Answer:
A) Reject H0 if F > 5.417
B) we fail to reject the null hypothesis and conclude that we do not have sufficient evidence at 0.05 level of significance to support the claim that there is a difference in the mean number of months before a raise was granted among the four CPA firms
Step-by-step explanation:
A) From the table, we can see that we have df1 = 3 and df2 = 15. And we are given a significance level of α = 0.01
We are also given f-value of 1.75
Thus,from the f-distribution table attached at significance level of α = 0.01 and df1 = 3 and df2 = 15, we have;
F-critical = 5.417
Normally, we reject H0 if F > 5.417
But in this case, F is 1.75 < 5.417 and so we conclude that we do not reject H0 at the 0.01 level of significance
B) for 0.05 level of significance, df1 = 3 and df2 = 15, from the 2nd table attached, we have;
F-critical = 3.2874
Again the f-value is less than this critical one.
Thus, we fail to reject the null hypothesis and conclude that we do not have sufficient evidence at 0.05 level of significance to support the claim that there is a difference in the mean number of months before a raise was granted among the four CPA firms
The state of Georgia is divided up into 159 counties. Consider a population of Georgia residents with mutually independent and equally likely home locations. If you have a group of n such residents, what is the probability that two or more people in the group have a home in the same county
Answer:
[tex]\frac{159^{n} -(\left \{ {{159} \atop {n}} \right.)*n! ) }{159^{n} }[/tex]
Step-by-step explanation:
number of counties = 159
n number of people are mutually independent and equally likely home locations
considering the details given in the question
n ≤ 159
The number of ways for people ( n ) will live in the different counties (159) can be determined as [tex](\left \{ {{159} \atop {n}} \right} )[/tex]
since the residents are mutually independent and equally likely home locations hence there are : [tex]159^{n}[/tex] ways for the residents to live in
therefore the probability = [tex]\frac{159^{n} -(\left \{ {{159} \atop {n}} \right.)*n! ) }{159^{n} }[/tex]
What are the zeros of the quadratic function represented by this graph?
У
A
6
2
X
-6
- 2
6
2-
-6-
A.
1 and 3
OB.
-3 and -1
C.
-3 and 1
D. -1 and 3
Look where the parabola crosses the x axis. This is where the x intercepts are located. The term "x intercept" is the same as "root" and also the term "zero".
find m<SPT in degrees
Answer: 60°
Step-by-step explanation:
∠UQR = 180°
∠UQR = ∠UQ + ∠QR
180° = 115° + ∠QR
65° = ∠QR
∠QRT = 180°
∠QRT = ∠QR + ∠RS + ∠ST
180° = 65° + ∠RS + 55°
180° = 120° + ∠RS
60° = ∠RS
isted below are amounts (in millions of dollars) collected from parking meters by a security service company and other companies during similar time periods. Do the limited data listed here show evidence of stealing by the security service company's employees? Security Service Company: 1.5 1.7 1.6 1.4 1.7 1.5 1.8 1.4 1.4 1.5 Other Companies: 1.8 1.9 1.6 1.7 1.8 1.9 1.6 1.5 1.7 1.8 Find the coefficient of variation for each of the two samples, then compare the variation. The coefficient of variation for the amount collected by the security service company is nothing%. (Round to one decimal place as needed.)
Answer:
Means:
1.55
1.73
Standard Deviation:
0.1434
0.1338
Coefficient of variation:
9.2
7.7
the limited data listed here shows evidence of stealing by the security service company's employees.
Step-by-step explanation:
Given data:
security Service Company Other Companies
x₁ x₂
1.5 1.8
1.7 1.9
1.6 1.6
1.4 1.7
1.7 1.8
1.5 1.9
1.8 1.6
1.4 1.5
1.4 1.7
1.5 1.8
n₁ = 10 n₂ = 10
To find:
coefficient of variation for each of the two samples
Solution:
The formula for calculating coefficient of variation of sample is:
Coefficient of Variation (CV) = (Standard Deviation / Mean) * 100%
Calculate Mean for Security Service Company data:
Mean = (Σ x₁) / n₁
= (1.5 + 1.7 + 1.6 + 1.4 + 1.7 + 1.5 + 1.8 + 1.4 + 1.4 + 1.5) / 10
= 15.5 / 10
Mean = 1.55
Calculate Standard Deviation for Security Service Company data:
Standard Deviation = √∑(x₁ - Mean)²/n₁-1
= √∑(1.5-1.55)² + (1.7-1.55)² + (1.6-1.55)² + (1.4-1.55)² + (1.7-1.55)² + (1.5-1.55)² + (1.8-1.55)² + (1.4-1.55)² + (1.4-1.55)² + (1.5-1.55)² / 10-1
=√∑ (−0.05)² + (0.15)² + (0.05)² + (−0.15)² + (0.15)² + (−0.05)² + (0.25)² + (−0.15)² + (−0.15)² + (−0.05)² / 10 - 1
= √∑0.0025 + 0.0225 + 0.0025 + 0.0225 + 0.0225 + 0.0025 + 0.0625 + 0.0225 + 0.0225 + 0.0025 / 9
= √0.185 / 9
= √0.020555555555556
= 0.14337208778404
= 0.143374
Standard Deviation = 0.143374
Coefficient of Variation for Security Service Company:
CV = (Standard Deviation / Mean) * 100%
= (0.143374 / 1.55) * 100
= 0.09249935 * 100
= 9.249935
CV = 9.2
CV = 9.2%
Calculate Mean for Other Companies data:
Mean = (Σ x₂) / n₂
= (1.8 + 1.9 + 1.6 + 1.7 + 1.8 + 1.9 + 1.6 + 1.5 + 1.7 + 1.8) / 10
= 17.3 / 10
Mean = 1.73
Calculate Standard Deviation for Other Companies data:
Standard Deviation = √∑(x₂-Mean)²/n₂-1
= √∑[(1.8-1.73)² + (1.9-1.73)² + (1.6-1.73)² + (1.7-1.73)² + (1.8-1.73)² + (1.9-1.73)² + (1.6-1.73)² + (1.5-1.73)² + (1.7-1.73)² + (1.8-1.73)²] / 10 - 1
= √∑ [(0.07)² + (0.17)² + (-0.13)² + (-0.03)² + (0.07)² + (0.17)² + (-0.13)² + (-0.23)² + (-0.03)² + (0.07)²] / 9
= √∑ (0.0049 + 0.0289 + 0.0169 + 0.0009 + 0.0049 + 0.0289 + 0.0169 + 0.0529 + 0.0009 + 0.0049) / 9
= √(0.161 / 9)
= √0.017888888888889
= 0.13374935098493
= 0.13375
Standard Deviation = 0.13375
Coefficient of Variation for Other Companies:
CV = (Standard Deviation / Mean) * 100%
= (0.13375 / 1.73) * 100
= 0.077312 * 100
= 7.7312
CV = 7.7
CV = 7.7%
Yes, the limited data listed here shows evidence of stealing by the security service company's employees because there is a significant difference in the variation.
Two fraction have the same denominator, 8.the some of two fraction is 1/2.if one of the fraction is added to five times the order, the result is 2,find the number.
Answer:
1/8, 3/8
Step-by-step explanation:
Let x and y represent the two fractions. Then we are given ...
x + y = 1/2
x + 5y = 2
Subtracting the first equation from the second, we get ...
(x +5y) -(x +y) = (2) -(1/2)
4y = 3/2 . . . . . simplify
y = 3/8 . . . . . . divide by 4
x = 1/2 -3/8 = 1/8
The two numbers are 1/8 and 3/8.
Suppose that a polynomial function of degree 4 with rational coefficients has 6, 4, 6i as zeros. Find the other zero
Answer:
-6i
Step-by-step explanation:
Complex roots have to come in conjugate pairs
So if we have 6i as a root, we must have -6i as a root
Answer:
-6i
Step-by-step explanation:
Hello, because this polynomial function has real coefficients and 6i is a zero, the conjugate of 6i is a zero as well. It means -6i is a zero.
The degree is 4 the number of zeroes is less or equal to 4 and we have already, 6, 4, 6i and -6i. So we have all the zeroes.
Thank you
Need Assitance
*Show Work*
Answer:
66 2/3 %
Step-by-step explanation:
First find the students not in the 8th grade
24 - 8 = 16
16 students are not in the 8th grade
Take the fraction of the students not in the 8th grade over the total
16/24 = 2/3
Change to a decimal
.66666666666
Multiply by 100 to change to a percent
66.666666%
66 2/3 %
Answer:
66.67% of students are not in eighth grade
Step-by-step explanation:
8/24=1/3
1/3=0.33333333333
1-0.33333333333=0.66666666667
0.66666666667=66.67%
Each cylinder is 12 cm high with a diameter of 8 cm.
Calculate the volume of each cylinder.
Use 3 as a value for π
Give your answer using the correct units.
Answer:
Volume = 576cm^3Step-by-step explanation:
[tex]h = 12 cm\\d = 8cm\\r =d/2 = 8/2 =4\\V = ?\\V =\pi r^2h\\\\V= 3 \times 4^2\times12\\V = 576 cm^3[/tex]
What is the period of the function shown in the graph?
At origin, the value of the function is [tex]0[/tex]
and then it again becomes zero for the first time is at $2$
but the function isn't repeating itself (it's going downwards)
at $x=4$, it's exactly same, hence the period is $4$
how can i solve this factorial? A 6,2- P6- A 5,3 + P5
A car enters a turnpike 22 miles north of a town. The car teavels north at an average speed of 64 miles per hour. How far is the car from the town after 4 hours? Explain how you can use linear function to solve this problem. Then, solve the problem.
Answer:
distance traveled can be modeled by a linear functionthe car is 260 miles north of townStep-by-step explanation:
a) When the speed is constant, the distance traveled is proportional to the travel time, a linear relationship. The distance traveled can be added to the initial distance to obtain the total distance (from town). This relation is a linear function. It can be modeled by the equation ...
d(t) = 4 + 64t . . . where t is travel time in hours, d(t) is the distance in miles
b) After 4 hours, the distance north of town is ...
d(4) = 4 +64(4) = 260
The car is 260 miles from the town after 4 hours.
Answer: Distance is a function of time. The constant rate of change is 64. Write the equation y = 64x + 22. Substitute 4 in for x to get 278 miles.
Step-by-step explanation:
If the discriminant of a quadratic equation is equal to -8 , which statement describes the roots?
Answer: There are no real number roots (the two roots are complex or imaginary)
The discriminant D = b^2 - 4ac tells us the nature of the roots for any quadratic in the form ax^2+bx+c = 0
There are three cases
If D < 0, then there are no real number roots and the roots are complex numbers.If D = 0, then we have one real number root. The root is repeated twice so it's considered a double root. This root is rational if a,b,c are rational.If D > 0, then we get two different real number roots. Each root is rational if D is a perfect square and a,b,c are rational.If you randomly select a letter from the phrase "Sean wants to eat at Olive Garden," what is the probability that a vowel is randomly selected
Answer:
12/27
Step-by-step explanation:
Count all letters and all vowels then divide vowels by letters
The probability that a vowel is randomly selected in the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden", is 4/9.
What is the probability of an event in an experiment?The probability of any event suppose A, in an experiment is given as:
P(A) = n/S,
where P(A) is the probability of event A, n is the number of favorable outcomes to event A in the experiment, and S is the total number of outcomes in the experiment.
How to solve the given question?In the question, we are given an experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden".
We are asked to find the probability that the selected letter is a vowel.
Let the event of selecting a vowel from the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden" be A.
We can calculate the probability of event A by the formula:
P(A) = n/S,
where P(A) is the probability of event A, n is the number of favorable outcomes to event A in the experiment, and S is the total number of outcomes in the experiment.
The number of outcomes favorable to event A (n) = 12 (Number of vowels in the phrase)
The total number of outcomes in the experiment (S) = 27 (Number of letters in the phrase).
Now, we can find the probability of event A as:
P(A) = 12/27 = 4/9
∴ The probability that a vowel is randomly selected in the experiment of selecting a letter from the phrase "Sean wants to eat at Olive Garden", is 4/9.
Learn more about the probability of an event at
https://brainly.com/question/7965468
#SPJ2
Gail bought 5 pounds of oranges and 2 pounds of bananas for $14. Her husband later bought 3 pounds of oranges and 6 pounds of bananas for $18. What was the cost per pound of the oranges and the bananas?
Answer:
1 pound of Oranges = $2
1 pound of Bananas = $2
Step-by-step explanation:
O = Oranges
B = Bananas
=> 5o + 2b = 14
=> 2b = 14 - 5o
=> b = 14/2 - 5/2o
=> b = 7 - 2.5o
3o + 6b = 18
=> 3o + 6( 7 - 2.5o ) = 18
=> 3o + 42 - 15o = 18
=> -12o + 42 = 18
=> -12o = -24
=> -o = -2
=> o = 2
One pound of oranges costs $2.
So,
5 (2) + 2b = 14
=> 10 + 2b = 14
=> 2b =4
=> b = 2
One pound of bananas also costs $2.
How do you find volume for prisms?
Answer:
V =140 units^3
Step-by-step explanation:
The volume of the prism is V = Bh
Where B is the area of the base and h is the height
B is the area of the triangle
B = 1/2 (5 * 7) = 35/2
V = 35/2 * 8
V =140 units^3
Put these numbers in order from greatest to least.
8
-2-
25
2.45
-0.84
Answer:
25, 2.45, 8, -0.84, -2
Step-by-step explanation:
negative is a least number
positive is a greater number
Positive number-8, 25, 2.45
Negative number-(-2), -0.84
ordering number from greatest to least:
25, 2.45, 8, -0.84, -2
-2 is smallest then -0.84 because 2 is bigger then 0.84. It is opposite with the positive number.
The bigger the positive number the biggest it is. While the bigger the negative number the smallest it is.
Answer:
Step-by-step explanation:
The numbers are:
● 8
● -2
● 25
● 2.45
● -0.84
To make it easy classify the positive numbers apart and the negatives ones alone
● 2.45<8< 25
● -2 < -0.84
25 is the greatest and -2 is the least
● 25 > 8 > 2.45 > -0.84 > -2
Write the equations, after translating the graph of y = |x+2|: one unit up,
Answer:
y = |x + 2| + 1
Step-by-step explanation:
Parent Graph: f(x) = a|bx + c| + k
a is vertical stretch/shrink
b is horizontal stretch/shrink
c is horizontal movement left/right
k is vertical movement up/down
Since we are given an equation and we want to move it 1 unit up (vertical movement up), we only manipulate k:
y = |x + 2| + k
k = 1
y = |x + 2| + 1
Answer:
y = |x+2| + 1
Step-by-step explanation:
The equation will be y = |x+2| + 1.
By translating the graph one unit up, the equation will simply change by adding +1 to the graph, outside of the absolute value part.
Question 2: Jamie has a jar of coins containing the same number of nickels, dimes and quarters. The total value of the coins in the jar is 13.20. How many nickels does Jamie have?
Answer:
?
Step-by-step explanation:
Answer:
33
Step-by-step explanation:
Let "x" be the number of nickels, of dimes, and of quarters.
The value of the nickels is 5x cents.
The value of the dimes is 10x cents
The value of the quarters is 25x cents.
Equation:
Value of nickels + Value of dimes + Value of quarters =1320 cents
5x + 10x + 25x = 1320
Sove for "x". Then you will know the number of each coin.
A professor graded the final exams and found that the mean score was 70 points. Which of the following can you conclude?
A- All of the above.
B- The median score was 70 points.
C- 50% of the students scored below 70 points.
D- This would be a normal distribution.
Answer: C) 50% of the students scored below 70%
Step-by-step explanation:
Mean is the average. To find the mean (aka average) you add up all of the scores and divide by the number of tests.
B) The mean can be 70 without any test scoring 70% so B is not true.
A) Since B is not true, then A is not a valid option.
D) We don't know any of the other data so don't know if it is skewed left, skewed right, or normal. Therefore, option D is not true.
C) If the average is 70%, then half received grades above that score and half received grades below that score. So, option C is TRUE!
What is the name of a number that can be written in the form a + bi where a and b are nonzero real
numbers? (1 point)
a pure imaginary number
an imaginary unit
a real number
a complex number
Answer:
Complex numbers
Step-by-step explanation:
Given
[tex]a + bi[/tex]
Required
Determine the type of number in that form
Numbers written in [tex]a + bi[/tex] are referred to as complex numbers
Where [tex]a \neq 0[/tex]; [tex]b\neq 0[/tex] and [tex]i = \sqrt{-1}[/tex]
Note that a and b can either integers or non integers and a and be can also be positive or negative
The following are valid examples of complex numbers
[tex]2 + 3i[/tex]
[tex]2.4 - 5i[/tex]
[tex]-3 - i[/tex]
and lots more..
What is the solution of the linear equation? LaTeX: 5k\:+\:3.8\:=\:3k\:+\:95 k + 3.8 = 3 k + 9 Group of answer choices 26 6.4 .065 2.6
Answer:
[tex]k = 2.6[/tex]
Step-by-step explanation:
Given
[tex]5k + 3.8 = 3k + 9[/tex]
Required
Solve
[tex]5k + 3.8 = 3k + 9[/tex]
Collect like terms
[tex]5k -3k+ 3.8 = 3k -3k + 9[/tex]
[tex]2k+ 3.8 = 9[/tex]
Subtract 3.8 from both sides
[tex]2k+ 3.8 - 3.8= 9 - 3.8[/tex]
[tex]2k= 9 - 3.8[/tex]
[tex]2k = 5.2[/tex]
Divide through by 2
[tex]k = 5.2/2[/tex]
[tex]k = 2.6[/tex]
Ava started her hw at 7:20pm she finished it at 8:05 pm how long did she take to her hw?
Answer:
45 mins
Step-by-step explanation:
Explain the difference between using the sine ratio to solve for a missing angle in a right triangle versus using the cosecant ratio. You must use complete sentences and any evidence needed (such as an example) to prove your point of view. (10 points)
Answer:
The sine ratio is the ratio between the opposite side over hypotenuse. The cosecant ratio is the ratio between the hypotenuse over the opposite side, therefore cosecant is the reciprocal of sine.
To find a missing angle using sine, you would need to use the inverse of sine. For example, if the sine was [tex]\frac{30}{40}[/tex], to find the angle you would need to find sin⁻¹ of [tex]\frac{30}{40}[/tex] which is x = sin⁻¹ (0.75). Therefore x equals approximately 49°.
Helppppp thxxxxxxxxxx
Answer:
F. [tex] \frac{3}{2} [/tex]
Step-by-step explanation:
[tex] \frac{a + 2b}{b} = \frac{7}{2} [/tex]
Cross multiply:
7b= 2(a +2b)
Expand:
7b= 2a +4b
Bring all common variables to 1 side:
7b -4b= 2a
3b= 2a
divide by 2 on both sides:
[tex] \frac{3}{2} b = a[/tex]
divide by b on both sides:
[tex] \frac{3}{2} = \frac{a}{b} \\ \frac{a}{b} = \frac{3}{2} [/tex]
What is the solution (x, y) to this system of linear equations? 2x – 3y = –6 x + 2y = 11
Answer:
x = 3, y = 4
Step-by-step explanation:
Solve for the first variable in one of the equations, then substitute the result into the other equation.
for the functions f(x) = 4x^4+4x^3-8x^2-13x-5 and g(x) = x+1, find (f/g)(x) and (f/g)(2)
Answer:
(f/g)(x) = 4x³ - 8x - 5(f/g)(2) = 11Step-by-step explanation:
f(x) = 4x⁴ + 4x³ - 8x² - 13x - 5
g(x) = x + 1
To find (f/g)(2) first find (f/g)(x)
To find (f/g)(x) factorize f(x) first
That's
f(x) = 4x⁴ + 4x³ - 8x² - 13x - 5
f(x) = ( x + 1)( 4x³ - 8x - 5)
So we have
[tex] (f/g)(x) = \frac{( x + 1)( 4x³ - 8x - 5)}{x + 1} [/tex]
Simplify
We have
(f/g)(x) = 4x³ - 8x - 5To find (f/g)(2) substitute 2 into (f/g)(x)
That's
(f/g)(2) = 4(2)³ - 8(2) - 5
= 4(8) - 16 - 5
= 32 - 16 - 5
= 11
(f/g)(2) = 11Hope this helps you
Anand needs to hire a plumber. He's considering a plumber that charges an initia
hourly rate of $28. The plumber only charges for a whole number of hours. Anar
more than $250, and he wonders how many hours of work he can afford.
Let H represent the whole number of hours that the plumber works.
1) Which inequality describes this scenario?
Choose 1 answer:
28 - 65H <250
Complete question :
Anand needs to hire a plumber. He's considering a plumber that charges an initial fee of $65 along with an
hourly rate of $28. The plumber only charges for a whole number of hours. Anand would like to spend no more than $250, and he wonders how many hours of work he can afford.
Let H represent the whole number of hours that the plumber works.
1) Which inequality describes this scenario?
Choose 1 answer:
A. 28 + 65H < 250
B. 28 + 65H > 250
C. 65 + 28H < 250
D. 65 +28H > 250
2) What is the largest whole number of hours that Anand can afford?
Answer:
65 + 28H < 250
Number of hours Anand can afford = 6 hours
Step-by-step explanation:
Given the following information :
Initial hourly rate = $65
Hourly rate = $28
Number of hours worked (whole number) = H
Maximum budgeted amount to spend = $250
Therefore ;
(Initial charge + total charge in hours) should not be more than $250
$65 + ($28*H) < $250
65 + 28H < 250
Number of hours Anand can afford :
65 + 28H < 250
28H < 250 - 65
28H < 185
H < (185 / 28)
H < 6.61
Sinve H is a whole number, the number of hours he can afford is 6 hours
Answer:
65 + 28H < 250
6
Step-by-step explanation:
tried it, it worked.
the other answer is correct but hard to understand so give them thanks and 4 star :)
if 2x-y=2, what is the value of 9^x/3^y?
1) 3
2) 9
3) 27
4) 81
Work Shown:
(9^x)/(3^y)
( (3^2)^x )/(3^y)
( 3^(2x) )/( 3^y )
3^(2x-y)
3^2 .... use the equation 2x-y = 2
9
The net of a triangular prism is shown below. What is the surface area of the prism? A. 128 cm^2 B. 152 cm^2 C. 176 cm^2 D. 304 cm^2
Answer:
B. 152 cm²
Step-by-step explanation:
To find the surface area using a net, do this:
Take apart the figure. We see that there are three rectangles and two triangles. Find the area of each ([tex]A=l*w[/tex]) and then add the values together:
The first rectangle on the left is the same as the one on the right.
[tex]5*8=40[/tex]
Two measures are 40 cm².
The middle rectangle is:
[tex]6*8=48[/tex]
48 cm²
The formula for the area of a triangle is [tex]A=\frac{1}{2}*b*h[/tex]:
[tex]A=\frac{1}{2}*6*4\\\\A=\frac{1*6*4}{2}\\\\A=\frac{24}{2}\\\\ A=12[/tex]
The area of the two triangles is 12 cm².
Now add the values:
[tex]40+40+48+12+12=152[/tex]
The area of the figure is 152 cm².
:Done
Given the function, Calculate the following values:
Answer:
[tex]f(-2)=33\\f(-1)=12\\f(0)=1\\f(1)=0\\f(2)=9[/tex]
Step-by-step explanation:
[tex]f(x)=5x^{2} -6x+1\\f(-2)=5(-2)^{2} -6(-2)+1\\f(-2)=5(4)+12+1\\f(-2)=20+13\\f(-2)=33[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(-1)=5(-1)^{2} -6(-1)+1\\f(-1)=5(1)+6+1\\f(-1)=5+7\\f(-1)=12[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(0)=5(0)^{2}-6(0)+1\\f(0)=5(0)-0+1\\f(0)=0+1\\f(0)=1[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(1)=5(1)^{2}-6(1)+1\\f(1)=5(1)-6+1\\f(1)=5-5\\f(1)=0[/tex]
[tex]f(x)=5x^{2}-6x+1\\f(2)=5(2)^{2}-6(2)+1\\f(2)=5(4)-12+1\\f(2)=20-11\\f(2)=9[/tex]