A student has accidentally spilled 100.0 mL of 3.0 mol/L nitric acid onto the lab bench. What mass of sodium bicarbonate would the teacher need to sprinkle on this spill to neutralize and clean it up?

Answers

Answer 1

Answer:

25 g

Explanation:

Step 1: Write the balanced equation

HNO₃ + NaHCO₃ ⇒ NaNO₃ + H₂O + CO₂

Step 2: Calculate the reacting moles of HNO₃

100.0 mL of 3.0 mol/L HNO₃ reacted.

0.1000 L × 3.0 mol/L = 0.30 mol

Step 3: Calculate the reacting moles of NaHCO₃

The molar ratio of HNO₃ to NaHCO₃ is 1:1. The reacting moles of NaHCO₃ are 1/1 × 0.30 mol = 0.30 mol.

Step 4: Calculate the mass corresponding to 0.30 moles of NaHCO₃

The molar mass of NaHCO₃ is 84.01 g/mol.

0.30 mol × 84.01 g/mol = 25 g


Related Questions

A solution is prepared by dissolving 6.60 g of an nonelectrolyte in water to make 550 mL of solution. The osmotic pressure of the solution is 1.84 atm at 25 °C. The molecular weight of the nonelectrolyte is ________ g/mol.

Answers

Answer:

160 g/mol

Explanation:

Step 1: Calculate the molarity of the solution

We will use the following expression.

π = M × R × T

where,

π: osmotic pressure of a nonelectrolyteM: molarityR: ideal gas constantT: absolute temperature (25 °C = 298 K)

M = π / R × T

M = 1.84 atm / (0.0821 atm.L/mol.K) × 298 K = 0.0752 mol/L

Step 2: Calculate the moles of solute in 550 mL (0.550 L)

0.550 L × 0.0752 mol/L = 0.0413 mol

Step 3: Calculate the molecular weight of the nonelectrolyte

0.0413 moles weigh 6.60 g.

6.60 g/0.0413 mol = 160 g/mol

molecular weight of K2SO3

Answers

Explanation:

the molecular weight of K2SO3 is 158. 2598 m/s.

15. In the image given below, magnesium metal is coiled as a thin ribbon. What property of metal is exhibited by it? A Ductility B Lustrous C Sonorous D Malleability​

Answers

Answer: The property of magnesium that is exhibited by it is DUCTILITY. The correct option is A.

Explanation:

Magnesium is a member of the alkaline earth metals. It occurs in nature, only in the combined state, as Epsom salt, dolomite and in many trioxosilicates( IV) including talc and asbestos. They have the following physical properties:

--> Appearance: they are silvery-white solids

--> Relative density: It has a relative density of 1.74

--> DUCTILITY: it's very ductile in nature

--> melting point: it has a melting point of 660°C.

--> Conductivity: They are good conductor of heat and electricity.

Furthermore, DUCTILITY is the physical property of a metal associated with the ability to be hammered thin or stretched into wire without breaking. A metal such as magnesium can therefore be coiled as a thin ribbon without fracturing due to its ductile physical properties.

A chemical reaction takes place inside a flask submerged in a water bath. The water bath contains 6.90kg of water at 34.7 degrees C . During the reaction 57.1kJ of heat flows out of the bath and into the flask.
Calculate the new temperature of the water bath. You can assume the specific heat capacity of water under these conditions is 4.18J.g^(-1).K^(-1) . Round your answer to significant digits.

Answers

Answer:

[tex]T_2= 36.7 \textdegree C[/tex]

Explanation:

Mass of Water [tex]m_w=6.90kg[/tex]

Temperature [tex]T=34.7 degrees[/tex]

Heat Flow [tex]H=57.1kJ[/tex]

Specific heat capacity of water [tex]\mu= 4.18J.g^(-1).K^(-1)[/tex]

Generally the equation for Final Temperature is mathematically given by

[tex]M*\mu *T_1 + Q = M*\mu *T_2[/tex]

[tex]T_2=\frac{M*\mu *T_1 + Q }{M*\mu}[/tex]

Therefore

[tex]T_2=\frac{6.90*4.18*34.7 + 57.1}{6.90*4.18}[/tex]

[tex]T_2= 36.7 \textdegree C[/tex]

explain hydrogen dioxide​

Answers

Answer:

Two molecules of hydrogen combine with two molecules of oxygen to form hydrogen peroxide. Hence, its chemical formula is H2O2. It is the simplest peroxide (since it is a compound with an oxygen-oxygen single bond). Hydrogen peroxide has basic uses as an oxidizer, bleaching agent and antiseptic

There are three isotopes of carbon. They have mass number of 12, 13 and 14. The average atomic mass of carbon is 12.0107 amu. What does this say about the relative abundances of the three isotopes?​

Answers

Answer:

lots more of the carbon 12 than the others

havent calculated it percentage-wise but you can see its very close to 12 meaning it is of far greater abundance that carbon 13 and 14

Explanation:

Carbon dioxide gas is collected at 27.0 oC in an evacuated flask with a measured volume of 30.0L. When all the gas has been collected, the pressure in the flask is measured to be 0.480atm. Calculate the mass and number of moles of carbon dioxide gas that were collected.

Answers

Answer:

[tex]M_{CO_2}= 25.7g[/tex]

Explanation:

From the question we are told that:

Temperature [tex]T=27.0[/tex]

Volume [tex]V=30L[/tex]

Pressure [tex]P=0.480atm[/tex]

Generally the equation for Ideal gas is mathematically given by

PV=nRT

Therefore

[tex]n=\frac{0.480 x 30}{0.08205 x 300}[/tex]

[tex]n=0.59moles[/tex]

Generally Mass of CO2 is given as

[tex]M_{CO_2}= 0.59 * 44 g/mol[/tex]

[tex]M_{CO_2}= 25.7g[/tex]

QUESTION 11
Identify the reaction type.
KOH + HNO3 -> H2O + KNO3
O combustion
O decomposition
O combination
O single displacement
O double displacement

Answers

O single displacement
Is correct answer
The answer is a single displacement. (C)

19. Which type of chemical process is used to remove salt from ocean water?
O A. Alkylation
O B. Doping
O C. Dehydrogenation
D. Desalination

Answers

Answer:

D

Explanation:

Desalination

Removing salt from sea water is known as desalination

You need to make an aqueous solution of 0.121 M magnesium acetate for an experiment in lab, using a 250 mL volumetric flask. How much solid magnesium acetate should you add

Answers

Answer:

4.27 g

Explanation:

Number of moles = concentration × volume

Concentration = 0.121 M

Volume = 250 mL

Number of moles = 0.121 M × 250/1000 L

Number of moles = 0.03 moles

Number of moles = mass/molar mass

Mass= Number of moles × molar mass

Mass= 0.03 moles × 142.394 g/mol

Mass = 4.27 g


What is the main reason for using a data table to collect data?
A. To interpret the possible meaning of the data
B. To find the possible errors that were made in recording the data
C. To organize the information so that it is easier to understand
O
D. To make an experimental journal more attractive

Answers

Answer:

c

Explanation:

table of data help us to understand and present our work better

I did it and got it right, it's c

compared to an atom of C-14, an atom of C-12 has a lesser

atomic number

number of protons

number of electrons

number of neutrons

Answers

Answer:

mass number

Explanation:

because the mass

number is the number of protons plus the number of neutron and the number of proton in an elements is always the same , therefore and atom of C-14 has greater mass number

A student was given a solid containing a mixture of nitrate salts. The sample completely dissolved in water, and upon addition of dilute HCl , no precipitate formed. The pH was lowered to about 1 and H2S was bubbled through the solution. No precipitate formed. The pH was adjusted to 8 and H2S was again bubbled in. This time, a precipitate formed. Which compounds might have been present in the unknown?
a. Ca(NO3)2
b. AgNO3
c. Fe(NO3)3
d. Cr(NO3)3
e. Cu(NO3)2
f. KNO3
g. Bi(NO3)2

Answers

Answer:

Fe(NO3)3, Cr(NO3)3, Co(NO3)3

Explanation:

According to the question, no precipitate is observed when HCl was added. This means that we must rule out AgNO3.

Again, the sulphides of Cu^2+, Bi^3+ are soluble in acidic medium but according to the question, the sulphides do not precipitate at low pH hence Cu(NO3)2 and Bi(NO3)3 are both ruled out.

The sulphides of Fe^3+, Cr^3+ and Co^3+ all form precipitate in basic solution hence Fe(NO3)3, Cr(NO3)3, Co(NO3)3 may be present.

The presence of Ca(NO3)2 and KNO3 may be confirmed by flame tests.

An unknown compound has the following chemical formula:
Co(OH),
where x stands for a whole number.
Measurements also show that a certain sample of the unknown compound contains 5.1 mol of oxygen and 2.59 mol of cobalt.
Write the complete chemical formula for the unknown compound.

Answers

since we are given the moles for Co and O, we'll divide both of those moles by the lowest mole quantity, which is, in this case, 2.59. After dividing, we see that the ratio of O to Co is 2:1. So, for every 1 Co atom, there has to be 2 O atoms. we can then insert the 2 in for OH to satisfy this ratio.

When should a line graph be used

Answers

Answer:

Line graphs are used to track changes over short and long periods of time. When smaller changes exist, line graphs are better to use than bar graphs. Line graphs can also be used to compare changes over the same period of time for more than one group.

Consider the reaction: NaNO3(s) + H2SO4(l) NaHSO4(s) + HNO3(g) ΔH° = 21.2 kJ

How much heat must absorbed by the reaction system to convert 100g of NaNO3 into NaHSO4(s)?

Answers

Answer:

endet nach selam nw

4gh7

Briefly workout the relationship between these constants:
[tex]{ \bf{K _{sp} \: and \: K _{c} }}[/tex]
In consideration of the decopmposition of hydrogen iodide.
[tex]{ \sf{2HI _{(g)} →H _{2(g)} +I _{2(g)} }}[/tex]
[tex]{ \tt{any \: help \: is \: appreciated}}[/tex]

Answers

Kc require (aqueous/gaseous) products to be on the numerator and (aqueous/gaseous) reactants to be in the denominator, whereas Ksp will require (aqueous) products to be on the numerator and (aqueous) reactants to be in the denominator. Both require products on top and reactants in the bottom.

K = [products] / [reactants]

Kc is used when a reaction reaches dynamic equilibrium, whereas Ksp is used when an insoluble ionic solid dissolved by a tiny amount in a solution, as well as in determining whether or not a precipitate will form.

Kc can be used to measure equilibrium concentration for all reactions, whereas Ksp is limited to only ionic compounds' solubility.

The decomposition of HI (g) will required the use of Kc since the species are all gaseous, and gases cannot be ionic.

a) Define typical polyfunctional acid ?

b) Show the equations of dissociation mechanism of phosphoric acid as an example.

c) Write the equation for calculating the [H3O*].​

Answers

a) A polyfunctional acid is an acid that has more than one functional group.

b) The equations of dissociation of phosphoric acid are:    

H₃PO₄ + H₂O ⇄ H₂PO₄⁻ + H₃O⁺   H₂PO₄⁻ + H₂O ⇄ HPO₄²⁻ + H₃O⁺  HPO₄²⁻ + H₂O ⇄ PO₄³⁻ + H₃O⁺  

c) The equation for calculating the concentration of H₃O⁺ is [tex] [H_{3}O^{+}] = (\frac{K_{1}K_{2}K_{3}[H_{3}PO_{4}]}{[PO_{4}^{-3}]})^{1/3} [/tex]

       

a) A polyfunctional acid can be defined as an acid that has more than one functional group. Phosphoric acid (H₃PO₄) is an example of polyfunctional acid since it is composed of three hydroxyl groups joined to a phosphorus atom, which is also joined to an oxygen atom by a double bound. In that structure, the three hydrogen atoms of the hydroxyl groups give the acidic behavior to this compound.                  

b) Phosphoric acid has three equations of dissociation:  

H₃PO₄ + H₂O ⇄ H₂PO₄⁻ + H₃O⁺    (1)H₂PO₄⁻ + H₂O ⇄ HPO₄²⁻ + H₃O⁺   (2)HPO₄²⁻ + H₂O ⇄ PO₄³⁻ + H₃O⁺   (3)  

The dissociation constants for the three above equations are:

[tex] K_{1} = \frac{[H_{2}PO_{4}^{-}][H_{3}O^{+}]}{[H_{3}PO_{4}]} [/tex]   (4)

[tex] K_{2} = \frac{[HPO_{4}^{2-}][H_{3}O^{+}]}{[H_{2}PO_{4}^{-}]} [/tex]    (5)

[tex] K_{3} = \frac{[PO_{4}^{3-}][H_{3}O^{+}]}{[HPO_{4}^{2-}]} [/tex]    (6)

c) We can calculate the concentration of H₃O⁺ for each equilibrium with the equations (4), (5), and (6).    

The general reaction of dissociation of phosphoric acid is given by the sum of equations (1), (2), and (3):

H₃PO₄ + 3H₂O ⇄ PO₄³⁻ + 3H₃O⁺   (7)  

The concentration of H₃O⁺ for the total dissociation reaction (eq 7) can be found as follows:  

[tex] K_{t} = \frac{[PO_{4}^{-3}][H_{3}O^{+}]^{3}}{[H_{3}PO_{4}]} [/tex]   (8)

Where:

[tex] K_{t} = K_{1}*K_{2}*K_{3} [/tex]

Hence, by knowing the dissociation constants K₁, K₂ and K₃, and the concentrations of PO₄³⁻ and H₃PO₄, the [H₃O⁺] is:

[tex][H_{3}O^{+}] = (\frac{K_{1}K_{2}K_{3}[H_{3}PO_{4}]}{[PO_{4}^{-3}]})^{1/3}[/tex]

         

You can find more about acid dissociation constant in the link: https://brainly.com/question/1372520?referrer=searchResults                                                                  

I hope it helps you!                        

A mixture of argon and neon gases at a total pressure of 874 mm Hg contains argon at a partial pressure of 662 mm Hg. If the gas
mixture contains 12.0 grams of argon, how many grams of neon are present?

Answers

Answer:

6.684g

Explanation:

Here, we can use the mole ratio of the gases to calculate.

We know that the mole ratio of the gases equate to their number of moles.

Firstly, we calculate the number of moles of the oxygen gas. The number of moles of the oxygen gas is equal to the mass of the oxygen gas divided by the molar mass of the oxygen gas. The molar mass of the oxygen gas is 32g/mol

Thus, the number of moles produced is 5.98/32 = 0.186875

Where do we move from here?

We know that if we place the partial pressure of oxygen over the total pressure, this would be equal to the number of moles of oxygen divided by the total number of moles. Now let’s do this.

449/851 = 0.186875/n

n =(0.186875 * 851)/449

n = 0.3542

Now we do the same for argon to get the number of moles of argon.

Firstly, we use dalton’s partial pressure law to get the partial pressure of argon. In the simplest form, the partial pressure of argon is the total pressure minus the partial pressure of oxygen.

P = 851 - 449 = 402 mmHg

We now use the mole ratio relation.

402/851 = n/0.3542

n = (402 * 0.3542) / 851

n = 0.1673

Since we now know the number of moles of argon, we can use this multiplied by the atomic mass of argon to get the mass.

The atomic mass of argon is 39.948 amu

The mass is thus 39.948 * 0.1673 = 6.684g

Activation energy is:
A. The energy needed to begin breaking the bonds of reactants.
B. None of these.
C. The maximum amount of energy reactants can hold.
D. The energy needed to begin breaking the bonds of products.

Answers

Your answer is most definitely letter a

Activation energy is the energy needed to begin breaking the bonds of reactants. Hence, option A is correct.

What is activation energy?

Activation energy is defined as the minimum amount of energy necessary to initiate a chemical reaction.

Hence, activation energy is the energy needed to begin breaking the bonds of reactants.

Learn more about activation energy here:

https://brainly.com/question/2410158

#SPJ5

Calculating the expected pH of the buffer solution: Given that the pKa for Acetic Acid is 4.77, calculate the expected pH of the buffer solutions using the Henderson-Hasselbalch equation and the concentrations of Acetic Acid and Acetate added to the 250 ml Erlenmeyer flask: pH

Answers

Answer:

[tex]pH=4.77[/tex]

Explanation:

From the question we are told that:

pKa for Acetic Acid [tex]pK_a= 4.77[/tex]

Therefore

For Equal Concentration of acetic acid and acetatic ion

[tex]CH_3COOH=CH_3COO^-[/tex]

Generally the Henderson's equation for pH value is mathematically given by

[tex]pH=pK_a+log\frac{base}{acid}[/tex]

[tex]pH=4.77+log\frac{CH_3COO^-}{CH_3COOH}[/tex]

[tex]pH=4.77+log1[/tex]

[tex]pH=4.77[/tex]

consider the following thermochemical reaction for kerosene
2C12H26+37O2=24CO2+15026kj.
a. when 21.3g of CO2 are made, how much heat is released?
b. if 500.00kj of heat are released by thye reaction, how many grams of C12H26 have been consumed.?
c. if this reactionwere being used to generate heat, how many grams of C12H26 would have to be reacted to generate enough heat to raise the temperature of 750g of liquid water from 10 degrees celcius to 90 degrees celcius

Answers

Thermochemistry has to do with  heat evolved or absorbed in a chemical reactions. Thermochemical equations are equations in which the heat of reaction is included in the reaction equation. The reaction of moles and heat of reaction is important here.

This question has to do with thermochemistry and thermochemical equations.

The answers to each of the questions are shown below;

a) 300.52 KJ

b) 11.39 g

c) 5.78 g

The equation of the thermochemical reaction is;

2C12H26 + 37O2-------> 24CO2 + 15026KJ

Number of moles of CO2 released = 21.3g/44g/mol = 0.48 moles

From the reaction equation;

15026KJ is released when 24 moles of CO2 is released

x KJ is released when  0.48 moles of CO2 is released

x = 15026KJ  * 0.48 moles/24 moles

x = 300.52 KJ

b) If 2 moles of C12H26 released 15026KJ of heat

     x moles of C12H26  released 500.00KJ

x = 2 * 500.00KJ/15026KJ

x = 0.067 moles

Mass of C12H26 consumed =  0.067 moles * 170 g/mol = 11.39 g

c) Heat gained by water = heat released by combustion of kerosene

Heat gained by water = 0.75 Kg * 4200  * (90 -10)

Heat gained by water = 252 KJ

If 2 moles of C12H26  produced 15026KJ

x moles of C12H26  produces 252 KJ

x = 2 * 252/15026

x = 0.034 moles

Mass of C12H26   = 0.034 moles *  170 g/mol = 5.78 g

For more information on thermochemical equations see

https://brainly.com/question/21492209

A 70.0‑g piece of metal at 80.0 °C is placed in 100 g of water at 22.0 °C contained in a calorimeter. The metal and water come to the same temperature at 24.6 °C. How much heat did the metal give up to the water?

Answers

Answer:

1087.84 J

Explanation:

From the question given above, the following data were obtained:

Mass of metal (Mₘ) = 70 g

Temperature of metal (Tₘ) = 80 °C

Mass of water (Mᵥᵥ) = 100 g

Temperature of water (Tᵥᵥ) = 22 °C

Equilibrium temperature (Tₑ) = 24.6 °C

Heat lost by metal (Qₘ) =?

NOTE: Specific heat capacity of water (Cᵥᵥ) = 4.184 J/gºC

Heat lost by metal (Qₘ) = Heat gained by water (Qᵥᵥ)

Qₘ = Qᵥᵥ

Thus, we shall determine the heat gained by water. This can be obtained as follow:

Qᵥᵥ = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)

Qᵥᵥ = 100 × 4.184 (24.6 – 22)

Qᵥᵥ = 418.4 × 2.6

Qᵥᵥ = 1087.84 J

Thus, the heat gained by water is 1087.84 J.

Heat lost by metal (Qₘ) = Heat gained by water (Qᵥᵥ)

Qₘ = Qᵥᵥ

Qᵥᵥ = 1087.84 J

Qₘ = 1087.84 J

Therefore, the heat lost by the metal is 1087.84 J

A 70.0‑g piece of metal at 80.0 °C is placed in 100 g of water at 22.0 °C contained in a calorimeter. After reaching a temperature of 24.6 °C, the heat given up by the metal to the water is -1.08 kJ.

What is a calorimeter?

A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity.

A 70.0‑g piece of metal at 80.0 °C is placed in 100 g of water at 22.0 °C contained in a calorimeter. The final temperature of the system is 24.6 °C.

Let's use the following expression to calculate the heat absorbed by the water.

Qw = c × m × ΔT

Qw = (4.184 J/g.°C) × 100 g × (24.6 °C - 22.0 °C) = 1.08 kJ

where,

Qw is the heat absorbed by the water.c is the specific heat capacity of water.m is the mass of water.ΔT is the change in the temperature for water.

According to the law of conservation of energy, the sum of the heat absorbed by the water and the heat released by the metal (Qm) is zero.

Qw + Qm = 0

Qm = -Qw = -10.8 kJ

A 70.0‑g piece of metal at 80.0 °C is placed in 100 g of water at 22.0 °C contained in a calorimeter. After reaching a temperature of 24.6 °C, the heat given up by the metal to the water is -1.08 kJ.

Learn more about calorimeters here: https://brainly.com/question/12431493

Consider the molecule PF5.
Indicate how many lone pairs you would find on the central atom:
Indicate how many total bonds are connected to the central atom (count single bonds as 1 bond, double bonds as 2 bonds, and triple bonds as 3 bonds):

Answers

Explanation:

here's the answer to your question

6. In a particular atom, an electron moves from n = 3 to the ground state (n = 1), emitting a photon with frequency 5.2 x 1015 Hz as it does so. What is the difference in energy between n = 3 and n = 1 in this atom? g

Answers

Answer: The question wants you to determine the energy that the incoming photon must have in order to allow the electron that absorbs it to jump from  

n

i

=

2

to  

n

f

=

6

.

A good starting point here will be to calculate the energy of the photon emitted when the electron falls from  

n

i

=

6

to  

n

f

=

2

by using the Rydberg equation.

1

λ

=

R

(

1

n

2

f

1

n

2

i

)

Here

λ

si the wavelength of the emittted photon

R

is the Rydberg constant, equal to  

1.097

10

7

 

m

1

Plug in your values to find

1

λ

=

1.097

10

7

.

m

1

(

1

2

2

1

6

2

)

1

λ

=

2.4378

10

6

.

m

1

This means that you have

λ

=

4.10

10

7

.

m

So, you know that when an electron falls from  

n

i

=

6

to  

n

f

=

2

, a photon of wavelength  

410 nm

is emitted. This implies that in order for the electron to jump from  

n

i

=

2

to  

n

f

=

6

, it must absorb a photon of the same wavelength.

To find the energy of this photon, you can use the Planck - Einstein relation, which looks like this

E

=

h

c

λ

Here

E

is the energy of the photon

h

is Planck's constant, equal to  

6.626

10

34

.

J s

c

is the speed of light in a vacuum, usually given as  

3

10

8

.

m s

1

As you can see, this equation shows you that the energy of the photon is inversely proportional to its wavelength, which, of course, implies that it is directly proportional to its frequency.

Plug in the wavelength of the photon in meters to find its energy

E

=

6.626

10

34

.

J

s

3

10

8

m

s

1

4.10

10

7

m

E

=

4.85

10

19

.

J

−−−−−−−−−−−−−−−−−  

I'll leave the answer rounded to three sig figs.

So, you can say that in a hydrogen atom, an electron located on  

n

i

=

2

that absorbs a photon of energy  

4.85

10

19

 

J

can make the jump to  

n

f

=

6

.

Explanation:

how can we convert plastic garbage energy into electric energy​

Answers

Answer:

Unfortunately, we don`t know how to convert plastic material into electricity yet. I suppose an idea is for someone to invent a machine similar to biomass, where dead plants created energy, but here it`s plastic. The only issue is that it could release deadly chemicals.

Sorry if this isn`t much help, but there isn`t really an answer.   :/

Answer:

Plastics are among the most valuable waste materials – although with the way people discard them, you probably wouldn’t know it. It’s possible to convert all plastics directly into useful forms of energy and chemicals for industry, using a process called “cold plasma pyrolysis”.

Hope this helps you ❤️

MaRk mE aS braiNliest ❤️

The turbines in a hydroelectric plant are fed by water falling from a 50 m height. Assuming 91% efficiency for conversion of potential to electrical endrgy, and 8% loss of the resulting power in transmission, what is the mass flow rate of water required to power a 200 W light bulb? ​

Answers

From  the information given;

the height of the water stream = 50 mthe efficiency of conversion from potential energy to electrical energy is  91%loss of power transmission = 8%

To determine the mass flow rate, let's start by understanding some concepts and parameters.

The power is known to be the energy per unit of time. Mathematically, it can be written as:

[tex]\mathbf{Power = \dfrac{Energy}{Time}}[/tex]

[tex]\mathbf{P =\dfrac{E_p}{time}}[/tex]

[tex]\mathbf{P =\dfrac{m\times g\times z}{time}}[/tex]

where;

[tex]\mathbf{E_p}[/tex] is the potential energy of the streamm = mass flow rateg = acceleration under gravityz = height

Thus;

[tex]\mathbf{E_p}[/tex] = m × 9.81 m/s² × 50 m

[tex]\mathbf{E_p}[/tex] = m × 490.5 (m²/s²)

Recall that:

The power P = 200 W, and;the conversion of the P.E = 91% = 0.91

[tex]\mathbf{E_p}[/tex] = 0.91 × 490.5m (m²/s²)

[tex]\mathbf{E_p}[/tex] = 446.355m (m²/s²)

Since the resulting power transmission is said to be 8%

Then;

the loss in the power transmission (P) = 100% - 8% ×  446.355m (m²/s²)

the loss in the power transmission (P) = 92%  ×  446.355m (m²/s²)

the loss in the power transmission (P) = 0.92  ×  446.355m (m²/s²)

the loss in the power transmission (P) =  410.65m (m²/s²)

Finally;

P = 410.65m (m²/s²)

[tex]\mathbf{P = 410.65 \times m (\dfrac{m^2}{s^2})}[/tex]

replacing the values, we have:

[tex]\mathbf{200 = 410.65 \times m (\dfrac{m^2}{s^2})}[/tex]

[tex]\mathbf{m = \dfrac{200 watt}{410.65\times (\dfrac{m^2}{s^2})}}[/tex]

[tex]\mathbf{m = \dfrac{200 \dfrac{J}{s}}{410.65\times (\dfrac{m^2}{s^2})}}[/tex]

since 1 J/s = 1 kgm²/s²)

Then:

[tex]\mathbf{m = \dfrac{200 \dfrac{\dfrac{kg\times m^2}{s^2}}{s}}{410.65\times (\dfrac{m^2}{s^2})}}[/tex]

[tex]\mathbf{m = \dfrac{200 \ {kg}}{410.65 \ s}}[/tex]

mass flow rate of the water (m) = 0.487 kg/s

Therefore, we can conclude that the mass flow rate of the water required to power a 200 W bulb light is 0.487 kg/s

Learn more about the hydroelectric plant here:

https://brainly.com/question/2635539?referrer=searchResults

Given the following balanced equation:
3Cu(s) + 8HNO3(aq) = 3Cu(NO3)2(aq) + 2NO(g) + 4H2O(l)
Determine the mass of copper (II) nitrate that would be formed from the complete reaction
of 35.5g of copper with an excess of nitric acid.

Answers

Answer: The mass of copper (II) nitrate produced is 105.04 g.

Explanation:

The number of moles is defined as the ratio of the mass of a substance to its molar mass. The equation used is:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex] ......(1)

Given mass of copper = 35.5 g

Molar mass of copper = 63.5 g/mol

Plugging values in equation 1:

[tex]\text{Moles of copper}=\frac{35.5g}{63.5g/mol}=0.560 mol[/tex]

The given chemical equation follows:

[tex]3Cu(s)+8HNO_3(aq)\rightarrow 3Cu(NO_3)_2(aq)+2NO(g)+4H_2O(l)[/tex]

By the stoichiometry of the reaction:

If 3 moles of copper produces 3 moles of copper (II) nitrate

So, 0.560 moles of copper will produce = [tex]\frac{3}{3}\times 0.560=0.560mol[/tex] of copper (II) nitrate

Molar mass of copper (II) nitrate = 187.56 g/mol

Plugging values in equation 1:

[tex]\text{Mass of copper (II) nitrate}=(0.560mol\times 187.56g/mol)=105.04g[/tex]

Hence, the mass of copper (II) nitrate produced is 105.04 g.

Oxygen is composed of three isotopes: oxygen-16, oxygen-17 and oxygen-18 and has an average atomic mass of 15.9982 amu. Oxygen-17 has a mass of 16.988 amu and makes up 0.032% of oxygen. Oxygen-16 has a mass of 15.972 amu and oxygen-18 has a mass of 17.970 amu. What is the percent abundance of oxygen-18?

Answers

Answer:

The percent abundance of oxygen-18 is 1.9066%.

Explanation:

The average atomic mass of oxygen is given by:

[tex] m_{O} = m_{^{16}O}*\%_{16} + m_{^{17}O}*\%_{17} + m_{^{18}O}*\%_{18} [/tex]

Where:

m: is the atomic mass

%: is the percent abundance

Since the sum of the percent abundance of oxygen isotopes must be equal to 1, we have:  

[tex] 1 = \%_{16} + \%_{17} + \%_{18} [/tex]

[tex] 1 = x + 3.2 \cdot 10^{-4} + \%_{18} [/tex]

[tex] \%_{18} = 1 - x - 3.2 \cdot 10^{-4} [/tex]

Hence, the percent abundance of O-18 is:  

[tex] m_{O} = m_{^{16}O}*\%_{16} + m_{^{17}O}*\%_{17} + m_{^{18}O}*\%_{18} [/tex]  

[tex]15.9982 = 15.972*x + 16.988*3.2 \cdot 10^{-4} + 17.970*(1 - 3.2 \cdot 10^{-4} - x)[/tex]

[tex] x = 0.980614 \times 100 = 98.0614 \% [/tex]                                                              

Hence, the percent abundance of oxygen-18 is:

[tex]\%_{18} = (1 - 3.2 \cdot 10^{-4} - 0.980614) \times 100 = 1.9066 \%[/tex]                      

Therefore, the percent abundance of oxygen-18 is 1.9066%.

I hope it helps you!                                                      

Determine whether the statement about identifying a halide is true: Regardless of any concentration of ammonium solution, the precipitates in the reaction solution of my unknown halide after 0.1M AgNO3 remain because my unknown halide solution contains Br. Select one: True False

Answers

Answer:

False

Explanation:

The statement ; Regardless of any concentration of ammonium solution the precipitate of unknown halide after 0.1M AgNO3 will remain is FALSE

This is Because the remaining concentration of AgNO3 is dependent on the solubility of Ag⁺

Other Questions
make a 5 sentence of past tense and change it into direct speech Chris is reading a book that has nine-hundred seventy-eight pages in it. Every nightChris reads a number of pages that can be rounded to the nearest hundred. The rstnight Chris reads one-hundred two pages. The second night Chris reads ninety-eightpages. The third night Chris read one-hundred fty-four pages. The fourth night Chrisreads fty-six pages. The fth night Chris reads two-hundred thirty-four pages. Thesixth night Chris reads forty-eight pages. The seventh night Chris reads one-hundredseventy pages. On what nights does Chris read a number of pages that can be roundedto the nearest hundred? Show all your mathematical thinking. Which of the following is a way of storing carbon in organic material?A. ConsumptionB. RespirationC. Burning fossil fuelsD. All of these How many paths are there from C to E?eri128 10O 14 F={(-1, 2), (3, 2), (4,2), (0, 2)} Is Fa function and why/why not? A small quantity of weakened germs that cause the production of antibodies in the body against the specific disease El largo de un terreno es el doble de la medida de su ancho, como se muestra en la imagen. Si el permetro es de 96 hectmetros, cules son las dimensiones del terreno? Find f(-5) if f(x)=[x+1] hellppp meeeeeee pleaseeee Write code that prints: Ready! firstNumber ... 2 1 Run! Your code should contain a for loop. Print a newline after each number and after each line of text. Ex: If the input is: 3 the output is: Ready! 3 2 1 Run! At 11:30 a.m. the bottle is 1/4 of the way full. At whattime will the bottle be 1/2 full?o 11:31 a.m.11:35 a.m.O 11:40 a.m.1:00 p.m.Its B: 11:35 a.m. all of the following are good choices to search for potential scholarships except According to the principle of comparative advantage, Group of answer choices countries should specialize in the production of goods for which they use more resources than their trading partners countries with a comparative advantage in the production of every good need not specialize countries should specialize in the production of goods for which they have a lower opportunity cost of production than their trading partners countries should specialize in the production of goods for which they use fewer resources than their trading partners PreviousNext a. Serving as a team player in a company where independent thinking is a top priority b. An entry-level position in the marketing area with a possibility of promotion c. A challenging job at an organization that raises the bar in data security d. An accounting position in which 10 years' experience and a license as a CPA will allow me to assist your company with payroll, employee benefits, and governmental tax and records reporting Asignen a cada situacion un numero entero A_la altura del monte everest es de 8848 m B_un buso descendio 25 m C_el auto esta estacionado en el 1 sub suelo D_se acreditador $500 en la caja de ahorro E_el deportista que obtuvo la medalla de oro en salto en alto alcanzo los 2,38 m F_la muralla china se construyo aproximadamente 200 aos antes de cristo Which of the following is NOT necessary to put on note cards or in your notes when doing research?1. the page number on which the information was found2. the main idea of the information on the card3. the reason you chose the reference as a source4. word-for-word quotations, complete with quotation marks 1. How much heat energy ( Q ) is required to heat 2.0 kg of copper from 30.0 oC to 80.0 oC? Initial value question help PLS HELP! What effect will replacing x with (x + 7)have on the graph of the equation y = x^2 choose the right word to complete each sentence in this expert from Bedes An Ecclesiastical History Of the English People