelling in the same direction. So the relative speed is given as:

Relative speed = 10 - 1.5 = 8.5 km / h

Therefore the relative speed is 8.5 km/h east.

Thus the correct option is B.

To know more about relative speed, visit;

https://brainly.com/question/11476119

#SPJ7

an ideal gas is confined to a container with adjustable volume. the number of moles, n, and temperature, t, are constant. by what factor will the volume change if pressure increase by a factor of 5.1

Answers

Answer:

The volume will decrease by a factor of 10/51.

Explanation:

Hello,

In this case, since both moles and temperature remain constant, we can use the Boyle's law that relates the volume and pressure as an inversely proportional relationship:

[tex]P_1V_1=P_2V_2[/tex]

Thus, since the pressure increases by a factor of 5.1 (statement), we have:

[tex]P_2=5.1P_1[/tex]

Thus, the final volume is:

[tex]V_2=\frac{P_1V_1}{P_2} =\frac{P_1V_1}{5.1P_1}\\\\V_2=\frac{10}{51}V_1[/tex]

It means that the volume will decrease by a factor of 10/51.

Regards.

A simple arrangement by means of which e.m.f,s. are compared is known

Answers

Answer:

A simple arrangement by means of which e.m.f,s. are compared is known as?

(a)Voltmeter

(b)Potentiometer

(c)Ammeter

(d)None of the above

Explanation:

Design a voltage divider to provide the following approximate voltages with respect to ground using a 30 V source: 8.18 V, 14.7 V, and 24.6 V. The current drain on the source must be limited to no more than 1 mA. The number of resistors, their values, and their wattage ratings must be specified. A schematic showing the circuit arrangement and resistor placement must be provided

Answers

Answer:

R₁ = 14.7 10³ Ω , R₂ = 8.18 10³ Ω ,  R₃ = 1.72 10³ Ω ,  R₄ = 5.4 10³ Ω    1/8 W resistor

Explanation:

For this exercise we must use a series circuit since the sum of the voltage on each resin is equal to the source voltage (V = 30 V)

Therefore we build a circuit with 4 resistors in series, in such a way that

   V = i R

let the voltage

1st resistance

         V = i R

         R₁ = V / i

         R₁ = 14.7 / 1 10⁻³

         R₁ = 14.7 10³ Ω

power is

        P = V i

        P = 14.7 1 10⁻³

        P = 14.7 10⁻³ W = 0.0147 W

a resistance of ⅛ W is indicated

2nd resistance

          R₂ = 8.18 / 1 10⁻³

          R₂ = 8.18 10³ Ω

Power

          P = 8.18 1 10⁻³

          P = 0.00818W

a 1/8 W resistor

3rd resistance

this resistance is calculated in such a way that

          V₁ + V₂ + V₃ = 24.6

          V₃ = 24.6 - V₁ -V₂

          V₃ = 24.6 - 14.7 - 8.18

          V₃ = 1.72 V

          R₃ = 1.72 / 1 10⁻³

          R₃ = 1.72 10³ Ω

           

power

          P = Vi

          P = 1.72 10⁻³

          P = 0.00172 W

a resistance of ⅛ W

To obtain the voltage of 24.6 we use this three resistors together

4th resistance

The value of this resistance is calculated so that the sum of all the voltages reaches the source voltage

           30 = V₁ + V₂ + V₃ + V₄

           V₄ = 30 - V₁ -V₂ -V₃

           V₄ = 30 -14.7 - 8.18 - 1.72

           V₄ = 5.4 V

          R₄ = 5.4 / 1 10⁻³

          R₄ = 5.4 10³ Ω

Power

         P = V i

         P = 5.4 10⁻³

         P = 0.0054 W

⅛ W resistance

The values ​​of these resistance are commercially

Let's check the consumption of the circuit

  R_total = R₁ + R₂ + R₃ + R₄

  R_total = (14.7 + 8.18 + 1.72 + 5.4) 10³

   R_total = 30 10³

the current circulating in the circuit is

     i = V / R_total

     i = 30/30 10³

     i = 1 10⁻³ A

therefore it is within the order requirement.

for connections see attached diagram

g As observed on earth, a certain type of bacteria is known to double in number every 24 hours. Two cultures of these bacteria are prepared, each consisting initially of one bacterium. One culture is left on earth and the other placed on a rocket that travels at a speed of 0.893c relative to the earth. At a time when the earthbound culture has grown to 256 bacteria, how many bacteria are in the culture on the rocket, according to an earth-based observer

Answers

Answer:

86.4 hrs

Explanation:

The amount of bacteria is initially 1

It doubles every 24 hrs.

After first 24 hrs, the amount = 2

After next 24 hrs = 4

After next 24 hrs = 8

After next 24 hrs = 16

After next 24 hrs = 32

After next 24 hrs = 64

After next 24 hrs = 128

After next 24 hrs = 256

Total time taken to reach 256 = 24 x 8 = 192 hrs

For the bacteria culture on the rocket that travels at a speed of 0.893c relative to the earth, this time is contracted by the relationship

t = t'(1 - ¥^2)^0.5

Where t is the contracted time =?

t' is the time on earth

¥ = v/c

Where v is the speed of the rocket

c is the speed of light

since v = 0.893c

¥ = 0.893

Substituting, we have

t = 192 x (1 - 0.893^2)^0.5

t = 192 x 0.2025^0.5

t = 192 x 0.45 = 86.4 hrs

From a hot air balloon 2 km​ high, a person looks east and sees one town with angle of depression of 16 degrees. He then looks west to see another town with angle of depression of 84 degrees. What is the distance between the two towns?

Answers

Answer:

7km

Explanation:

The angle of depression is congruent to the angle of elevation and can be explained as angle below horizontal in which the person observing an object must view for him/her to view object's that are lower than him/her.

In angle of depression, there is assumption that object is closer to the person observing it, so there is parallel horizontal for both observing and object been observed.

hot air balloon 2 km​ high,

there exist two triangles

From trigonometry

Tanx= opposite/adjacent

Opp= 2km

Adj= X1

first triangle have base length of

Tan(16)=2/X1

X1=2/ tan(16)

X1=6.97

For Second triangle

Tanx= opposite/adjacent

Opp= 2km

Adj= X2

the other with a base length of

X2=2/tan(84)

X2=0.21

Therefore,, the total distance between the two towns is

x1+x2=6.97+0.21=7.18km

You measure the power delivered by a battery to be 4.26 W when it is connected in series with two equal resistors. How much power will the same battery deliver if the resistors are now connected in parallel across it

Answers

Answer:

The power delivered by the battery is 17.04 W

Explanation:

Power through a circuit is given as

P = IV    ....1

where P is the power

I is the current through the circuit

V is the voltage through the circuit

The voltage in a circuit is given as

V = IR    ....2

Let us take the value of each resistor as equal to R

when connected in series, the total resistance will be

[tex]R_{t}[/tex] = R + R = 2R

If we assume constant voltage through the circuit, then from equation 2, the current in this case is

I = V/2R

If the resistors are connected in parallel, then the total resistance will be

[tex]\frac{1}{R_{t} }[/tex] = [tex]\frac{1}{R}[/tex] +

[tex]R_{t}[/tex] = R/2

The current in this case will be increased since the resistance is reduced

I = 2V/R

comparing the two situations, we can see that the current increased when connected in parallel to a ratio of

[tex]\frac{2V}{R}[/tex] ÷  [tex]\frac{V}{2R}[/tex] =  

This means that the current increased 4 times

From equation 1, we can see that electrical power is proportional to the current at a constant voltage, therefore, the power will also increase by four times to

P = 4 x 4.26 = 17.04 W

Simple harmonic oscillations can be modeled by the projection of circular motion at constant angular velocity onto the diameter of a circle. When this is done, the analog along the diameter of the acceleration of the particle executing simple harmonic motion is

Answers

Answer:

the analog along the diameter of the acceleration of the particle executing simple harmonic motion is the projection along the diameter of the centripetal acceleration of the particle in the circle

Show that the entire Paschen series is in the infrared part of the spectrum. To do this, you only need to calculate the shortest wavelength in the series.

Answers

Answer and Explanation:

The computation of the shortest wavelength in the series is shown below:-

[tex]\frac{1}{\lambda} = R(\frac{1}{n_f^2} - \frac{1}{n_i^2} )[/tex]

Where

[tex]\lambda[/tex] represents wavelength

R represents Rydberg's constant

[tex]n_f[/tex] represents Final energy states

and [tex]n_i[/tex] represents initial energy states

Now Substitute is

[tex]1.097\times 10^7\ m^{-1}\ for\ R, \infty for\ n_i,\ 3 for\ n_i,\\\\\ \frac{1}{\lambda} = R(\frac{1}{n_f^2} - \frac{1}{n_i^2} )[/tex]

now we will put the values into the above formula

[tex]= 1.097\times 10^7 m^{-1}(\frac{1}{3^2} - \frac{1}{\infty^2} )\\\\ = 1.097\times10^7\ m^{-1} (\frac{1}{9} )[/tex]

[tex]= 1218888.889 m^{-1}[/tex]

Now we will rewrite the answer in the term of [tex]\lambda[/tex]

[tex]\lambda = \frac{1}{1218888.889} m\\\\ = 0.82\times 10^{-6} m[/tex]

So, the whole Paschen series is in the part of the spectrum.

________ is a thermodynamic function that increases with the number of energetically equivalent ways to arrange components of a system to achieve a particular state.

Answers

Answer:

entropy

Explanation:

An 18g bullet is shot vertically into a 10kg block. The block lifts upward 9mm. The bullet penetrates the block in a time interval of 0.001s. Assume the force on the bullet is constant during penetration. The initial kinetic energy of the bullet is closest to:

Answers

Answer:

The initial kinetic energy of the bullet is closest to 491.87 J

Explanation:

Given;

mass of bullet, m₁ = 18g = 0.018kg

mass of block, m₂ = 10kg

height moved by the block, h = 9 mm = 0.009 m

time taken for the bullet to travel through the block, t = 0.001s

let the initial velocity of the bullet = v₁

let the final velocity of the bullet = v₂

Apply the principle of conservation of linear momentum;

initial momentum = final momentum

0.018v₁ = v₂(0.018 + 10)

0.018v₁ = 10.018v₂ -----equation (1)

Apply the law of conservation of energy when the bullet lifts the block through 9mm

mgh = ¹/₂mv₂²

gh = ¹/₂v₂²

v₂² = 2gh

v₂ = √2gh

v₂ = √(2 x 9.8 x 0.009)

v₂ = 0.42 m/s

Substitute in v₂ in equation 1, to determine the initial velocity of the bullet;

0.018v₁ = 10.018v₂

0.018v₁  =  10.018(0.42)

0.018v₁  = 4.208

v₁ = 4.208 / 0.018

v₁ = 233.78 m/s

Now, determine the initial kinetic energy of the bullet;

K.E₁ = ¹/₂m₁v₁²

K.E₁ = ¹/₂(0.018)(233.78)²

K.E₁ = 491.87 J

Therefore, the initial kinetic energy of the bullet is closest to 491.87 J

A long bar slides on two contact points and is in motion with velocity ν. A steady, uniform, magnetic field B is present. The induced current through resistor R is:

Answers

Answer:

The induced current in the resistor is I = BLv/R

Explanation:

The induced emf ε in the long bar of length, L in a magnetic field of strength, B moving with a velocity, v is given by

ε = BLv.

Now, the current I in the resistor is given by

I = ε/R where ε = induced emf in circuit and R = resistance of resistor.

So, the current I = ε/R.

substituting the value of ε the induced emf, we have

I = ε/R

I = BLv/R

So, the induced current through the resistor is given by I = BLv/R

PLEASE HELP Which of the following describes the efficiency of real machines? 1.Efficiency is 100% 2.IMA is always larger than the AMA 3.IMA is always smaller than the AMA 4.IMA is equal to the AMA

Answers

Answer:

IMA is always larger than the AMA

Explanation:

IMA is Ideal Mechanical Advantage and it equals the length of effort that is divided by the length of resistance which is given by the formula

IMA= Fr/Fe

Where Fr is the resistance force

Fe is the effort force.

IM= de/dr

Where de is the distance of the applied effort  

dr is the distance traveled by the load.

In any real machine, the effort is needed to overcome friction and because of this, the ideal mechanical advantage(IMA) is always larger than the actual mechanical advantage (AMA)

A metal sample of mass M requires a power input P to just remain molten. When the heater is turned off, the metal solidifies in a time T. The heat of fusion of this metal is

Answers

Answer:

L = Pt/M

Explanation:

Power, P= Q/t = mL/t

we know that, (Q=m×l)

Now ⇒l= Pt/M

Thus l= Pt/M

A concrete slab shown in Figure 5 is being lifted by using three cables connected to the slab at points A, B and C. The slab is in the xy plane. The vertical force required to lift this slab is 60 kN (F 60 kN). Find the tensions in cables DA, DB and DC (show all your workings that you do to find these)

Answers

Answer:

Fad = 28.8 kN

Fbd = 16.4 kN

Fcd = 28.1 kN

Explanation:

First, find the length of each cable.

AD = √((2 m)² + (0.5 m)² + (2.5 m)²)

AD = √10.5 m

AD ≈ 3.24 m

BD = √((1.5 m)² + (1 m)² + (2.5 m)²)

BD = √9.5 m

BD ≈ 3.08 m

CD = √((1 m)² + (1 m)² + (2.5 m)²)

CD = √8.25 m

CD ≈ 2.87 m

Next, use similar triangles to find the x, y, and z components of each tension force.

Fadx = 2/3.24 Fad = 0.617 Fad

Fady = 0.5/3.24 Fad = 0.154 Fad

Fadz = 2.5/3.24 Fad = 0.772 Fad

Fbdx = 1.5/3.08 Fbd = 0.487 Fbd

Fbdy = 1/3.08 Fbd = 0.324 Fbd

Fbdz = 2.5 / 3.08 Fbd = 0.811 Fbd

Fcdx = 1/2.87 Fcd = 0.348 Fcd

Fcdy = 1/2.87 Fcd = 0.348 Fcd

Fcdz = 2.5/2.87 Fcd = 0.870 Fcd

Now sum the forces in the x, y, and z directions:

∑Fx = ma

-0.617 Fad + 0.487 Fbd + 0.348 Fcd = 0

∑Fy = ma

-0.154 Fad − 0.324 Fbd + 0.348 Fcd = 0

∑Fz = ma

60 kN − 0.772 Fad − 0.811 Fbd − 0.870 Fcd = 0

To solve this system of equations algebraically, start by subtracting the first two equations, eliminating Fcd.

-0.463 Fad + 0.811 Fbd = 0

0.811 Fbd = 0.463 Fad

Fbd = 0.571 Fad

Substitute into either of the first two equations:

-0.617 Fad + 0.487 (0.571 Fad) + 0.348 Fcd = 0

-0.617 Fad + 0.278 Fad + 0.348 Fcd = 0

-0.339 Fad + 0.348 Fcd = 0

0.348 Fcd = 0.339 Fad

Fcd = 0.975 Fad

Now substituting into the third equation:

60 kN − 0.772 Fad − 0.811 Fbd − 0.870 Fcd = 0

60 kN − 0.772 Fad − 0.811 (0.571 Fad) − 0.870 (0.975 Fad) = 0

60 kN − 0.772 Fad − 0.463 Fad − 0.849 Fad = 0

60 kN − 2.083 Fad = 0

Fad = 28.8 kN

Solving for the other two tension forces:

Fbd = 0.571 Fad = 16.4 kN

Fcd = 0.975 Fad = 28.1 kN

Answer:

Tensions of:

DA = 28.81 KN

DB = 16.45 KN

DC = 28.07 KN

Explanation:

see attached

16. If one body is positively charged and another body is negatively charged, free electrons tend to
O A. move from the negatively charged body to the positively charged body
O B. remain in the positively charged body
OC. move from the positively charged body to the negatively charged body
O D. remain in the negatively charged body

Answers

Answer:

Hey there!

The correct answer would be option A. If one body is positively charged and another body is negatively charged, free electrons tend to move from the negatively charged body to the positively charged body

Let me know if this helps :)

A vertical spring stretches 3.8 cm when a 13-g object is hung from it. The object is replaced with a block of mass 20 g that oscillates in simple harmonic motion. Calculate the period of motion.

Answers

Answer:

The period of motion is 0.5 second.

Explanation:

Given;

extension of the spring, x = 3.8 cm = 0.038 m

mass of the object, m = 13 g = 0.013 kg

Determine the force constant of the spring, k;

F = kx

k = F / x

k = mg / x

k = (0.013 x 9.8) / 0.038

k = 3.353 N/m

When the object is replaced with a block of mass 20 g, the period of motion is calculated as;

[tex]T = 2\pi\sqrt{\frac{m}{k} } \\\\T = 2\pi\sqrt{\frac{0.02}{3.353} } \\\\T = 0.5 \ second[/tex]

Therefore, the period of motion is 0.5 second.

A 1000 kg car experiences a net force of 9500 N while slowing down from 30 m/s to 16 m/s. How far does it travel while slowing down?

Answers

Answer:

33.89 m

Explanation:

We must first obtain the acceleration of the car from;

F=ma

Where

F= force= 9500 N

m= mass of the car= 1000kg

a= acceleration

a= F/m= 9500/1000

a= 9.5 m/s^2

From;

V^2=u^2 + 2as

Where;

V= final velocity

u= initial velocity

s= distance covered

a= acceleration

s= v^2 -u^2/2a

s= (30)^2 -(16)^2/2×9.5

s= 900 - 256/19

s= 644/19

s= 33.89 m

The distance is 33.89 m

The first step is to calculate the acceleration

F= ma

force= 9500N

mass= 1000 kg

9500= 1000 × a

a= 9500/1000

= 9.5 m/s

v²= u² + 2as

30²= 16² + 2(9.5)(s)

900= 256 + 19s

900-256= 19s

644= 19s

s= 644/19

s= 33.89 m

Hence the distance traveled by the car is 33.89 m

Please see the link below for more information

https://brainly.com/question/18313681?referrer=searchResults

2. The glass core of an optical fiber has an index of refraction 1.60. The index of refraction of the cladding is 1.48. What is the maximum angle a light ray can make with the wall of the core if it is to remain inside the fiber?

Answers

Answer:

We know that the maximum angle that a light ray can wake with the wall of the core is equipment to the minimum angle with the normal of the core that will give rise in total internal reflection. so using Snell's law the angle is subtracted from 90° to get the maximum angle a light ray can make with the wall of the core if it is to remain inside the fiber.

So using

n1sinစ1. = n2sinစ2

1.6sin(x1) = 1.48sin(90),

But sin(90)=1

1.6sin(စ1) = 1.48,

sin(စ1) = 1.48/1.6

စ = 68°

Explanation:

Answer:

i = 67.66⁰

Explanation:

Using the Snell's law formula to solve this question which states that the ratio of the sine of angle of incidence to the sine of angle of refraction is a constant for a given pair of media. This constant is known as the refractive index for the given pair of media. Mathematically,

n = sin(i)/sin(r) where;

i is the angle of incidence

r is the angle of refraction.

n is the refractive index.

Given the refractive index of the optical fibre n₁ = 1.60 and that of cladding n₂ = 1.48

n₂/n₁ = sin(i)/sin(r)

The light ray can make with the wall of the core when its angle of refraction is 90⁰. The angle of incidence at this maximum point is known as the critical angle.

On substitution:

1.48/1.60 = sin(i)/sin90

1.48/1.60  = sin(i)/1

sin(i) = 1.48/1.60

sin(i) = 0.925

i = sin⁻¹0.925

i = 67.66⁰

Hence the maximum angle a light ray can make with the wall of the core if it is to remain inside the fiber is 67.66⁰.

Other Questions
List three things you will need on the PSAT/NMSQT test day according to the "Taking the Tests" web page If EH = 80, calculate GF. he carrying value of Blossoms net identifiable assets, including the goodwill, at year-end is $855,000. Prepare Cullumbers journal entry, if necessary, to record impairment of goodwill. At TTT = 14 CC, how long must an open organ pipe be to have a fundamental frequency of 262 HzHz ? The speed of sound in air is v(331+0.60T)m/sv(331+0.60T)m/s, where TT is the temperature in CC. The function f is defined by the following rulef (x) - 5+1Complete the function table.-5-1023 According to the institution and overall goal of an English composition course is to URGENT PLS HELP FAST!! Determine the pronoun case used in the sentence below. Where is my house key? nominative objective possessive Gail bought 5 pounds of oranges and 2 pounds of bananas for $14. Her husband later bought 3 pounds of oranges and 6 pounds of bananas for $18. What was the cost per pound of the oranges and the bananas? Calculate JK if LJ = 14, JM = 48, and LM = 50 Explain why you selected the location recorded in Panel 1 as the ideal incubation site for culturing microbes? an electromagnetic wave propagates in a vacuum in the x-direction. In what direction does the electric field oscilate use the diagram to answer the question. AB corresponds to which line segment? Beginning in 6 years, (beginning of years 6, 7,8 and 9) Sally Mander will receive four annual benefit checks of $12,000 each. If Sally assumes an interest rate of 7%, what is the present value of these checks? solve for x 13x + 7 = 5x - 20 1. The mean performance score on a physical fitness test for Division I student athletes is 947 with a population standard deviation of 205. Select a random sample of 64 of these students. Hint: we have a sample so use the standard error. What is the probability the mean of the sample is below 900 Type the correct answer in the box. Use numerals instead of words. Use the order of operations to evaluate this expression: 7 + (5 9)2 + 3(16 8). An object is placed in a fluid and then released. Assume that the object either floats to the surface (settling so that the object is partly above and partly below the fluid surface) or sinks to the bottom. Answer the following question:The magnitude of the buoyant force is equal to the weight of fluid displaced by the object. Under what circumstances is this statement true? a. for every object submerged partially or completely in a fluid b. only for an object that is floating c. only for an object that is fully submerged and is sinking. d. for no object submerged in a fluid A damped oscillator is released from rest with an initial displacement of 10.00 cm. At the end of the first complete oscillation, the displacement reaches 9.05 cm. When 4 more oscillations are completed, what is the displacement reached Which could be the entire interval over which thefunction, f(x), is negative? (-8,-2) (-8,0)(-0, -6)(00,-4) An artifact was found and tested for its carbon-14 content. If 72% of the original carbon-14 was still present, what is its probable age (to the nearest 100 years)? (Carbon-14 has a half-life of 5,730 years).