Answer:
next term is 3
Step-by-step explanation:
[tex]f(n+1)=-2f(n)\\\\f(1)=-1.5=-\frac{3}{2}f(2)=-2f(1)=-2*(-\frac{3}{2})=3[/tex]
Answer:
3
Step-by-step explanation:
Took the test and got this right.
❤✔
PLEASE HELP ME MAKE SURE YOUR ANSWER IS RIGHT BEFORE ANSWERING
Answer:
Always. Always.
Step-by-step explanation:
All circles conform to the same equations such as using pie to calculate circumference. Unlike a rectangle, for example, all ratios used in a circle are the same.
Find the interest on the loan using the Banker's rule. P= $8550. r=8.8%, t= 105 days The interest on the loan using the Banker's rule is $
What is the index of the radical below?
√10
A. 5
B. 9
C. 2
D. 10
Which equation is true?
f of negative 10 = 1
f of 2 = negative 10
f of 0 = 6
f of 1 = negative 10
Answer:
f(0) = 6
Step-by-step explanation:
Complete question:
The function f (x) is given by the set of ordered pairs 1,0 (-10,2), (0,6) (3,17) (-2,-1) which equation is true
f(-10)=1
f(2)=-10
f(0)=6
f(1)=-10
Given the coordinate (x, y). This shows that the input function is x and the output function is y, i.e. f(x) = y
From the pair of coordinates given, hence;
f(1) = 0
f(-10) = 2
f(0) = 6
f(3) = 17
f(-2) = -1
From the following options, this shows that f(0) = 6 is correct
Answer:
f(0) = 6
Step-by-step explanation:
EDGE
Which equation could represent a linear combination of the systems?
9514 1404 393
Answer:
(b) 0 = -78
Step-by-step explanation:
Subtracting 6 times the first equation from the second will give ...
(4x +15y) -6(2/3x +5/2y) = (12) -6(15)
0 = -78
Answer:
the answer is b
Step-by-step explanation:
Find the intersection of the parabola y=-2x^2-4x+2 and the line -6x+y=14
Answer:
(-2,2) and (-3,-4)
Step-by-step explanation:
by graphing the line and parabola, you should get this graph
(12 1/3 * 2) + (10 3/4 * 2)
Answer:
[tex](12\frac{1}{3} *2)+(10\frac{3}{4} *2)\\\\=(\frac{12(3)+1}{3} *2)+(\frac{10(4)+3}{4} *2)\\\\=\frac{37*2}{3} +\frac{43*2}{4} \\\\=\frac{74}{3} +\frac{86}{4} \\\\=\frac{74(4)+86(3)}{3*4} \\\\=\frac{296+258}{12} \\\\=\frac{554}{12}[/tex]
A survey of 77 teenagers finds that 30 have 5 or more servings of soft drinks a week. a. Give a 90% confidence interval for the proportion of teenagers who have 5 or more servings of soft drinks a week. b. In the general population, 30% have 5 or more servings of soft drinks a week. Is there evidence that a higher proportion of teenagers have 5 or more servings of soft drinks a week than the general population
Answer:
a) The 90% confidence interval for the proportion of teenagers who have 5 or more servings of soft drinks a week is (0.2982, 0.481).
b) 30% = 0.3 is part of the confidence interval, which means that there is no evidence that a higher proportion of teenagers have 5 or more servings of soft drinks a week than the general population.
Step-by-step explanation:
Question a:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
A survey of 77 teenagers finds that 30 have 5 or more servings of soft drinks a week.
This means that [tex]n = 77, \pi = \frac{30}{77} = 0.3896[/tex]
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
The lower limit of this interval is:
[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.3896 - 1.645\sqrt{\frac{0.3896*0.6104}{77}} = 0.2982[/tex]
The upper limit of this interval is:
[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.3896 + 1.645\sqrt{\frac{0.3896*0.6104}{77}} = 0.481[/tex]
The 90% confidence interval for the proportion of teenagers who have 5 or more servings of soft drinks a week is (0.2982, 0.481).
Question b:
30% = 0.3 is part of the confidence interval, which means that there is no evidence that a higher proportion of teenagers have 5 or more servings of soft drinks a week than the general population.
In this problem, y = 1/(1 + c1e−x) is a one-parameter family of solutions of the first-order DE y' = y − y2. Find a solution of the first-order IVP consisting of this differential equation and the given initial condition. y(0)=-1/3
If y (0) = -1/3, then
-1/3 = 1 / (1 + C e ⁻⁰)
Solve for C :
-1/3 = 1 / (1 + C )
-3 = 1 + C
C = -4
So the particular solution to the DE that satisfies the given initial condition is
[tex]\boxed{y=\dfrac1{1-4e^{-x}}}[/tex]
20 points Surd question Work out the area of the triangle. ABC
Answer:
sqrt( 150)
Step-by-step explanation:
it can also be 5sqrt(6)
The solution is, the area of the triangle. ABC is 10 cm^2.
What is area ?Area is the measure of a region's size on a surface. The area of a plane region or plane area refers to the area of a shape or planar lamina, while surface area refers to the area of an open surface or the boundary of a three-dimensional object.
here, we have,
from the given diagram, we get,
we have to find the area of the triangle. ABC
now, we have,
using the Pythagorean theorem, we get,
BD = √AB² - AD²
=√50 - 45
=√5
now, we know that,
area of triangle = 1/2 * base * height
= 1/2 * √5 * 4√5
= 10
Hence, The solution is, the area of the triangle. ABC is 10 cm^2.
To learn more on Area click:
brainly.com/question/20693059
#SPJ2
1. In 2020, the populations of City A and City B were equal. From 2015 to 2020, the population of City A increased by 20% and the population of City B decreased by 10%. If the population of City A was 120,000 in 2015, what is the population of City B in 2015?
2. A chef is preparing a sauce for a steak she offers as a key dish in her menu. To prepare the sauce she needs to prepare a mix with 40% butter, with the rest being egg yolk. In the kitchen right now, she only has a sauce that has 20% butter (rest is egg yolk) and a sauce that has 50% butter (rest is egg yolk) in stock. In what ratio should she mix the 20% sauce with the 50% sauce in order to obtain the 40% sauce that she needs to prepare her famous recipe?
3. A book was on sale for 30% off its original price. If the sale price of the book was $28, what was the original price of the book? (Assuming there is no sales tax)
4. At a retail store, they needed to do surveys of 32 stores which equals 40% of all their stores. How many stores does the retailer have in total?*
Answer:
180000 people
1 : 2
$40
80 stores
Step-by-step explanation:
1.)
Population in 2020 are equal : Let population =
City A increased by 20% From 120,000 in 2015
(1 + 0.2) * 120,000 = (1.2 * 120,000) = 144,000
Hence, city A = 144,000.
Since, city A and B have equal population ; city B also has a population of 144000 in 2020.
Let population in 2015 = x
(1 - 0.2) * x = 144000
0.8x = 144000
x = 144000/0.8
x = 180,000
2.)
Let proportion of 20% butter = x and proportion of 50% butter = 1 - x
0.2x + 0.5(1 - x) = 0.4
0.2x + 0.5 - 0.5x = 0.4
-0.3x + 0.5 = 0.4
-0.3x = 0.4 - 0.5
-0.3x = - 0.1
x = 0.1/0.3
x = 0.3333
(1-x) = 1 - 0.33333 = 0.6666%
0.3333% of 20% butter
0.6666% of 50% butter
Hence ;
0.3333 : 0.6666
1 : 2
3.)
Let original price of book = x
Discount on sale = 30%
Sale price = $28
Sale price = original price * (1 - discount)
$28 = (1 - 0.3) * x
$28 = 0.7x
x = $28/0.7
x = $40
4.)
Let total number of stores = x
Store surveys needed = 32
40% of total stores = 32 stores
0.4x = 32
x = 32 / 0.4
x = 80
Peter, Jan, and Maxim are classmates. Their total score for the last test was 269. Peter's score was more than the sum of Jan's and Maxim's scores. What could be Peter's least possible score?
Answer:
135
Step-by-step explanation:
Given that :
Total score obtained by Peter, Jan and Maxim = 269
Let :
Peter's score = x
Jan's score = y
Maxim's score = z
x + y + z = 269
x > (y + z)
For x to be greater Than y + z ;
Then x > (269 / 2) ; x > 134.5
The least possible x score is 135
Hence, Peter's least possible score is 135.
What is the value of cot ø= 2/3 what is the value of csc ø
Answer:
Step-by-step explanation:
cotθ = cosθ/sinθ = 2/3
sinθ = 3/√(2²+3²) = 3/√13
cscθ = 1/sinθ = √13/3
Any help would be very appreciated
Answer:
21
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
tan theta = opp/ adj
tan 60 = x / 7 sqrt(3)
7 sqrt(3) tan 60 = x
7 sqrt(3) sqrt(3) = x
7*3 = x
21 = x
Find the equation of line b in slope-intercept form. Line a is parallel to line b. Line a passes through the points (1,8) and (2,-1), line b passes through the point (4,13)
9514 1404 393
Answer:
y = -9x +49
Step-by-step explanation:
The slope of line b is the same as the slope of line a. That can be found using the slope formula:
m = (y2 -y1)/(x2 -x1)
m = (-1 -8)/(2 -1) = -9
The y-intercept can be found from the given point using the formula ...
b = y - mx
b = 13 -(-9)(4) = 13 +36 = 49
Then the slope-intercept equation of line b is ...
y = -9x +49
Find mBFE, help ASAP!!!
Answer: C
<BFE is 148 degrees
Step-by-step explanation:
We have angles <BFC (57 degrees) and <CFD (34 degrees), but what is <DFE?
1. The angle symbol in the vertexes shows that <BFC is congruent to <DFE, meaning that they are the same
2. Knowing this, we can safely say that <DFE is equal to 57 degrees because <BFC is also 57 degrees.
3. Now, we have all the angles we need to find out <BFE.
4. <BFC+<CFD+<DFE=<BFE
5. Substitute to get
57+34+57=<BFE
91+57=<BFE
148=<BFE
6. Now we know that the answer is 148 degrees.
A G.P is such that the 3rd term minus a first term is 48. The 4th term minus 2nd term 144. Find: (i) Common ratio ii) The first term (ii) 6th term of the sequence
Answer:
Step-by-step explanation:
r is the common ratio.
Third term minus first term is 48.
a₃ - a₁ = 48
a₃ = a₁r²
a₁r² - a₁ = 48
a₁(r²-1) = 48
r²-1 = 48/a₁
Fourth term minus second term is 144.
a₄ - a₂ = 144
a₂ = a₁r
a₄ = a₁r³
a₁r³ - a₁r = 144
a₁r(r²-1) = 144
r²-1 = 144/(a₁r)
48/a₁ = 144/(a₁r)
r = 3
:::::
r²-1 = 48/a₁
a₁ = 6
:::::
a₆ = a₁r⁵ = 1458
(i) The common ratio for the given condition is 3.
ii) The first term of the sequence is 6.
iii) The 6th term of the sequence is 1458.
What is a sequence?It is defined as the systematic way of representing the data that follows a certain rule of arithmetic.
Divergent sequences are those in which the terms never stabilize; instead, they constantly increase or decrease as n approaches infinity,
It is given that a is a geometric progression such that the 3rd term minus a first term is 48. The 4th term minus the 2nd term 144.
Each number following the first in a geometric sequence is multiplied by a particular number, known as the common ratio.
As the third term minus the first term is 48.
a₃ - a₁ = 48
a₃ = a₁r²
a₁r² - a₁ = 48
a₁(r²-1) = 48
r²-1 = 48/a₁
The fourth term minus the second term is 144.
a₄ - a₂ = 144
a₂ = a₁r
a₄ = a₁r³
a₁r³ - a₁r = 144
a₁r(r²-1) = 144
r²-1 = 144/(a₁r)
48/a₁ = 144/(a₁r)
r = 3
r²-1 = 48/a₁
a₁ = 6
a₆ = a₁r⁵ = 1458
Thus the common ratio for the given condition is 3, the first term of the sequence is 6 and the 6th term of the sequence is 1458.
Learn more about the sequence here:
brainly.com/question/21961097
#SPJ2
PLEASE HELP AND BE CORRECT BEFORE ANSWERING PLEASE AND THANK YOU
9514 1404 393
Answer:
6 units
Step-by-step explanation:
The dilation factor is 2, so the length of A'B' will be 2 times the length of AB.
AB can be seen to be 3 units, so A'B' will be 2×3 = 6 units.
Simplify to the extent possible:
(logx16)(log2 x)
Answer:
Step-by-step explanation:
Use the change-of-base rule.
A town recently dismissed 10 employees in order to meet their new budget reductions. The town had 7 employees over 50 years of age and 18 under 50. If the dismissed employees were selected at random, what is the probability that exactly 5 employees were over 50
Answer:
0.055 = 5.5% probability that exactly 5 employees were over 50.
Step-by-step explanation:
The employees are dismissed from the sample without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
Total of 7 + 18 = 25 employees, which means that [tex]N = 25[/tex]
7 over 50, which means that [tex]k = 7[/tex]
10 were dismissed, which means that [tex]n = 10[/tex]
What is the probability that exactly 5 employees were over 50?
This is P(X = 5). So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 5) = h(5,25,10,7) = \frac{C_{7,5}*C_{18,5}}{C_{25,10}} = 0.055[/tex]
0.055 = 5.5% probability that exactly 5 employees were over 50.
write √3 x √6 in the form b√2 where b is an integer
Answer:
[tex]3 \sqrt{2} [/tex]
Step-by-step explanation:
[tex] \sqrt{(9 \times 2)} [/tex]
Take the square root of 9 out of the square root and leave the 2 in.
Answer:
3[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Using the rules of radicals
[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex] , then
[tex]\sqrt{3}[/tex] × [tex]\sqrt{6}[/tex]
= [tex]\sqrt{3(6)}[/tex]
= [tex]\sqrt{18}[/tex]
= [tex]\sqrt{9(2)}[/tex]
= [tex]\sqrt{9}[/tex] × [tex]\sqrt{2}[/tex]
= 3[tex]\sqrt{2}[/tex]
Does the point (0, 0) satisfy the equation y = x2?
Answer:
The point is a solution
Step-by-step explanation:
y = x^2
Substitute the point into the equation and see if it is true
0 = 0^2
0=0
True
The average monthly salary of a worker is ₹8200. If there are 45 workers in a factory, then total expenditureincurred on expenditure is:
Answer: [tex]Rs.3,69,000[/tex]
Step-by-step explanation:
Given
average monthly salary of a worker is [tex]Rs.8200[/tex]
If there are 45 workers in a factory
Total expenditure is calculated by taking the product of Average monthly salary and no of workers in the factory
[tex]\Rightarrow 8200\times 45\\\Rightarrow Rs.3,69,000[/tex]
9. Which is a true statement about the denominator in a fraction?
(Select one answer)
It is always a negative number
It cannot be 0
It has to be an even number
It is always smaller than the numerator
Answer:
It cannot be 0
Step-by-step explanation:
it can also be positive number :2/4
it can be odd number too:3/9
it is bigger than numerator bcoz we have to divide it for numerator
So, 0 number cannot be put as denominator in fraction is true statement
Which expression represents the total volume of the pictures shown if each cube has a side length of e?
Answer: I believe that you have to do e^3 to find the volume of a cube.
If you had the side, you would do a^3 (a stands for the side length)
A satellite orbits earth at a speed of 22100 feet per second (ft/s). Use the following facts to convert this speed to miles per hour (mph). 1 mile = 5280 ft 1 min = 60 sec 1 hour = 60 min
15,068 mi/hr
Step-by-step explanation:
[tex]22100\:\frac{\text{ft}}{\text{s}}×\frac{1\:\text{mi}}{5280\:\text{ft}}×\frac{60\:\text{s}}{1\:\text{min}}×\frac{60\:\text{min}}{1\:\text{hr}}[/tex]
[tex]=15,068\:\text{mi/hr}[/tex]
The speed of 22100 feet per second will be 15068.18 miles per hour.
What is unit conversion?Multiplication or division by a numerical factor, selection of the correct number of significant figures, and unit conversion are all steps in a multi-step procedure.
Unit conversion is the expression of the same property in a different unit of measurement. Time, for example, can be expressed in minutes rather than hours, and distance can be converted from miles to kilometres, feet, or any other length measurement.
Given that the speed of the satellite is 22100 feet per second. The speed in miles per hour will be calculated as,
22100 ft /s = ( 22100 x 3600 ) / 5280
22100 ft/s = 79560000 / 5280
22100 ft/s = 15068.18 miles per hour
To know more about unit conversion follow
https://brainly.com/question/28901160
#SPJ2
Find the slope, if it exists, of the line containing the points (10,-3) and (10,-8).
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
m=
Answer:
The slope is undefined.
Step-by-step explanation:
The line must pass through the points (10,-3) and (10,-8), meaning that it must be vertical. The slope of a line is undefined if the line is vertical.
Riley wants to buy a car and has a choice between two different banks. One bank is offering a simple interest rate of 4.5% and the other bank is offering a rate of 4.5% compounded annually. Which is the better deal?
Oil leaked from a tank at a rate of r(t) liters per hour. The rate decreased as time passed, and values of the rate at two hour time intervals are shown in the table. Find lower and upper estimates for the total amount of oil that leaked out.
t (h) 0 2 4 6 8 10
r(t) (L/h) 8.8 7.6 6.8 6.2 5.7 5.3
V=_____ upper estimate
V= ______lower estimate
The exact amount of oil that leaks out for 0 ≤ t ≤ 10 is given by the integral,
[tex]\displaystyle\int_0^{10}r(t)\,\mathrm dt[/tex]
Then the upper and lower estimates of this integral correspond to the upper and lower Riemann/Darboux sums. Since r(t) is said to be decreasing, this means that the upper estimate corresponds to the left-endpoint Riemann sum, while the lower estimate would correspond to the right-endpoint sum.
So you have
• upper estimate:
(8.8 L/h) (2 h - 0 h) + (7.6 L/h) (4 h - 2h) + (6.8 L/h) (6 h - 4h) + (6.2 L/h) (8 h - 6h) + (5.7 L/h) (10 h - 8 h)
= (2 h) (8.8 + 7.6 + 6.8 + 6.2 + 5.7) L/h)
= 70.2 L
• lower estimate:
(7.6 L/h) (2 h - 0 h) + (6.8 L/h) (4 h - 2h) + (6.2 L/h) (6 h - 4h) + (5.7 L/h) (8 h - 6h) + (5.3 L/h) (10 h - 8 h)
= (2 h) (7.6 + 6.8 + 6.2 + 5.7 + 5.3) L/h)
= 63.2 L
Martha ran a 3-mile race in 24 minutes. how long does it take her to run 1 mile?
Answer:
8 minuets
Step-by-step explanation:
24min/3miles = 8
Answer:
8 minutes.
Step-by-step explanation:
If we divide 24 minutes by 3 miles, your answer will be 8 minutes.