Answer:
a) 0.0081 = 0.81% probability that he receives no job offer
b) He expects to get 2.8 job offers.
c) 0.0837 = 8.37% probability that more than half of the firms he applied do not make him any offer.
d) Each job must be independent of other jobs. Additionaly, if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal approximation to the binomial distribution can be used.
e) 0.2401 = 24.01% probability of him securing more than 3 offers.
Step-by-step explanation:
For each application, there are only two possible outcomes. Either he gets an offer, or he does not. The probability of getting an offer for a job is independent of any other job, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
He can expect to receive a job offer from 70% of the firms to which he applies.
This means that [tex]p = 0.7[/tex]
The student decides to apply to only four firms.
This means that [tex]n = 4[/tex]
(a) What is the probability that he receives no job offer?
This is [tex]P(X = 0)[/tex]. So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{4,0}.(0.7)^{0}.(0.3)^{4} = 0.0081[/tex]
0.0081 = 0.81% probability that he receives no job offer.
(b) How many job offers he expects to get?
The expected value of the binomial distribution is:
[tex]E(X) = np[/tex]
In this question:
[tex]E(X) = 4(0.7) = 2.8[/tex]
He expects to get 2.8 job offers.
(c) What is the probability that more than half of the firms he applied do not make him any offer?
Less than 2 offers, which is:
[tex]P(X < 2) = P(X = 0) + P(X = 1)[/tex]
So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{4,0}.(0.7)^{0}.(0.3)^{4} = 0.0081[/tex]
[tex]P(X = 1) = C_{4,1}.(0.7)^{1}.(0.3)^{3} = 0.0756[/tex]
Then
[tex]P(X < 2) = P(X = 0) + P(X = 1) = 0.0081 + 0.0756 = 0.0837[/tex]
0.0837 = 8.37% probability that more than half of the firms he applied do not make him any offer.
(d) What assumptions do you need to make to find the probabilities? To increase the chance of securing more job offers, the student decides to apply to as many companies as possible, he sent out 60 applications to all different accounting firms.
Each job must be independent of other jobs. Additionaly, if [tex]np \geq 10[/tex] and [tex]n(1-p) \geq 10[/tex], the normal approximation to the binomial distribution can be used.
(e) What is the probability of him securing more than 3 offers?
Between 4 and n, since n is 4, 4 offers, so:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 4) = C_{4,4}.(0.7)^{4}.(0.3)^{0} = 0.2401[/tex]
0.2401 = 24.01% probability of him securing more than 3 offers.
Find the sum of the geometric series given a1=−2, r=2, and n=8.
A. -510
B. -489
C. -478
D. 2
Answer:
A. -510
Step-by-step explanation:
We are given the variable values:
a = -2r = 2n = 8Geometric series formula:
[tex]s = \frac{a( {r}^{n} \times - 1) }{r - 1} [/tex]
Plugging in values we have:
[tex]s = \frac{ - 2( {2}^{8} - 1) }{2 - 1} [/tex]
Simplifying the equation we are left with:
[tex] \frac{ - 2(255)}{1} = - 510[/tex]
13) What is 4 1/2 subtracted from 5.33?
A. 0.43
B. 0.53
C. 0.83
D. 1.08
Given:
[tex]4\dfrac{1}{2}[/tex] subtracted from 5.33.
To find:
The value for the given statement.
Solution:
[tex]4\dfrac{1}{2}[/tex] subtracted from 5.33 can be written as:
[tex]5.33-4\dfrac{1}{2}[/tex]
On simplification, we get
[tex]=5.33-\dfrac{8+1}{2}[/tex]
[tex]=5.33-\dfrac{9}{2}[/tex]
[tex]=5.33-4.5[/tex]
[tex]=0.83[/tex]
Therefore, the correct option is C.
PLS
Write the equation of the piecewise function that is represented by its graph.
IS IT A, B, C, OR D
9514 1404 393
Answer:
a) domain bounds are -1 ≤ x ≤ 1, x > 1
Step-by-step explanation:
In considering the definition of any piecewise function, the domain descriptions in the function definition must match the pieces shown in the graph.
Here, the right segment has no upper bound, so x > 1 is an appropriate description of its domain.
The left segment has the points at x=-1 and x=1 included, so the appropriate domain description for that is -1 ≤ x ≤ 1.
The one answer choice that combines these domain descriptions is ...
[tex]\displaystyle f(x)=\begin{cases}x^2,&\text{if }-\!1\le x\le1\\\sqrt{x},&\text{if }x>1\end{cases}[/tex]
Hari earns Rs 4300 per month. He spends 80% from his income. How much amount does he save in a year?
Answer:
Hari saves $ 10,320 in a year.
Step-by-step explanation:
Given that Hari earns $ 4300 per month, and he spends 80% from his income, to determine how much amount does he save in a year, the following calculation must be performed:
100 - 80 = 20
4300 x 0.20 x 12 = X
860 x 12 = X
10320 = X
Therefore, Hari saves $ 10,320 in a year.
Riley wants to make 100ml of 25% saline but only has access to 12% and 38% saline mixtures. x= 12% y=38%
Answer:
x = 50
y = 50
Step-by-step explanation:
[tex]\begin{bmatrix}x+y=100\\ 0.12x+0.38y=25\end{bmatrix}[/tex]
.12(100-y) + .38y = 25
x = 50
y = 50
How do I figure this question out
Answer:
Orthocenter would be in the middle of the shape.
Step-by-step explanation:
B.
Ethan buys a video game on sale. If the video game usually costs $60, and it was on sale for 20% off, how much did Ethan pay? Round to the nearest whole dollar.
Ethan will pay $31.99 with the discount.
How? This is the answer because:
If 39.99 is 100%, and you are trying to find 20%...
1. you need to set it up as a ratio (of course, you do not need to do this, but it is easier for me to do it this way)
2. the ratio will look like this: 39.99/100% x/20%
3. all we need to do from here is to cross multiply!
4 39.99 x
---------- = ----------
100 20
-price is on the top and percent on the bottom
-you would now do 39.99 times 20
-then divide by 100
5. once you have 20% of 39.99, you need to subtract that answer from the total
6. 39.99 - 7.998 = 31.992 (you need to round to the nearest hundredth)
Hope this helps <3
I need help ASAP please no links
Answer: D' = (1, -1)
Step-by-step explanation:
When dilating by a 1/2 you take a point and divide the x and y of the point in half. So D before is (2,-2) and then divide that by a 1/2, which gives us our answer (1, -1).
1. What is the theoretical probability that the family has two dogs or two cats?
2.
Describe how to use two coins to simulate which two pets the family has.
3. Flip both coins 50 times and record your data in a table
like the one below.
Frequency
Result
Heads, Heads
Heads, Tails
Tails. Heads
Tails. Tails
Total
50
4
Based on your data, what is the experimental probability that the family has two dogs or
two cats?
5
If the family has three pets, what is the theoretical probability that they have three dogs or
three cats?
How could you change the simulation to generate data for three pets
6
let dogs be heads. Let cats be tails. A coin has two sides, in which you are flipping two of them. Note that there can be the possible outcomes
h-h, h-t, t-h, t-t.
How this affects the possibility of two dogs & two cats. Note that there are 1/2 a chance of getting those two (with the others being one of each), which means that out of 4 chances, 2 are allowed.
2/4 = 1/2
50% is your answer
Heads represents cats and tails represents dogs. There is two coins because we are checking the probability of two pets. You have to do the experiment to get your set of data, once you get your set of data, you will be able to divide it into the probability for cats or dogs. To change the simulation to generate data for 3 pets, simply add a new coin and category for the new pet.
Hope this helps you out!
The population, P(t), in millions, of a country, in year t, is given by the formula P(t) = 24 + 0.4t. What are the values of the population for t = 10, 20,
and 30?
Answer:
B. 28, 32, 36 millions
Step-by-step explanation:
Given:
P(t) = 24 + 0.4t
Where,
P(t) = population in millions
t = number of years
✔️Value of the population when t = 10:
Plug in t = 10 into P(t) = 24 + 0.4t
P(t) = 24 + 0.4(10)
P(t) = 24 + 4
P(t) = 28 million
✔️Value of the population when t = 20:
Plug in t = 20 into P(t) = 24 + 0.4t
P(t) = 24 + 0.4(20)
P(t) = 24 + 8
P(t) = 32 million
✔️Value of the population when t = 30:
Plug in t = 30 into P(t) = 24 + 0.4t
P(t) = 24 + 0.4(30)
P(t) = 24 + 12
P(t) = 36 million
Reasoning by induction
Question 1 options:
1)
develops a general conclusion based on observations of cases.
2)
develops a general conclusion based on given information.
3)
starts with assumptions that are known to be valid to draw another new truths.
4)
uses patterns to create logical proofs.
Answer:
1because the occasion of cases
Based on this example, make a
generalization about the acute angles
formed when two parallel lines are
cut by a transversal.
Answer:
Step-by-step explanation:
There are 4 of them (acute angles that is)Those 4 are less than 90 degrees.They have supplementary angles which are greater than 90 degrees.There are 4 of them also.The total number of angles should be 8 if there are 2 parallel lines and 1 transversal.Solve 8x + c = k for x
Answer:
x = 1/8(k-c)
Step-by-step explanation:
8x + c = k
Subtract c from each side
8x +c-c = k-c
8x = k-c
Divide each side by 8
8x/8 = (k-c)/8
x = 1/8(k-c)
Answer:
x-1/8(k-c)
Step-by-step explanation:
Simplify
x * x^5 / x^2 * x
A graph of 2 functions is shown below. graph of function f of x equals negative 11 by 3 multiplied by x plus 11 by 3 and graph of function g of x equals x cubed plus 2 multiplied by x squared minus x minus 2 Which of the following is a solution for f(x) = g(x)? (2 points) x = −2 x = 1 x = 0 x = −1
9514 1404 393
Answer:
(b) x = 1
Step-by-step explanation:
A graph shows the solution to f(x) = g(x) is x = 1.
__
We want to solve ...
g(x) -f(x) = 0
x^3 +2x^2 -x -2 -(-11/3x +11/3) = 0
x^2(x +2) -1(x +2) +11/3(x -1) = 0 . . . . . factor first terms by grouping
(x^2 -1)(x +2) +11/3(x -1) = 0 . . . . . . the difference of squares can be factored
(x -1)(x +1)(x +2) +(x -1)(11/3) = 0 . . . . we see (x-1) is a common factor
(x -1)(x^2 +3x +2 +11/3) = 0
The zero product rule tells us this will be true when x-1 = 0, or x = 1.
__
The discriminant of the quadratic factor is ...
b^2 -4ac = 3^2 -4(1)(17/3) = 9 -68/3 = -41/3
This is less than zero, so any other solutions are complex.
Describe the system of equations
How many solutions does this system have.
Answer:
Step-by-step explanation:
One solution, at the point of intersection, (3,3)
Zoe has 4 pounds of strawberries to make pies. How many ounces of strawberries Is this?
64 oz.
60 oz.
68 oz.
72 oz.
Work Shown:
1 pound = 16 ounces
4*(1 pound) = 4*(16 ounces)
4 pounds = 64 ounces
Please helppppppppp!!!!
Terminal point for 4π/3
(cos4π/3 ,sin4π/3)
{cos(π+π/3) ,sin(π+π/3)}= (-cosπ/3 ,-sinπ/3)
or ,(- 1/2, -√3/2)
OPTION C
4 people take 3 hours to paint a fence assume that all people paint at the same rate How long would it take one of these people to paint the same fence?
Answer:
12
Step-by-step explanation:
Round each of the following numbers to four significant figures and express the result in standard exponential notation: (a) 102.53070, (b) 656.980, (c) 0.008543210, (d) 0.000257870, (e) -0.0357202
Answer:
Kindly check explanation
Step-by-step explanation:
Rounding each number to 4 significant figures and expressing in standard notation :
(a) 102.53070,
Since the number starts with a non-zero, the 4 digits are counted from the left ;
102.53070 = 102.5 (4 significant figures) = 1.025 * 10^2
(b) 656.980,
Since the number starts with a non-zero, the 4 digits are counted from the left ; the value after the 4th significant value is greater than 5, it is rounded to 1 and added to the significant figure.
656.980 = 657.0 (4 significant figures) = 6.57 * 10^2
(c) 0.008543210,
Since number starts at 0 ; the first significant figure is the first non - zero digit ;
0.008543210 = 0.008543 (4 significant figures) = 8.543 * 10^-3
(d) 0.000257870,
Since number starts at 0 ; the first significant figure is the first non - zero digit ;
0.000257870 = 0.0002579 (4 significant figures) = 2.579 * 10^-4
(e) -0.0357202,
Since number starts at 0 ; the first significant figure is the first non - zero digit ;
-0.0357202 = - 0.03572 (4 significant figures) = - 3.572* 10^-2
which of the following is not an asymptote of the hyperbola xy = -42? y = 0 x = 0 y = x
Given:
The equation of the hyperbola is:
[tex]xy=-42[/tex]
To find:
The the equation which is not an asymptote of the hyperbola.
Solution:
We have,
[tex]xy=-42[/tex]
It can be written as:
[tex]y=\dfrac{-42}{x}[/tex]
Equating denominator and 0, we get
[tex]x=0[/tex]
So, the vertical asymptotic is [tex]x=0[/tex].
The degree of numerator is 0 and the degree of denominator is 1.
Since the degree of numerator is greater that the degree of denominator, therefore the horizontal asymptote is [tex]y=0[/tex] and there is no oblique asymptote.
Therefore, [tex]y=x[/tex] is not an asymptote of the given hyperbola and the correct option is C.
If 4 gallons of gasoline cost $13.76, how much will 11 gallons of gasoline cost?
Answer:
x=37.84
Step-by-step explanation:
We can write a ratio to solve
4 gallons 11 gallons
--------------- = ----------------
13.76 x dollars
Using cross products
4x = 11*13.76
4x=151.36
Divide by 4
4x/4 = 151.36/4
x=37.84
Last year Diana sold 800 necklaces. This year she sold 1080 necklaces. what is the percentage increase of necklaces she sold?
Answer:
13.5% is the increase in percentage
Answer:
74%
Step-by-step explanation:
To get the answer, divide 800 by 1080, and you will get a decimal. That decimal is 0.74074074074. Then, move the decimal point two times two the right, so you should have 074.074074074. Ignore everything after the decimal point as well as the 0 before the decimal point, and if done correctly, it should be 74%.
So, the final answer would be 74%.
Hope this helped!
AABC-AXYZ. What's the scale factor from
AABC to AXYZ?
9514 1404 393
Answer:
(d) 1/4
Step-by-step explanation:
The scale factor is the ratio of lengths of corresponding sides:
XZ/AC = 3/12 = 1/4
_____
Additional comment
I find the wording of the question a bit ambiguous. To transform ΔABC to ΔXYZ, every linear dimension of ΔABC is multiplied by 1/4. This is the sense of "ΔABC to ΔXYZ" that is used in the above answer.
On the other hand, one of the ways ratios are written is using the word "to," as in "12 to 3". Using this idea, we might interpret the question to be asking for ...
ΔABC to ΔXYZ = AC to XZ = 12 to 3 = 12/3 = 4
Complete the sentence that explains why Write an Equation is a reasonable strategy for solving this problem. Because the answer may be _________ the numbers in the problem.
Answer:
4 e
Step-by-step explanation:
dz6dxrx xrrx6 xz33x4xr4x xrx
Write the point-slope form of an equation of the line through the points (-2, 6) and (3,-2).
Answer:
[tex]y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x+2)[/tex]
OR
[tex]y+2=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)[/tex]
Step-by-step explanation:
Hi there!
Point-slope form: [tex]y-y_1=m(x-x_1)[/tex] where [tex](x_1,y_1)[/tex] is a point and [tex]m[/tex] is the slope
1) Determine the slope
[tex]m=\frac{\displaystyle y_2-y_1}{\displaystyle x_2-x_2}[/tex] where two given points are [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex]
Plug in the given points (-2, 6) and (3,-2):
[tex]m=\frac{\displaystyle -2-6}{\displaystyle 3-(-2)}\\\\m=\frac{\displaystyle -8}{\displaystyle 3+2}\\\\m=-\frac{\displaystyle 8}{\displaystyle 5}[/tex]
Therefore, the slope of the line is [tex]-\frac{\displaystyle 8}{\displaystyle 5}[/tex]. Plug this into [tex]y-y_1=m(x-x_1)[/tex]:
[tex]y-y_1=-\frac{\displaystyle 8}{\displaystyle 5}(x-x_1)[/tex]
2) Plug in a point [tex](x_1,y_1)[/tex]
[tex]y-y_1=-\frac{\displaystyle 8}{\displaystyle 5}(x-x_1)[/tex]
We're given two points, (-2, 6) and (3,-2), so there are two ways we can write this equation:
[tex]y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x-(-2))\\\\y-6=-\frac{\displaystyle 8}{\displaystyle 5}(x+2)[/tex]
OR
[tex]y-(-2)=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)\\y+2=-\frac{\displaystyle 8}{\displaystyle 5}(x-3)[/tex]
I hope this helps!
The product of two numbers is 50 and there sum is 15. Find the number.
Answer: the numbers are 10 and 5
Step-by-step explanation:
10 times 5 is 50
10 plus 5 is 15
Please help asap please
Answer:
12.9 miles
Step-by-step explanation:
Formula: (x/360)×dπ(circumference)
90/360=1/4
1/4×16.4π
1/4×51.496
12.874
Answer:
[tex]m JM=90 =\Theta[/tex]
[tex]Radius=dimeter/2=16.4/2[/tex]
[tex]\longrightarrowr=8.2[/tex]
The length of arc JM=
[tex]=\frac{\Theta }{360} \times\pi r[/tex]
[tex]=\frac{90}{360} \times2\times\ 3.14\times 8.2[/tex]
[tex]=12.874[/tex]
[tex]\approx 12.9 \; miles[/tex]
[tex]OAmalOHopeO[/tex]
Lost-time accidents occur in a company at a mean rate of 0.8 per day. What is the probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2
Answer:
0.01375 = 1.375% probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2.
Step-by-step explanation:
We have the mean during the interval, which means that the Poisson distribution is used.
Poisson distribution:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Lost-time accidents occur in a company at a mean rate of 0.8 per day.
This means that [tex]\mu = 0.8n[/tex], in which n is the number of days.
10 days:
This means that [tex]n = 10, \mu = 0.8(10) = 8[/tex]
What is the probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2?
This is:
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
In which
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-8}*8^{0}}{(0)!} = 0.00034[/tex]
[tex]P(X = 1) = \frac{e^{-8}*8^{1}}{(1)!} = 0.00268[/tex]
[tex]P(X = 2) = \frac{e^{-8}*8^{2}}{(2)!} = 0.01073[/tex]
So
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.00034 + 0.00268 + 0.01073 = 0.01375[/tex]
0.01375 = 1.375% probability that the number of lost-time accidents occurring over a period of 10 days will be no more than 2.
A presidential candidate plans to begin her campaign by visiting the capitals in 3 of 47 states. What is the probability that she selects the route of three specific capitals?
Answer:
1 / 97290
Step-by-step explanation:
The number of ways of selecting 3 specific route capitals from 47 states can be obtained thus :
Probability = required outcome / Total possible outcomes
Total possible outcomes = 47P3
Recall :
nPr = n! / (n-r)!
47P3 = 47! / (47-3)! = 47! / 44! = 97290
Hence, probability of selecting route if 3 specific capitals is = 1 / 97290