Answer:
(a) Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \geq[/tex] 30 points
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] < 30 points
(b) Type I error is that we conclude that test-takers who had completed the training showed a mean increase smaller than 30 points but in actual, the program raises SAT scores by an average of at least 30 points.
Step-by-step explanation:
We are given that a test-preparation company advertises that its training program raises SAT scores by an average of at least 30 points.
A random sample of test-takers who had completed the training showed a mean increase smaller than 30 points.
Let [tex]\mu[/tex] = average SAT score.
(a) So, Null Hypothesis, [tex]H_0[/tex] : [tex]\mu \geq[/tex] 30 points
Alternate Hypothesis, [tex]H_A[/tex] : [tex]\mu[/tex] < 30 points
Here, the null hypothesis states that the training program raises SAT scores by an average of at least 30 points.
On the other hand, the alternate hypothesis states that test-takers who had completed the training showed a mean increase smaller than 30 points.
(b) Type I error states the probability of rejecting the null hypothesis given the fact that null hypothesis is true.
According to the question, the Type I error is that we conclude that test-takers who had completed the training showed a mean increase smaller than 30 points but in actual, the program raises SAT scores by an average of at least 30 points.
The consequence of a Type I error is that we conclude the test-takers have low SAT scores but in actual they have an SAT score of at least 30 points.
The ages of some lectures are 42,54,50,54,50,42,46,46,48 and 48.Calculate the:
(a)Mean Age.
(b)Standard deviation.
Answer:
The mean age is 48
The standard deviation is 4
Step-by-step explanation:
The answer is, (a) mean age is 48.
(b) standard deviation is 4.
What is a mean age?Average age of the population calculated as the arithmetic mean.Another parameter determining the average age of the population is the median age.What does standard deviation of age mean?In general, the standard deviation tells us how far from the average the rest of the numbers tend to be, and it will have the same units as the numbers themselves. If, for example, the group {0, 6, 8, 14} is the ages of a group of four brothers in years, the average is 7 years and the standard deviation is 5 years.How do you find the mean age?To find the mean add all the ages together and divide by the total number of children.
Learn more about mean age and standard deviation here:
https://brainly.com/question/475676
#SPJ2
What is the rate of change from x = 0 to x = pi over 2 ? (6 points) trig graph with points at (0, -4) and (pi over 2, 0) and (pi, 4) and (3 pi over 2, 0) and (2 pi, -4)
Answer: [tex]\dfrac{8}{\pi}[/tex] .
Step-by-step explanation:
We know that the rate of change of function f(x) from x=a to x= b is given by :-
[tex]k=\dfrac{f(b)-f(a)}{b-a}[/tex]
The given points on graph : (0, -4) and (pi over 2, 0) and (pi, 4) and (3 pi over 2, 0) and (2 pi, -4).
The rate of change from x = 0 to x = pi over 2 will be :-
[tex]\dfrac{0-(-4)}{\dfrac{\pi}{2}-0}=\dfrac{4}{\dfrac{\pi}{2}}[/tex] [By using points (0, -4) and (pi over 2, 0) ]
[tex]=\dfrac{8}{\pi}[/tex]
Hence, the rate of change from x = 0 to x = pi over 2 is [tex]\dfrac{8}{\pi}[/tex] .
List the sides in order from the largest to the smallest. A. XY, YW, WX B. XY, WX, YW C. WX, YW, XY D. WX, XY, YW
Answer:
Option (D)
Step-by-step explanation:
By applying Sine rule in the given triangle WXY,
[tex]\frac{\text{SinW}}{\text{XY}}=\frac{\text{SinY}}{\text{XW}}=\frac{\text{SinX}}{\text{WY}}[/tex]
[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}=\frac{\text{Sin39}}{\text{WY}}[/tex]
[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin82}}{\text{XW}}[/tex]
[tex]\frac{\text{XW}}{\text{XY}}=\frac{\text{Sin82}}{\text{Sin59}}[/tex]
= 1.1489
XW : XY ≈ 1.15 : 1
[tex]\frac{\text{Sin59}}{\text{XY}}=\frac{\text{Sin39}}{\text{WY}}[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{\text{Sin59}}{\text{Sin39}}[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{1.36}{1}[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{\frac{1}{1}}{\frac{1}{1.36} }[/tex]
[tex]\frac{\text{XY}}{\text{WY}}=\frac{1}{0.7342}[/tex]
XY : WY = 1 : 0.7342
XW : XY : WY = 1.15 : 1 : 0.7342
Therefore, WX > XY > WY
Option (D). will be the correct option.
100 students are interviewed to see which of biology, chemistry or physics they prefer.
59 of the students are girls. 35 of the girls like biology best.
2 of the boys prefer physics.
6 out of the 30 who prefer chemistry are girls.
What percentage of the students prefer biology?
Answer:
50%
Step-by-step explanation:
Girls Boys
total: 59 total: 41
- Chemistry 35 - Physics 2
= 24 = 39
- Chemistry ( 30 - 6 ) 24
= 15
Total boys and girls for Biology = 35 + 15 = 50
% = 50/100*100
= 50%
Hope it helps and also mark it as brainliest!!!!The amount of money spent on textbooks per year for students is approximately normal.
A. To estimate the population mean, 19 students are randomly selected the sample mean was $390 and the standard deviation was $120. Find a 95% confidence for the population meam.
B. If the confidence level in part a changed from 95% 1 to 1999%, would the margin of error for the confidence interval:
1. decrease.
2. stay the same.
3. increase not.
C. If the sample size in part a changed from 19% 10 to 22, would the margin of errot for the confidence interval:
1. decrease.
2. stay the same.
3. increase
D. To estimate the proportion of students who purchase their textbookslused, 500 students were sampled. 210 of these students purchased used textbooks. Find a 99% confidence interval for the proportion of students who purchase used text books.
Answer:
(A) A 95% confidence for the population mean is [$332.16, $447.84] .
(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval would increase.
(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval would decrease.
(D) A 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477] .
Step-by-step explanation:
We are given that 19 students are randomly selected the sample mean was $390 and the standard deviation was $120.
Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;
P.Q. = [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean = $390
s = sample standard deviation = $120
n = sample of students = 19
[tex]\mu[/tex] = population mean
Here for constructing a 95% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation.
So, 95% confidence interval for the population mean, [tex]\mu[/tex] is ;
P(-2.101 < [tex]t_1_8[/tex] < 2.101) = 0.95 {As the critical value of t at 18 degrees of
freedom are -2.101 & 2.101 with P = 2.5%}
P(-2.101 < [tex]\frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.101) = 0.95
P( [tex]-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
P( [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
95% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.101 \times {\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+2.101 \times {\frac{s}{\sqrt{n} } }[/tex] ]
= [ [tex]\$390-2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] , [tex]\$390+2.101 \times {\frac{\$120}{\sqrt{19} } }[/tex] ]
= [$332.16, $447.84]
(A) Therefore, a 95% confidence for the population mean is [$332.16, $447.84] .
(B) If the confidence level in part (a) changed from 95% to 99%, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex] would increase because of an increase in the z value.
(C) If the sample size in part (a) changed from 19 to 22, then the margin of error for the confidence interval which is [tex]Z_(_\frac{\alpha}{2}_) \times \frac{s}{\sqrt{n} }[/tex] would decrease because as denominator increases; the whole fraction decreases.
(D) We are given that to estimate the proportion of students who purchase their textbooks used, 500 students were sampled. 210 of these students purchased used textbooks.
Firstly, the pivotal quantity for finding the confidence interval for the population proportion is given by;
P.Q. = [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ~ N(0,1)
where, [tex]\hat p[/tex] = sample proportion students who purchase their used textbooks = [tex]\frac{210}{500}[/tex] = 0.42
n = sample of students = 500
p = population proportion
Here for constructing a 99% confidence interval we have used a One-sample z-test statistics for proportions
So, 99% confidence interval for the population proportion, p is ;
P(-2.58 < N(0,1) < 2.58) = 0.99 {As the critical value of z at 0.5%
level of significance are -2.58 & 2.58}
P(-2.58 < [tex]\frac{\hat p-p}{\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < 2.58) = 0.99
P( [tex]-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < [tex]{\hat p-p}[/tex] < [tex]2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99
P( [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] < p < [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ) = 0.99
99% confidence interval for p = [ [tex]\hat p-2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] , [tex]\hat p+2.58 \times {\sqrt{\frac{\hat p(1-\hat p)}{n} } }[/tex] ]
= [ [tex]0.42 -2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] , [tex]0.42 +2.58 \times {\sqrt{\frac{0.42(1-0.42)}{500} } }[/tex] ]
= [0.363, 0.477]
Therefore, a 99% confidence interval for the proportion of students who purchase used textbooks is [0.363, 0.477] .
Find the length of AB¯¯¯¯¯¯¯¯ A. 19.56 B. 51.86 C. 42.99 D. 34.98
Answer:
Apllying cos on the triangle
cos(angle)= Base/ Hyp
cos(34)= 29/ AB
AB= 29/0.8290
AB=34.98
Step-by-step explanation:
The length of AB is 34.98 units which the correct answer would be an option (D).
What is the right triangle?A right triangle is defined as a triangle in which one angle is a right angle or two sides are perpendicular.
What are Trigonometric functions?Trigonometric functions are defined as the functions which show the relationship between the angle and sides of a right-angled triangle.
Given that ΔABC
∠C = 90°
Here base = BC = 29 units and hypotenuse = AB
To determine the length of AB
Apply the cosine on the given right triangle
⇒ cos(θ) = Base/hypotenuse
⇒ cos(34) = 29/ AB
∴ cos(34°) = 0.8290
⇒ 0.8290 = 29/ AB
⇒ AB= 29/0.8290
⇒ AB = 34.98 units
Hence, the length of AB is 34.98 units
Learn more about Trigonometric functions here:
https://brainly.com/question/6904750
#SPJ2
(12x^(2)+x-35)-:(4x+17)
Answer:
(3x-5)(4x+7) / 4x + 17
Step-by-step explanation:
Rewrite the division as a fraction
12 x ^2 + x-35 / 4x+17
Factor by grouping
(3x-5)(4x+7) / 4x + 17
Hope this was the answer you were looking for
If x = -1 then how much is 2x - 1
a) 1
b) -3
c) -2
hurry please need to turn in 10 min
Answer: -3
Step-by-step explanation: 2x = -2 then you subtract 1 from that which is the same as adding negative one so -2 - 1 or -2 + -1 = -3
In a survey of adults in a certain country conducted during a period of economic uncertainty, % thought that wages paid to workers in industry were too low. The margin of error was percentage points with % confidence. For parts (a) through (d) below, which represent a reasonable interpretation of the survey results? For those that are not reasonable, explain the flaw.
Answer:
Hello your question has some missing parts below is the complete question
In a survey of 2065 adults in a certain country conducted during a period of economic uncertainty, 63% thought that wages paid to workers in industry were too low. The margin of error was 4 percentage points with 95% confidence. For parts (a) through (d) below, which represent a reasonable interpretation of the survey results? For those that are not reasonable, explain the flaw.
part a:(We are 95 % confident 63 % of adults in the country during the period of economic uncertainty felt wages paid to workers in industry were too low.)
part b: We are 91 % to 99 % confident 63 % of adults in the country during the period of economic uncertainty felt wages paid to workers in industry were too low.
part c: We are 95 % confident the proportion of adults in the country during the period of economic uncertainty who believed wages paid to workers in industry were too low was between 0.59 and 0.67. Is the interpretation reasonable?
part d: In 95 % of samples of adults in the country during the period of economic uncertainty, the proportion who believed wages paid to workers in industry were too low is between 0.59 and 0.67. Is the interpretation reasonable?
Answer : For part A :
The interpretation is flawed. No interval has been provided about the population proportion.
part B :
The interpretation is flawed. The interpretation indicates that the level of confidence is varying.
Part C
The interpretation is reasonable.
Part D
The interpretation is flawed. The interpretation suggests that this interval sets the standard for all the other intervals, which is not true.
Step-by-step explanation:
Given data: Population = 2065 ,
probability = 63% = 0.6,
margin of error = 4% = 0.04
confidence interval (95%) = ( 0.59,0.67 )
For part A :
The interpretation is flawed. No interval has been provided about the population proportion. this is because the confidence interval is not mentioned
part B :
The interpretation is flawed. The interpretation indicates that the level of confidence is varying. this is because the confidence interval is a fixed value
Part C
The interpretation is reasonable.
this is because the confident level given is fixed
Part D
The interpretation is flawed. The interpretation suggests that this interval sets the standard for all the other intervals, which is not true.
A box contain 12 balls in which 4 are white 3 are blue and 5 are red.3 balls are drawn at random from the box.find the chance that all three are selected
Answer:
3/11
Step-by-step explanation:
From the above question, we have the following information
Total number of balls = 12
Number of white balls = 4
Number of blue balls = 3
Number of red balls = 5
We solve this question using combination formula
C(n, r) = nCr = n!/r!(n - r)!
We are told that 3 balls are drawn out at random.
The chance/probability of drawing out 3 balls = 12C3 = 12!/3! × (12 - 3)! = 12!/3! × 9!
= 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1/(3 × 2 × 1) × (9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1)
= 220 ways
The chance of selecting 3 balls at random = 220
To find the chance that all the three balls are selected,
= [Chance of selecting (white ball) × Chance of selecting(blue ball) × Chance of selecting(red balls)]/ The chance/probability of drawing out 3 balls
Chance of selecting (white ball)= 4C1
Chance of selecting(blue ball) = 3C1 Chance of selecting(red balls) = 5C1
Hence,
= [4C1 × 3C1 × 5C1]/ 220
= 60/220
= 6/22
= 3/11
The chance that all three are selected is = 3/11
pls what is the nearest 100 of 49
Answer:
the nearest hundred is 50
(Algebra)
Plz help me ASAP!! I’ll be so grateful!
Answer:
y > 1
Step-by-step explanation:
-2(7 + y) > -8(y + 1)
-14 -2y > -8y -8
-2y +8y > -8 +14
6y > 6
6y/6 > 6/6
y > 1
Find the Vertical asymptotes of the graph of f
[tex]f(x) = \frac{x + 2}{ {x}^{2} - 4}[/tex]
Answer:
x = 2 and x = -2
Step-by-step explanation:
To find the vertical asymptotes, set the denominator equal to zero and solve for x:
vertical asymptotes are x = 2 and x = -2
Marco is investigating some of the business models of SureSpin, one of Faster Fidget's top competitors.
He has learned that they model their cost of production for one type of spinner with the function C(x) =13,450 + 1.28x, where x is the number of spinners produced. Interpret the model to complete the
statement.
Type the correct answer in each box. Use numerals instead of words. Based on the model, the fixed cost of production is $?
Answer:
$13,450
Step-by-step explanation:
The fixed cost of production is $13,450, this is because a fixed cost of production is the amount of cost that does not change with an increase or decrease in the amount of the goods or services produced. Fixed cost of production are paid by companies. It is one of the two component of the total cost of goods or services along with the variable cost.
In regard to the information given in the question, no matter how many spinners the company produces, the fixed cost will remain the same.
Assuming x is the variable cost which signifies the number of spinners produced, this literally implies that the cost to produce each spinner is $1.28 and the fixed cost which is independent of the production is $13,450.
Hence, the fixed cost of production is $13,450.
What is the difference? Complete the equation. -1 2/5 - (-4/5) = ?
Answer:
First convert them which will be
-7/5 - (-4/5)
so when you subtract a negative number from negative number they actually subtract ex = -4-(-2) = -2
so its simply 7/5-4/5 then add a negative sign
so
3/5
now add negative sign so
-3/5
The sum of two polynomials is 10a^2b^2-8a^2b+6ab^2-4ab+2 if one addend is -5a^2b^2+12a^2b-5 what is the other addend
Answer:
The other addend is [tex]15\cdot a^{2}\cdot b^{2}-20\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex].
Step-by-step explanation:
The other addend is determined by subtracting [tex]-5\cdot a^{2}\cdot b^{2}+12\cdot a^{2}\cdot b-5[/tex] from [tex]10\cdot a^{2}\cdot b^{2}-8\cdot a^{2}\cdot b + 6\cdot a\cdot b^{2}-4\cdot a \cdot b + 2[/tex]:
[tex]x = 10\cdot a^{2}\cdot b^{2}-8\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b + 2 - (-5\cdot a^{2}\cdot b^{2}+12\cdot a^{2}\cdot b -5)[/tex]
[tex]x = 10\cdot a^{2}\cdot b^{2}-8\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +2 +5\cdot a^{2}\cdot b^{2}-12\cdot a^{2}\cdot b+5[/tex]
[tex]x = (10\cdot a^{2}\cdot b^{2}+5\cdot a^{2}\cdot b^{2})-(8\cdot a^{2}\cdot b+12\cdot a^{2}\cdot b)+6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex]
[tex]x = 15\cdot a^{2}\cdot b^{2}-20\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex]
The other addend is [tex]15\cdot a^{2}\cdot b^{2}-20\cdot a^{2}\cdot b + 6\cdot a \cdot b^{2}-4\cdot a \cdot b +7[/tex].
Answer:
A
Step-by-step explanation:
write a letter to your friend in Ghana stating your experience in your presentation school in nigeria
Answer:
hi Ghana how are you doing I am fine here. I really miss u and my friends in the old.U know what in Nigeria this school is really awesome and fantastic we have a swimming pool here and we can go to trip and we can have many things here I really loved this school.
at starting I was not have any friends and know I have many friends. But I really miss u this is what about our . Come to my house I can show you my school it is very near to my house .
Ur friend
writ ur name
Please answer this correctly without making mistakes
Answer: 7 mi
Step-by-step explanation: since the distance from bluepoint to Manchester is 12 9/10 mi and you know that bluepoint to Silverstone is 5 9/10 subtract that and you get 7 mi as your answer
Answer:
7 miles
Step-by-step explanation:
Hey there!
Well given BM and BS, we need to subtract them.
12 9 /10 - 5 9/10
9/10 - 9/10 = 0
12 - 5 = 7
Silvergrove to Manchester is 7 miles.
Hope this helps :)
HELP ME PLEASE!!!!!!!!! WORTH 100 POINTS WILL FOLLOW AND RATE BRAINLIEST ANSWER!!!!!!!!!!!! If the function f(x) has a domain of (a,b] and a range of [c,d), then what is the domain and range of g(x)=m×f(x)+n?(1 point) A.The domain of g(x) is (ma+n,mb+n], and the range is [c,d). B.The domain of g(x) is (a,b], and the range is [mc+n,md+n). C.The domain of g(x) is (a,b], and the range is [c,d). D.The domain of g(x) is (ma+n,mb+n], and the range is [mc+n,md+n).
Greetings from Brasil...
If domain is (a,b] and the range is [c,d), so:
f(a) = c
f(b) = d
so
g(x) = m × f(x) + n
g(a) = m × f(a) + n how f(a) = c, then
g(a) = mc + n
g(b) = m × f(b) + n
g(b) = md + n
So
Domain = (a; b]Range = [mc + n; md + n)simplify 4x+3y please
Answer:
[tex]\boxed{4x + 3y}[/tex]
Step-by-step explanation:
Hey there!
Well 4x + 3y cannot be added together because they are 2 different variables.
4x + 3y = 4x + 3y
So 4x + 3y simplified is,
4x + 3yHope this helps :)
PLEASE HELP !!! (5/5) -50 POINTS-
Answer:
at least one solution
Step-by-step explanation:
Consistent solutions have at least one solution, but may have more than one solution. Intersecting lines and Lines that are the same are consistent solutions
Answer:
[tex]\boxed{Atleast\ one \ Solution}[/tex]
Step-by-step explanation:
A consistent system of equations have at least one solution. It can be more than that. There are no compulsions.
A study of 200 computer service firms revealed these incomes after taxes: Income After Taxes Number of Firms Under $1 million 102 $1 million up to $20 million 61 $20 million or more 37 What is the probability that a particular firm selected has $1 million or more in income after taxes
Answer:
The probability that a particular firm selected has $1 million or more in income after taxes is 49%.
Step-by-step explanation:
We are given a study of 200 computer service firms revealed these incomes after taxes below;
Income After Taxes Number of Firms
Under $1 million 102
$1 million up to $20 million 61
$20 million or more 37
Total 200
Now, the probability that a particular firm selected has $1 million or more in income after taxes is given by;
Total number of firms = 102 + 61 + 37 = 200
Number of firms having $1 million or more in income after taxes = 61 + 37 = 98 {here under $1 million data is not include}
So, the required probability = [tex]\frac{\text{Firms with \$1 million or more in income after taxes}}{\text{Total number of firms}}[/tex]
= [tex]\frac{98}{200}[/tex]
= 0.49 or 49%
The probability that a particular firm selected has $1 million or more in income after taxes is 0.49 or 49%.
What is probability?Probability means possibility. It deals with the occurrence of a random event. The value of probability can only be from 0 to 1. Its basic meaning is something is likely to happen. It is the ratio of the favorable event to the total number of events.
A study of 200 computer service firms revealed these incomes after taxes:
Income After Taxes Number of Firms Under
$1 million 102
$1 million up to $20 million 61
$20 million or more 37.
Then the total event will be
Total event = 102 + 37 +61 = 200
The probability that a particular firm selected has $1 million or more in income after taxes will be
Favorable event = 37 + 61 = 98
Then the probability will be
[tex]\rm P = \dfrac{98}{200} \\\\P = 0.49 \ or \ 49 \%[/tex]
More about the probability link is given below.
https://brainly.com/question/795909
Ax + By = C for x. plz sove
Answer:
[tex]\boxed{\boxed{ x=\frac{C-By}{A}; A\neq 0}}[/tex]
Step-by-step explanation:
[tex]Ax+By=C\\\\Ax+By-By=C-By\\\\Ax=C-By\\\\\frac{Ax=C-By}{A}\\\\\boxed{ x=\frac{C-By}{A}; A\neq 0}[/tex]
Hope this helps.
-x + 3y = 3
x - 3y = 3
Does this system have a solution?
Answer:
No solution
Step-by-step explanation:
Slope-Intercept Form: y = mx + b
Step 1: Write out systems of equations
-x + 3y = 3
x - 3y = 3
Step 2: Rewrite equations into slope-intercept form
3y = 3 + x
y = 1 + x/3
-3y = 3 - x
y = -1 + x/3
Step 3: Rewrite systems of equations
y = x/3 + 1
y = x/3 - 1
Since we have the same slope for both equations but different y-intercepts, we know that both lines are parallel. If that is the case, they will never touch or intersect each other. Therefore, we have no solution.
7 less than the quotient of a number and 3 is 5. Find the number.
Answer:
The answer is 36
Step-by-step explanation:
Let the number be x
7 less than the quotient of a number and 3 is written as
[tex] \frac{x}{3} - 7[/tex]The result is 5
So we have
[tex] \frac{x}{3} - 7 = 5[/tex]Move - 7 to the right side of the equation
That's
[tex] \frac{x}{3} = 7 + 5[/tex][tex] \frac{x}{3} = 12[/tex]Multiply both sides by 3 to make x stand alone
We have
[tex]3 \times \frac{x}{3} = 12 \times 3[/tex]We have the final answer as
x = 36Hope this helps you
Sherina wrote and solved the equation. x minus 56 = 230. x minus 56 minus 56 = 230 minus 56. x = 174. What was Sherina’s error?
Answer:
subtracting 56 instead of adding (or adding wrong)
Step-by-step explanation:
She wrote ...
x - 56 = 230
x - 56 - 56 = 230 -56 . . . . correct application of the addition property*
x = 230 -56 . . . . . . . . . . . . incorrect simplification
Correctly done, the third line would be ...
x -112 = 174
This would have made Sherina realize that the error was in subtracting 56 instead of adding it. The correct solution would be ...
x - 56 + 56 = 230 + 56 . . . using the addition property of equality
x = 286 . . . . . . . . . . . . . . . . correct simplification on both sides
__
There were two errors:
1) incorrect strategy --- subtracting 56 instead of adding
2) incorrect simplification --- simplifying -56 -56 to zero instead of -112
We don't know whether you want to count the error in thinking as the first error, or the error in execution where the mechanics of addition were incorrectly done.
_____
* The addition property of equality requires the same number be added to both sides of the equation. Sherina did that correctly. However, the number chosen to be added was the opposite of the number that would usefully work toward a solution.
Answer:
D: Sherina should have added 56 to both sides of the equation.
Step-by-step explanation:
I got a 100% on my test.
I hope this helps.
In a triangle, the sum of two angles equals the third, Find the measure of the third angle.
A.45 degree
B.60 degree
C.90 degree
D.30 degree
Answer:
C.90 degree
Step-by-step explanation:
45 + 45 + 90 = 180
90 = 45 + 45
Which formula used in probability to find Independence question
Answer:
Events A and B are independent if the equation P(A∩B) = P(A) · P(B) holds true. You can use the equation to check if events are independent; multiply the probabilities of the two events together to see if they equal the probability of them both happening together.
Answer:
Events are independent if the outcome of one effect does not effect the outcome
Step-by-step explanation:
What is the result of question?
Answer:
B
Step-by-step explanation:
x can not be greater than (1,325-270)/26 because $270 is fixed for the rental
Please Help quick!!! What is the value of a missing angle?
Answer:
69
Step-by-step explanation:
90-21=69
Answer:
69 degrees
Step-by-step explanation:
The full angle = 90 degrees.
One part of the full angle = 21 degrees
The other part of the full angle = x
Other angle = 90 - 21
=> the other angle = 69 degrees