Answer:4050m^2
Step-by-step explanation:
Assuming that the site is rectangular
Area= l x W
90 X 45
=4050
Answer:
1050m
How I got the answer: I assume the site is a rectangle so I'll use the formula for finding the area of a rectangle. Using the formula length times width I solved this problem. The length is 90m. The width is 45. When a question says x meters long it means the length is x meters. In other words long = length wide = width in a math problem. 90 times 40 is 1050m
Determine whether the following problem involves a permutation or combination. (It is not necessary to solve the problem.)
How many different -letter passwords can be formed from the letters S, T, U, W, X, Y, and Z if no repetition of letters is allowed?
The problem involves (combination or permiation) because the (order or number) of letters selected (does or does not) matter.
Answer:
Step-by-step explanation:
The order matters
stuwxyz is different than zyxwuts
You have 7 letters
The number of permutations is 7! which is 7*6*5*4*3*2*1 = 5040
Is this true or false ??
=============================================================
Explanation:
We'll use these two properties of integrals [tex]\displaystyle \text{If f(x) is an even function, then } \int_{-a}^{a}f(x)dx = 2\int_{0}^{a}f(x)dx[/tex]
[tex]\displaystyle \text{If f(x) is an odd function, then } \int_{-a}^{a}f(x)dx = 0[/tex]
These properties are valid simply because of the function's symmetry. For even functions, we have vertical axis symmetry about x = 0; while odd functions have symmetry about the origin.
------------------------
Here's how the steps could look
[tex]\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=\int_{-7}^{7}((ax^8+c)+bx)dx\\\\\\\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=\int_{-7}^{7}(ax^8+c)dx+\int_{-7}^{7}(bx)dx\\\\\\\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=\left(2\int_{0}^{7}(ax^8+c)dx\right)+(0)\\\\\\\displaystyle \int_{-7}^{7}(ax^8+bx+c)dx=2\int_{0}^{7}(ax^8+c)dx\\\\\\[/tex]
Therefore, the given statement is true. The values of a,b,c don't matter. You could replace those '7's with any real number you want and still end up with a true statement.
We can see that ax^8+c is always even, while bx is always odd.
------------------------
Side note:
For the second step, I used the idea that [tex]\int(f(x)+g(x))dx=\int f(x)dx+\int g(x)dx\\\\[/tex]
which allows us to break up a sum into smaller integrals.
i need the answer no explanation
Answer:
the answer is option D because it cant be division or multiplication and minus does not work
Answer:
log 1/9 * log k
Step-by-step explanation:
[tex]\frac{1}{9} /k[/tex] = 1/9 * k/1 = 1/9 * k
which relation is a function?
Answer:
Choice A.
Step-by-step explanation:
Every other choice has multiple of the same x-values that have different corresponding y-values.
Given C(4, 3) and D(-4, -3) are two points on a circle, centered at the origin. Given
that CD is a diameter of the circle,
a) Find the radius of the circle.
b) State the equation of the circle
Answer:000
Step-by-step explanation:000
answer this question
Answer:
(-2, 13) (-1,8) (0, 5) (1, 4) (2, 5) (3, 8)
(2.4 , 6) or (-0.4, 6)
Step-by-step explanation:
Graph y = 6 on top of y = [tex]x^{2}[/tex] -2x + 5 and use the points where the two lines meet.
i spend 3 hours a day out of a 8 hour shift, what percentage is that
Answer:
0.375 = 38%
Step-by-step explanation:
Just divide 3 from 8 and that will give you 0.375
Then you round that to the nearest one which is 38 and
that will get your percentage
Answer: 37.5%
Step-by-step explanation: I just divided 3 by 8 then once I got my answer I moved the decimal point over to the right by 2.
The firm has bonds with par value of 10,000,000 VND, coupon rate of 11%, annual interest payment, and the remaining maturity period is 07 years. If the bond's interest rate and current risk level have a return rate of 12%, what price should company C sell the bond in the present?
a.
10,000,000
b.
14,152,000
c.
12,053,000
d.
11,150,000
what is the quotient 3/8 ÷5/12
Answer:
9/10
Step-by-step explanation:
3/8 ÷5/12
Copy dot flip
3/8 * 12/5
Rewriting
3/5 * 12/8
3/5 * 3/2
9/10
Real life problem for (-10+-2)=12
Hello!
[tex]\bf [ (-10) + (-2) ] = 12 [/tex]
[tex]\bf [ (-10) - 2 ] = 12 [/tex]
[tex]\bf -10 - 2 = 12 [/tex]
[tex]\bf -12 ≠ 12 [/tex]
Answer: Wrong
Good luck! :)
An online retailer processed 60 merchandise return requests from Wyoming and Montana in a day. Return requests from Montana were 5 times as many as those from Wyoming. How many return requests were from Wyoming?
A) 10
B) 25
C) 15
D) 20
E) 5
The number of merchandise return requests for Wyoming is equal to 10.
Let merchandise return requests from Wyoming be W.
Let merchandise return requests from Montana be M.
Given the following data;
Total number of merchandise return requests for W and M = 60Translating the word problem into an algebraic equation, we have;
[tex]W + M = 60[/tex] .....equation 1
[tex]M = 5W[/tex] ......equation 2
To find the value of W, we would solve the system of equations by using the substitution method;
Substituting eqn 2 into eqn 1, we have;
[tex]W + 5W = 60\\\\6W = 60\\\\W = \frac{60}{6}[/tex]
Wyoming, W = 10 merchandise return requests.
Therefore, the number of merchandise return requests for Wyoming is equal to 10.
Find more information: https://brainly.com/question/8409825
1
Select the correct answer.
Simplify the following expression.
우
O A.
OB. 12
Oc. 1
OD.
64
Reset
Next
Answer:
1/64
Step-by-step explanation:
4^ (-11/3) ÷ 4 ^ (-2/3)
We know a^b ÷a^c = a^(b-c)
4 ^(-11/3 - - 2/3)
4^(-11/3 +2/3)
4^(-9/3)
4^ -3
We know a^-b = 1/a^b
1/4^3
1/64
plzz help with this question
Answer: 51 liters of fuel are required
Step by step: start by seeing how many times 476 can go into 1428
(1428/476=3)
Then take your sum of that and multiply it by 17 since that’s the number that correlates with 476
(17x3=51) therefore your answer is 51 liters
Evaluate the expression when a=-7 and y=3 3y-a
Answer:
3y-a
3.3-7
9-7
2
Step-by-step explanation:
first we have to do multiply by replacing the value of y and the subtract by using the value of a.
Hope this will be helpful for you
I need two examples of Solve a proportion with a mixed number in one of its numerators. SHOW ALL WORK!!!!!!!!!!!!
Answer:
A proportion equation is something like:
[tex]\frac{A}{B} = \frac{x}{C}[/tex]
Where A, B, and C are known numbers, and we want to find the value of x.
Now we want two cases where in one of the numerators we have a mixed number, where a mixed number is something like:
1 and 1/3
which actually should be written as:
1 + 1/3
1) a random problem can be:
[tex]\frac{1 + 1/3}{4} = \frac{x}{5}[/tex]
We can see that the numerator on the left is a mixed number.
First, let's rewrite the numerator then:
1 + 1/3
we need to have the same denominator in both numbers, so we can multiply and divide by 3 the number 1:
(3/3)*1 + 1/3
3/3 + 1/3 = 4/3
now we can rewrite our equation as:
[tex]\frac{4/3}{4} = \frac{x}{5}[/tex]
now we can solve this:
[tex]\frac{4/3}{4} = \frac{4}{3*4} = \frac{x}{5} \\\\\frac{1}{3} = \frac{x}{5}[/tex]
now we can multiply both sides by 5 to get:
[tex]\frac{5}{3} = x[/tex]
Now let's look at another example, this time we will have the variable x in the denominator:
[tex]\frac{7}{12} = \frac{3 + 4/7}{x}[/tex]
We can see that we have a mixed number in one numerator.
Let's rewrite that number as a fraction:
3 + 4/7
let's multiply and divide the 3 by 7.
(7/7)*3 + 4/7
21/7 + 4/7
25/7
Then we can rewrite our equation as
[tex]\frac{7}{12} = \frac{25/7}{x}[/tex]
Now we can multiply both sides by x to get:
[tex]\frac{7}{12}*x = \frac{25}{7}[/tex]
Now we need to multiply both sides by (12/7) to get:
[tex]x = \frac{25}{7}*\frac{12}{7} = 300/49[/tex]
1289 +(-1236) + (2434) =
0 -1431
O 2345
O 2487
0 -1956
Answer:
This answer is 2487
which will be the third one
Hope this help
Which of the following is the most accurate statement about statistics?
a) We can absolutely be 100% certain in accurately generalizing the characteristics of entire population based on the sample data
b) By analyzing data, we may be able to identify connections and relationships in our data
c) We can explore in the midst of variation to better understand our data
d) limited data or experience likely generates less confidence
e) Non of the above
Answer:
b) By analyzing data, we may be able to identify connections and relationships in our data.
Step-by-step explanation:
In statistics decisions are based on probability sampling distributions. As statics is collection and analysis of data along with its interpretation and presentation.Construct the confidence interval for the population standard deviation for the given values. Round your answers to one decimal place. n=21 , s=3.3, and c=0.9
Answer:
The correct answer is "[tex]2.633< \sigma < 4.480[/tex]".
Step-by-step explanation:
Given:
n = 21
s = 3.3
c = 0.9
now,
[tex]df = n-1[/tex]
[tex]=20[/tex]
⇒ [tex]x^2_{\frac{\alpha}{2}, n-1 }[/tex] = [tex]x^2_{\frac{0.9}{2}, 21-1 }[/tex]
= [tex]31.410[/tex]
⇒ [tex]x^2_{1-\frac{\alpha}{2}, n-1 }[/tex] = [tex]10.851[/tex]
hence,
The 90% Confidence interval will be:
= [tex]\sqrt{\frac{(n-1)s^2}{x^2_{\frac{\alpha}{2}, n-1 }} } < \sigma < \sqrt{\frac{(n-1)s^2}{x^2_{1-\frac{\alpha}{2}, n-1 }}[/tex]
= [tex]\sqrt{\frac{(21-1)3.3^2}{31.410} } < \sigma < \sqrt{\frac{(21.1)3.3^2}{10.851} }[/tex]
= [tex]\sqrt{\frac{20\times 3.3^2}{31.410} } < \sigma < \sqrt{\frac{20\times 3.3^2}{10.851} }[/tex]
= [tex]2.633< \sigma < 4.480[/tex]
Use the distributive property to remove the parentheses.
-5(6u - 4w-2)
Answer:
-30u+20w+10
Step-by-step explanation:
multiple each term inside the parenthesis by -5. remember negative times negative = positive
The delivery man checks his route for deliveries.
The map has a scale of 1:250,000.
The distance between the bakery and his last delivery is 35 cm
What is the actual distance?
km.
9514 1404 393
Answer:
87.5 km
Step-by-step explanation:
Actual distance is 250000×35 cm = 87.5×10^5 cm = 87.5 km
_____
There are 100 cm in 1 m, and 1000 m in 1 km, so 100,000 cm = 10^5 cm in 1 km
A company manufactures televisions. The average weight of the televisions is 5 pounds with a standard deviation of 0.1 pound. Assuming that the weights are normally distributed, what is the weight that separates the bottom 10% of weights from the top 90%?
Answer:
[tex]0.2564\text{ pounds}[/tex]
Step-by-step explanation:
The 90th percentile of a normally distributed curve occurs at 1.282 standard deviations. Similarly, the 10th percentile of a normally distributed curve occurs at -1.282 standard deviations.
To find the [tex]X[/tex] percentile for the television weights, use the formula:
[tex]X=\mu +k\sigma[/tex], where [tex]\mu[/tex] is the average of the set, [tex]k[/tex] is some constant relevant to the percentile you're finding, and [tex]\sigma[/tex] is one standard deviation.
As I mentioned previously, 90th percentile occurs at 1.282 standard deviations. The average of the set and one standard deviation is already given. Substitute [tex]\mu=5[/tex], [tex]k=1.282[/tex], and [tex]\sigma=0.1[/tex]:
[tex]X=5+(1.282)(0.1)=5.1282[/tex]
Therefore, the 90th percentile weight is 5.1282 pounds.
Repeat the process for calculating the 10th percentile weight:
[tex]X=5+(-1.282)(0.1)=4.8718[/tex]
The difference between these two weights is [tex]5.1282-4.8718=\boxed{0.2564\text{ pounds}}[/tex].
Answer:
0.2564
Step-by-step explanation:
90th percentile, we use the formula X=μ + Zσ,
Where u = mean and sigma = standard deviation and Z = 1.282
The mean is 5 and sigma = .1
X = 5+1.282(.1)
X = 5.1282
10th percentile, we use the formula X=μ + Zσ,
Where u = mean and sigma = standard deviation and Z = -1.282
The mean is 5 and sigma = .1
X = 5-1.282(.1)
X = 4.8718
The difference is
5.1282 - 4.8718
0.2564
Point P is plotted on the coordinate grid. If point S is 12 units to the left of point P, what are the coordinates of point S? On a coordinate grid from negative 12 to positive 12 in increments of 2, a point P is plotted at the ordered pair 6, negative 4. (6, −16) (−6, −16) (−6, −4) (6, 4)
9514 1404 393
Answer:
(−6, −4)
Step-by-step explanation:
Translating a point 12 units left subtracts 12 from its x-coordinate.
P(6, -4) +(-12, 0) = S(-6, -4)
7/18 - 1/3 , 1/2 - 1/5 - 1/10 and 3 1/2 - 2 5/9 please help thank you
Answer:
Step-by-step explanation:
7/18=7/18
it cant be divided agian
1/3=1/3
it cant be divded agian
1/5=1/5
it cant be divded agian
1/10=1/10
it cant be divded agian
3 1/2=3/2
2 5/9 =10/9
i am not sure if this is what you wanted ...
What type of object is pictured below?
O A. Point
O B. Ray
C. Segment
D. Line
Answer:
It is a ray because there are two points with a line passing through them which is extenging on one side but not on the other.
what is the sum of the angles of a triangle?
Use the figure to find x.
Answer:
[tex] x = 8.57[/tex]
Step-by-step explanation:
Here two triangles are given to us , which are attached to each other . Here we can use the concept of Trigonometry to find out the value of x. The angles of the triangle are 60° and 45° . Let the common side be p .
Step 1: Use the ratio of tan in upper triangle
[tex]\rm\implies tan60^o = \dfrac{perpendicular}{base} [/tex]
Substitute the respective values ,
[tex]\rm\implies \sqrt3=\dfrac{p}{7} [/tex]
Cross multiply ,
[tex]\rm\implies p = 7\sqrt3 [/tex]
Step 2: Use the ratio of cos in lower triangle
[tex]\rm\implies cos45^o = \dfrac{base}{hypontenuse} [/tex]
Substitute the respective values ,
[tex]\rm\implies \dfrac{1}{\sqrt2}=\dfrac{x}{7\sqrt3} [/tex]
Cross multiply ,
[tex]\rm\implies x= \dfrac{7\sqrt3}{\sqrt2} [/tex]
Put the approximate values of √2 and √3
[tex]\rm\implies x= \dfrac{7\times 1.732}{1.414} [/tex]
This equals to ,
[tex]\rm\implies \boxed{\blue{\rm \quad x = 8.57\quad}} [/tex]
Hence the value of x is 8.57 .
Answer:
The value of x is [tex]\frac{7\sqrt{6}}{2}[/tex]
Solution given:
AB=7
BD=x
<BAC=60°
<DBC=45°
In right angled triangle ABC
Tan 60°=opposite/adjacent
Tan 60°=BC/AB
Substitute value
[tex]\sqrt{3}[/tex]=[tex]\frac{BC}{7}[/tex]
BC=[tex]7\sqrt{3}[/tex]
again
againIn right angled triangle BCD
againIn right angled triangle BCDUsing Cos angle
Cos 45=adjacent/hypotenuse
Cos45°=BD/BC
Substituting value
[tex]\frac{\sqrt{2}}{2}=\frac{x}{7\sqrt{3}}[/tex]
Doing criss cross multiplication
[tex]\frac{\sqrt{2}}{2}*7\sqrt{3}=x[/tex]
x=[tex]\frac{7\sqrt{6}}{2}[/tex]
Suppose the daily customer volume at a call center has a normal distribution with mean 5,500 and standard deviation 1,000. What is the probability that the call center will get between 4,800 and 5,000 calls in a day
Answer:
0.0665 = 6.65% probability that the call center will get between 4,800 and 5,000 calls in a day.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Mean 5,500 and standard deviation 1,000.
This means that [tex]\mu = 5500, \sigma = 1000[/tex]
What is the probability that the call center will get between 4,800 and 5,000 calls in a day?
This is the p-value of Z when X = 5000 subtracted by the p-value of Z when X = 4800. So
X = 5000
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{5000 - 5500}{1000}[/tex]
[tex]Z = -0.5[/tex]
[tex]Z = -0.5[/tex] has a p-value of 0.3085.
X = 4800
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{4800 - 5500}{1000}[/tex]
[tex]Z = -0.7[/tex]
[tex]Z = -0.7[/tex] has a p-value of 0.2420.
0.3085 - 0.2420 = 0.0665
0.0665 = 6.65% probability that the call center will get between 4,800 and 5,000 calls in a day.
Can somebody help me to solve this?
Answer:
B
Step-by-step explanation:
Given
[tex]\sqrt{ab}[/tex] = [tex]\sqrt{bc}[/tex] ( square both sides )
ab = bc ( divide both sides by b ) , then
a = c
Given
[tex]\sqrt{ac}[/tex] = [tex]\sqrt{4c^4}[/tex] ( square both sides )
ac = 4[tex]c^{4}[/tex] ( but a = c) , so
4[tex]c^{4}[/tex] = c² ( subtract c² from both sides )
4[tex]c^{4}[/tex] - c² = 0 ← factor out c² from each term on the left side
c²(4c² - 1) = 0 ← 4c² - 1 is a difference of squares
c²(2c - 1)(2c + 1) = 0
Equate each factor to zero and solve for x
c² = 0 ⇒ c = 0
2c - 1 = 0 ⇒ 2c = 1 ⇒ c = [tex]\frac{1}{2}[/tex]
2c + 1 = 0 ⇒ 2c = - 1 ⇒ c = - [tex]\frac{1}{2}[/tex]
But c > 0 , then c = [tex]\frac{1}{2}[/tex] → B
Find x and explain how you found x
Answer:
x=60
Step-by-step explanation:
There are different ways to find x but this is what I found easiest.
To solve first note that AOD and CFB are vertical angles; this means that they are congruent. AOD consists of two angles with the measurements of 90 and x. CFB consists of two angles with the measurements of 30 and 2x. So, to find x set add the adjacent angles and set them equal to the other pair of angles. The equation would be [tex]90+x=30+2x[/tex]. First, subtract x from both sides; this makes the equation [tex]90=30+x[/tex]. Then, subtract 30 from both sides. This gives the final answer, x=60.
Consumer products are required by law to contain at least as much as the amount printed on the package. For example, a bag of potato chips that is labeled as 10 ounces should contain at least 10 ounces.Assume that the standard deviation of the packaging equipment yields a bag weight standard deviation of 0.2 ounces. Assume the bag weight distribution is bell-shaped. Determine what average bag weight must be used to achieve at least 99 percent of the bags having 10 or more ounces in the bag.
Answer:
The average bag weight must be used to achieve at least 99 percent of the bags having 10 or more ounces in the bag=9.802
Step-by-step explanation:
We are given that
Standard deviation, [tex]\sigma=0.2[/tex]ounces
We have to find the average bag weight must be used to achieve at least 99 percent of the bags having 10 or more ounces in the bag.
[tex]P(x\geq 10)=0.99[/tex]
Assume the bag weight distribution is bell-shaped
Therefore,
[tex]P(\frac{x-\mu}{\sigma}\geq 10)=0.99[/tex]
We know that
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using the value of z
Now,
[tex]\frac{10-\mu}{0.2}=0.99[/tex]
[tex]10-\mu=0.99\times 0.2[/tex]
[tex]\mu=10-0.99\times 0.2[/tex]
[tex]\mu=9.802[/tex]
Hence, the average bag weight must be used to achieve at least 99 percent of the bags having 10 or more ounces in the bag=9.802