Answer:
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
What type of line is PQ?
A. side bisector
B. angle bisector
C. median
D. altitude
Answer:
B: I think
Step-by-step explanation:
correct me if im wrong
The line PQ is an angle bisector because it divides the angle P into two equal half option (B) angle bisector is correct.
What is an angle?When two lines or rays converge at the same point, the measurement between them is called a "Angle."
We have a triangle shown in the picture.
As we know,
in terms of geometry, the triangle is a three-sided polygon with three edges and three vertices. The triangle's interior angles add up to 180°.
From the figure the segment PQ divides the angle into two equal half.
From the definition of the angle bisector, the angle bisector can be defined as a line segment that divides the angle into two half.
Angle P = 40 + 40 = 80 degrees
Thus, the line PQ is an angle bisector because it divides the angle P into two equal half option (B) angle bisector is correct.
Learn more about the angle here:
brainly.com/question/7116550
#SPJ5
Max has 3 fiction books and 6 nonfiction books to donate to the community center. He wants to package them so that there is an equal number of fiction and nonfiction books in each group. He also wants to have as many packages as possible. How many books are in each group?
Answer:
Each group has 1 fiction book and 2 nonfiction book(s).
(4x - 3) × (x + 2)=0
Hi,
AxB = 0 means A=0. or B=0
so 2 solutions :
4x-3= 0
4x=3
x = 3/4
and x+2 = 0.
x= -2
solutions are : -2 +and 3/4
2 answers
1) -2
2) -3/4
Full-time Ph.D. students receive an average of $12,837 per year. If the average salaries are normally distributed with a standard deviation of $1500, find these probabilities. a. The student makes more than $15,000. b. The student makes between $13,000 and $14,000.
Answer:
a) 0.0749 = 7.49% probability that the student makes more than $15,000.
b) 0.227 = 22.7% probability that the student makes between $13,000 and $14,000.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Full-time Ph.D. students receive an average of $12,837 per year.
This means that [tex]\mu = 12837[/tex]
Standard deviation of $1500
This means that [tex]\sigma = 1500[/tex]
a. The student makes more than $15,000.
This is 1 subtracted by the p-value of Z when X = 15000.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{15000 - 12837}{1500}[/tex]
[tex]Z = 1.44[/tex]
[tex]Z = 1.44[/tex] has a p-value of 0.9251.
1 - 0.9251 = 0.0749
0.0749 = 7.49% probability that the student makes more than $15,000.
b. The student makes between $13,000 and $14,000.
This is the p-value of Z when X = 14000 subtracted by the p-value of Z when X = 13000.
X = 14000
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{14000 - 12837}{1500}[/tex]
[tex]Z = 0.775[/tex]
[tex]Z = 0.775[/tex] has a p-value of 0.7708.
X = 13000
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{13000 - 12837}{1500}[/tex]
[tex]Z = 0.11[/tex]
[tex]Z = 0.11[/tex] has a p-value of 0.5438.
0.7708 - 0.5438 = 0.227
0.227 = 22.7% probability that the student makes between $13,000 and $14,000.
7.49% of the student makes more than $15,000, while 23.85% of the student makes between $13,000 and $14,000
What is z score?
Z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:
z = (raw score - mean) / standard deviation
Given that:
Mean = $12837, standard deviation = $1500
a) For >15000:
z = (15000 - 12837)/1500 = 1.44
P(z > 1.44) = 1 - P(z < 1.44) = 1 - 0.9251 = 0.0749
b) For >13000:
z = (13000 - 12837)/1500 = 0.11
For <14000:
z = (14000 - 12837)/1500 = 0.78
P(0.11 < z < 0.78) = P(z < 0.78) - P(z < 0.11) = 0.7823 - 0.5438 = 0.2385
7.49% of the student makes more than $15,000, while 23.85% of the student makes between $13,000 and $14,000
Find out more on z score at: https://brainly.com/question/25638875
The critical value of F for an upper tail test at a 0.05 significance level when there is a sample size of 21 for the sample with the smaller variance and there is a sample size of 9 for the sample with the larger sample variance is _____. a. 2.94 b. 2.45 c. 2.10 d. 2.37
Answer:
2.45
Step-by-step explanation:
Given that :
α = 0.05
Larger sample variance= numerator, sample size = 9
Smaller sample variance = denominator, sample size = 21
Hence,
DFnumerator = n - 1 = 9 - 1 = 8
DFdenominator = n - 1 = 21 - 1 = 20
Critical value for upper tail test using the F distribution table at α = 0.05 ; DFnumerator on horizontal ; Df denominator as vertical ;
F critical = 2.447
F critical = 2.45
Simplify your answer as much as possible.
Ahmed bought a TV for his room in 2016 for AED 1,500. he decided to sell it in 2020 for AED 900. what is the rate of depreciation when he bought the TV and when he sold it
Answer:
40% depreciation over the 4 years
10% depreciation per year
Step-by-step explanation:
The number of years between buying and selling is:
2020 - 2016 = 4
4 years
The amount of depreciation in the 4 years is:
AED 1,500 - AED 900 = AED 600
The percent depreciation for the 4 years is:
(1500 - 900)/1500 * 100% = 40%
The percent depreciation per year is:
40%/4 = 10%
Arrange the following rational numbers in descending order. 5/8 ,-11/15 , 17/(-24) ,7/12
Need help answer plz help
Answer:
BONANA MY NANA
Step-by-step explanation:
7. 20x + 10 = 110
a. X= 1
b. X= 5
c. x= 12
Answer:
b x=5
Step-by-step explanation:
20x+10=110
20x+10-10=110-10
20x/20=100/20
x=5
Answer:
x=5
Step-by-step explanation:
20x + 10 = 110
Subtract 10 from each side
20x +10-10 = 110-10
20x = 100
divide by 20
20x/20 =100/20
x= 5
Damaris will be working at the local pool over his ten-week summer break. His net pay will be $167.30 each week. He hopes to have enough money to purchase a new pair of shoes that cost $175 by the end of his break. What percent of his net pay does Damaris need to save each week to reach his goal? Round to the nearest hundredth. (2 points)
1.05%
10.46%
11.37%
Damaris needs to save 10.46% of his net pay each week to purchase the new pair of shoes by the end of his break.
Given:
Net pay per week is $167.30Cost of new pair of shoes is $175Summer break is for 10 weeksTo find: The percentage of his net pay that Damaris needs to save each week to purchase the shoes by the end of his break
Let us assume that Damaris needs to save x% of his net pay each week to buy the shoes by the end of his break.
Then, savings per week is x% of $167.30, that is,
[tex]\frac{x}{100}\times 167.30[/tex]
Then, his savings for 10 weeks is,
[tex]10 \times \frac{x}{100}\times 167.30[/tex]
Since the summer break is for 10 weeks, Damaris' savings for the entire summer break is,
[tex]10 \times \frac{x}{100}\times 167.30[/tex]
Damaris wants to buy the new pair of shoes by then end of the break. Then, his savings for the entire summer break should equal the cost of the new pair of shoes.
It is given that the cost of the new pair of shoes is $175.
Then, according to the problem,
[tex]10 \times \frac{x}{100}\times 167.30 =175[/tex]
[tex]x=\frac{175\times 100}{10\times167.30}[/tex]
[tex]x=10.460251[/tex]
Rounding to the nearest hundredth, we have,
[tex]x=10.46[/tex]
Thus, Damaris needs to save [tex]10.46[/tex]% of his net pay each week to buy the shoes by the end of his break.
Learn more about percentage here:
https://brainly.com/question/22400644
15. On Sports Day, Mike runs 100 metres in 13.89 seconds and Neal runs the same distance in 13.01 seconds. Who is the FASTER runner?
Answer:
Neal
Step-by-step explanation:
13.01 < 13.89
Solve the following equation for the given variable.
4x + 19 + 3x = -5
Round your answers to the nearest tenths place.
Step-by-step explanation:
4x + 19 + 3x = - 5
4x + 3x + 19 = - 5 collect the like terms
7x + 19 = - 5
7x = - 5 - 19 bring 19 to the right
7x/ 7x = - 24/ 7
x = - 3.4
I hope this answers your question
If car eyelashes sold for $13.99. If you bud double that, how much would you have paid for them? (Hint if needed: if they had been exactly $14, how different would your answer be?)
Answer:
13.99 x 2 = 27.98 dollars
now if they were 14 dollars exactly and you doubled that it would be 28 dollars so the difference would be 0.02 cents
Step-by-step explanation:
Country Financial, a financial services company, uses surveys of adults age 18 and older to determine whether personal financial fitness is changing over time. A recent sample of 1000 adults showed 410 indicating that their financial security was more than fair. Just a year prior, a sample of 900 adults showed 315 indicating that their financial security was more than fair. Conduct the hypothesis test and compute the p-value. Round your answer to four decimal places. What is the 95% confidence interval estimate of the difference between the two population proportions? Round your answers to four decimal places.
Answer:
hey, how you're day going
Step-by-step explanation:
.................
(02.02 MC) Use the graph to fill in the blank with the correct number.
Numerical Answers Expected!
Answer for Blank 1:
Answer:
The answer is "2"
Step-by-step explanation:
When we check the points where the x is -2
by calculating the "y-value":
It is 2, right?
it implies that [tex]f(-2)=2[/tex]
that's why the final answer is "2"
How many permutations of letter of the word APPLE are there?
Answer:
There are 60 permutations.
Step-by-step explanation:
Arrangements formula:
The number of possible arrangements of n elements is given by:
[tex]A_n = n![/tex]
With repetition:
For each element that repeats, with [tex]n_1, n_2, ..., n_n[/tex] times, the formula is:
[tex]A_n^{n_1,n_2,...,n_n} = \frac{n!}{n_1!n_2!...n_n}[/tex]
In this question:
Apple has 5 letters.
P appears two times. So
[tex]A _5^{2} = \frac{5!}{2!} = 60[/tex]
There are 60 permutations.
For each of the following numbers, find the smallest whole number by which it should be multiplied so as to get a perfect square number. Also find the square root of the square number so obtained.
(i) 242
(ii) 1280
(iii) 245
(iv)968
(v) 1728
(vi) 4851
Answer:
BELOW
Step-by-step explanation:
242: multiply it by 2 to get 484 and its square root is 22
1280: multiply it by 5 to get 6400 and its square root is 80.
245: multiply it by 5 to get 1225 and its square root is 35.
968: multiply it by 2 to get 1936 and its square root is 44.
1728: multiply it by 3 to get 5184 and its square root is 72
4851: multiply it by 11 to get 53361 and its square root is 231.
HOPE THIS HELPED
The lengths of two sides of the right triangle ABC shown in the illustration given
a= 7cm and b= 24cm
Answer:
25 cm.
Step-by-step explaination:
Given,
Two sides of a triangle:
a = 7cm
b = 24 cm
To find,
Third side:
c = ?
By Pythagorean Theorem;
a² + b² = c²
[where c is the longest side,hypotenuse]
Putting the value of a and b;
we get,
7² + 24² = c²
49 + 576 = c²
625 = c²
25² = c² (square root)
25 = c
c = 25
Therefore, the length of the third side will be equal to 25 cm.
The lengths of two sides of the right triangle ABC shown in the illustration given
a= 7cm and b= 24cm
Given,> a= 7cm
> b= 24cm
To find?Side c (third side)
Solution:-Using Pythagoras theorem,
▶️ a² + b² = c
▶️ 7cm ² + 24cm² = c²
▶️ 49cm + 576cm = c²
▶️ 625cm = c²
▶️ 25² = c² (25×25 = 625)
▶️ c = 25
The value of c is 25 cm.
A random sample of 25 graduates of four-year business colleges by the American Bankers Association revealed a mean amount owed in student loans was $14,381 with a standard deviation of $1,892. Assuming the pop is normally distributed:
a) Compute a 90% confidence interval, as well as the margin of error.
b) Interpret the confidence interval you have computed.
Answer:
a) The 90% confidence interval for the mean amount owed in student loans of graduates of four-year business colleges is ($13,600, $15,162), having a margin of error of $781.
b) We are 90% sure that the mean amount owed in student loans of graduates of all four-year business colleges is between $13,600 and $15,162.
Step-by-step explanation:
Question a:
We have the standard deviation for the sample, which means that the t-distribution is used to solve this question.
The first step to solve this problem is finding how many degrees of freedom,which is the sample size subtracted by 1. So
df = 25 - 1 = 24
90% confidence interval
Now, we have to find a value of T, which is found looking at the t table, with 24 degrees of freedom(y-axis) and a confidence level of [tex]1 - \frac{1 - 0.9}{2} = 0.95[/tex]. So we have T = 2.0639
The margin of error is:
[tex]M = T\frac{s}{\sqrt{n}} = 2.0639\frac{1892}{\sqrt{25}} = 781[/tex]
In which s is the standard deviation of the sample and n is the size of the sample.
The lower end of the interval is the sample mean subtracted by M. So it is 14381 - 781 = $13,600
The upper end of the interval is the sample mean added to M. So it is 14381 + 781 = $15,162
The 90% confidence interval for the mean amount owed in student loans of graduates of four-year business colleges is ($13,600, $15,162), having a margin of error of $781.
b) Interpret the confidence interval you have computed.
We are 90% sure that the mean amount owed in student loans of graduates of all four-year business colleges is between $13,600 and $15,162.
Factorise: 25x^2 - 1/49
Answer:
[tex] (5x + \frac{1}{7} )(5x - \frac{1}{7} )[/tex]Step-by-step explanation:
Given,
[tex] {25x}^{2} - \frac{1}{49} [/tex]
[tex] = {(5x)}^{2} - {( \frac{1}{7}) }^{2} [/tex]
Since,
[tex] {x}^{2} - {y}^{2} = (x + y)(x - y)[/tex]
Then,
[tex] = (5x + \frac{1}{7} )(5x - \frac{1}{7} )(ans)[/tex]
If 10 wholes are divided into pieces that are one half of a whole each how many pieces are there?
9514 1404 393
Answer:
20
Step-by-step explanation:
A whole can be divided into two pieces that are each 1/2 of the whole.
(10 wholes) × (2 pieces per whole) = 20 pieces
the quotient of (x^4 - 3x^2 + 4x - 3) and a polynomial is (x^2 + x - 3) what is the polynormial
Answer:
Hello,
polynomial is x²-x+1
Step-by-step explanation:
if a=b*c+r then a=c*b+r
Using a long division, see the picture.
Is this a function help
(WILL GIVE YOU 30 POINTS!!!)
The graph shows the functions f(x), p(x), and g(x):
Graph of function g of x is y is equal to 3 multiplied by 1.2 to the power of x. The straight line f of x joins ordered pairs minus 3, minus 3 and 4, 4 and is extended on both sides. The straight line p of x joins the ordered pairs minus 6, 1 and minus 3, minus 3 and is extended on both sides.
Part A: What is the solution to the pair of equations represented by p(x) and f(x)? (3 points)
Part B: Write any two solutions for f(x). (3 points)
Part C: What is the solution to the equation p(x) = g(x)? Justify your answer. (4 points)
Answer:
(a) No solution
(b)
[tex](x_1,y_1) =(-3,-3)\\(x_2,y_2) =(4,4)[/tex]
(c) [tex](-6,1)[/tex]
Step-by-step explanation:
Given
See attachment for graph
Solving (a): Solution to p(x) and f(x)
Curve p(x) and line f(x) do not intersect.
So, there is no solution to the pair of p(x) and f(x)
Solving (b): Two solutions to f(x)
This means that we select any two point on straight line f(x)
From the line of f(x), we have:
[tex](x_1,y_1) =(-3,-3)\\(x_2,y_2) =(4,4)[/tex]
Solving (c): Solution to p(x) = g(x)
Here, we write out the point of intersection of p(x) and g(x)
From the graph, the point of intersection is: [tex](-6,1)[/tex]
15 points work out ratio for x
Answer:
x = 25
Step-by-step explanation:
x : (x+10) = 5:7
Fractional form
x / x+10 = 5/7
Cross multiply:
x * 7 = (x+10) * 5
7x = 5x + 50
7x - 5x = 5x + 50 - 5x
2x = 50
x = 25
Check:
25 : 25 + 10
25 : 35
25/35 = 5/7
If my answer is incorrect, pls correct me!
If you like my answer and explanation, mark me as brainliest!
-Chetan K
72
60
48
36
Number of Computers
The graph shows a proportional relationship between
the number of computers produced at a factory per
day in three days, 36 computers are produced, 48
computers are produced in 4 days, and 60 computers
are produced in 5 days.
Find the unit rate of computers per day using the
graph.
Unit rate
computers per day
I
24
12
3 4 5 6 7 8 9 10 11 12
Number of Days
Intro
Done
Graph is attached below ;
Answer:
Unit rate = 12 computers per day
Step-by-step explanation:
To obtain the unit rate of computers sold per day using the graph, we need to obtain the slope of the graph, which is the change in y per change in x
That is ; the gradient ;
Slope = change in y / change in x
Slope = (y2 - y1) / (x2 - x1)
y2 = 60 ; y1 = 36 ; x2 = 5 ; x1 = 3
Slope = (60 - 36) / (5 - 3) = 24 / 2 = 12
Slope = 12
Unit rate = 12 computers per day
Solve each system by graphing.
Answer:
it is 2 te he
Step-by-step explanation:
ONCE THE 5 6 = 7 10 .. ?% =1 x 7 =2 te he
here's a graph of a linear function write the equation that describes the function express it in slope-intercept form
Answer:
y = 3/4 x - 3
Step-by-step explanation:
the slope of a line is the factor of x in the equation and is expressed as ratio of y/x : defining how many units y changes, when x changes a certain number of units.
in our graph here we can see that when increasing x from e.g. 0 to 4 (the x-axis intercept point, a change of +4), y changes from -3 to 0 (a change of +3).
so, the slope and factor of x is y/x = 3/4
and for x=0 we get y=-3 as y-axis intercept point.
so, the line equation is
y = 3/4 x - 3
Instructions: Find the missing length indicated.
Answer:
x = 65
Step-by-step explanation:
x = √(25×(25+144))
x = √(25×169)
x = 5×13
x = 65
Answered by GAUTHMATH