Answer:
Partial pressures:
PCl₅ = 0.558 atm
PCl₃ = 0.22 atm
Cl₂ = 0.22 atm
Explanation:
From the given information:
The number of moles of PCl₅ associated with the evaporation is:
[tex]n_{PCl_5}= \dfrac {weight \ of \ PCl_5} {M.Wt. \ of \ PCl_5}[/tex]
[tex]n_{PCl_5}= \dfrac {2.69 \ g} {208.5 \ g/mol}[/tex]
[tex]n_{PCl_5}= 0.013 \ mol[/tex]
Temperature of the gas = 250° C = (250 + 273.15) K
= 523.15 K
Using the Ideal gas equation to determine the pressure exerted by the completely vaporized PCl₅
PV = nRT
[tex]P = \dfrac{nRT}{V}[/tex]
[tex]P = \dfrac{0.0013 \ mol \times 0.082 \ Latm^0 K^{-1} . mol ^{-1} \times 523.15 \ K}{1.0 \ L}[/tex]
P = 0.558 atm
Thus, at 250° C, decomposition of PCl₅ occurs.
In the container, PCl₅ decomposes to PCl₃ and Cl₂.
i.e.
[tex]PCl_{5(g)} \to PCl_{3(g)}+ Cl_{2(g)}[/tex]
Using Dalton's Law:
[tex]P_{total } =P_1 + P_2+P_3 +...[/tex]
[tex]P_1 = P_{Total} \times X_1[/tex]
where;
X = mole fraction
Then, the total no. of moles in the container is:
[tex]n = \dfrac{PV} {RT}[/tex]
[tex]n = \dfrac{1\ atm \times 1.0\ L}{0.0821 \ L \ atm \ K^{-1}.mol \times 523.15\ K}[/tex]
n = 0.023 mol
Now, the container contains a total amount of 0.023 mol where initially 0.013 mol are that of PCl₅ and remaining 0.005 mol of PCl₃ and 0.005 mol of Cl₂.
Thus, the partial pressure of PCl₃ is:
[tex]P__{PCL_3} }= P_{total} \times \dfrac{no. \ of \ moles \ of PCl_5}{total \ no. \ of \ moles}[/tex]
[tex]P__{PCL_3}} = 1 \ atm \times \dfrac{0.005}{0.023}[/tex]
[tex]P__{PCL_3}} = 0.22 \ atm[/tex]
Thus, since the no of moles of PCl₃ and Cl₂ are the same, then the partial pressure for Cl₂ is = 0.22 atm
Which rule states that cracks on glass tend to form at a certain angle on the opposite side of the polnt of Impact?
The
rule states that cracks tend to form at a (n)
angle on the opposite side from the point of Impact.
Answer:
The 3R rule states that cracks tend to form at a (n) right angle on the opposite side from the point of impact.
Explanation:
Which of the following choices is not evidence supporting the theory of plate tectonics?
Answer:
B
Explanation:
which would be a stronger acid H3PO4 or H3PO2
Answer:
h3po2
Explanation:
Answer:
i think it is H3PO4
Explanation:
An atom has 81 electrons, 84 neutrons, and 82 protons. What element is this atom?
Answer:
Lead
Explanation:
The subatomic particles within an atom can be used to know the atom or element given.
Of particular interest is the number of protons within the atom.
The periodic table is based on the atomic number of atoms. This atomic number is the number of protons within an atomic space.
So; If we know the number of protons within an atom, we can know the element.
The number of protons given is 82, the element is therefore lead.
Answer:
The atomic number of polonium is 84. The atomic number lead is 82.
Explanation:
A series of dilute NaCl solutions are prepared starting with an initial stock solution of 0.100 M NaCl. Solution A is prepared by pipeting 10 mL of the stock solution into a 250-mL volumetric flask and diluting to volume. Solution B is prepared by pipeting 25 mL of solution A into a 100-mL volumetric flask and diluting to volume. Solution C is prepared by pipeting 20 mL of solution B into a 500-mL volumetric flask and diluting to volume. What is the molar concentration of NaCl in solutions A, B and C
Answer:
Solution A: 0.00400M
Solution B: 0.00400M
Solution C: 4.00x10⁻⁵M
Explanation:
Solution A is diluting the 0.100M NaCl from 10mL to 250mL. That is:
250mL / 10mL = 25 times.
That means molar concentration of sln A is:
0.100M / 25 = 0.00400M
Solution B is obtained diluting 25mL to 100mL:
100mL / 25mL = 4 times
0.00400M / 4 times = 0.00100M
And solution C is obtained diluting the solution C from 20mL to 500mL:
500mL / 20mL = 25 times
Solution C:
0.00100M / 25 times = 4.00x10⁻⁵M
The formula for serial dilution can be used to obtain the molarity of solution A, B , C.
For solution AM1V1 = M2V2
M2 = 0.100 M × 10 mL/250-mL
M2 = 0.004 M
For solution BM1V1 = M2V2
M2 = 0.004 M × 25 mL/100-mL
M2 = 0.001 M
For solution CM1V1 = M2V2
M2 = 0.001 M × 20 mL/500-mL
M2 = 0.00004 M
Learn more about serial dilution: https://brainly.com/question/2167827
what is the formula for H-H
Answer:
H-H equation is written as follows:
pH=pK + log
{HCO3-}(base)
{H2CO3}(acid)
Which statement correctly describes ionic bonds? Multiple Choice An ionic bond only forms between two atoms of the same element. Ionic bonds usually form between electrically neutral, stable atoms. An ionic bond is the electrostatic force that holds ions together when they form bonds. All of the answer choices are correct.
Answer:
An ionic bond is the electrostatic force that holds ions together when they form bonds
Explanation:
An ionic bond is formed when a metal looses electron(s) to a non metal leading to the formation of a positive ion and a negative ion.
An ionic compound is actually an ion pair, the ions are held together by strong electrostatic forces.
This strong electrostatic force that holds the ion pair together in ionic compounds is what we commonly call the IONIC BOND.
Answer:
An ionic bond is the electrostatic force that holds ions together when they form bonds
Explanation:
I took this test and it was the correct answer :)
Which of the following contains a polyatomic ion?
sodium iodide
carbon monoxide
Iron II oxide
ammonium chloride
Answer:
i think its oxide not too sure
Answer:
Its should be ammonium chloride.
A picture to help you with another question like this
Which statement about Niels Bohr's atomic model is true?
O Higher orbits have lower energies.
O Each orbit has a specific energy level.
O Electrons can exist in any energy level.
O Orbits close to the nucleus have no energy.
Answer:
O Each orbit has a specific energy level.
Explanation:
Neils Bohr put forward his own model of the atom based on the quantum mechanics originally developed by Planck.
He assumed the Rutherford's model and suggested that the extranuclear part consists of electrons in specific spherical orbits around the nucleus.
The orbits/energy level are the permissible through which the electrons can move through.
His concept is based the concept that the electron can move round the nucleus in certain permissible orbitss
How many orbitals in an atom can have each of the following designations:
(a) 1s;
(b) 4d;
(c) 3p;
(d) n=3?
Answer:
(a) 1s; has one orbital
(b) 4d; has five orbitals
(c) 3p; has three orbitals
(d) n=3 has nine orbitals
Explanation:
Electrons in an atom are always in constant motion, making it hard to predict there exact position. However, the most probable locations electrons can be be found are described with the terms shells, subshells and orbitals. A shell contains subshells and orbitals are found within subshells. The shells are given names such as K, L, M, N, which correspond to the principal quantum numbers, n = 1, 2, 3, and 4 respectively. There are 4 major types of subshells that can be found in a shell. They are named as s, p, d, f. Each subshell is composed of several orbitals.
a. 1s; the s subshell has only one orbital. Therefore, the 1s subshell has one orbital
b. 4d; the d subshell has five orbitals. Therefore, the 4d subshell has five orbitals
c. 3p; the p subshell has three orbitals. Therefore, the 3d subshell has three orbitals
d. n = 3; the shell with n = 3 has the following subshells, 3s, 3p, 3d.the number of orbitals will be 1 + 3 + 5 = 9 orbitals. Therefore, the number of orbitals in n = 3 is nine orbitals