Answer:
The numerical limits for a B grade are 72 and 79, that is, a score between 72 and 79 results in a B grade.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Scores on the test are normally distributed with a mean of 68.4 and a standard deviation of 9.7.
This means that [tex]\mu = 68.4, \sigma = 9.7[/tex]
Find the numerical limits for a B grade.
Below the 100 - 14 = 86th percentile and above the 65th percentile.
65th percentile:
X when Z has a p-value of 0.65, so X when Z = 0.385.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]0.385 = \frac{X - 68.4}{9.7}[/tex]
[tex]X - 68.4 = 0.385*9.7[/tex]
[tex]X = 72[/tex]
86th percentile:
X when Z has a p-value of 0.86, so X when Z = 1.08.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.08 = \frac{X - 68.4}{9.7}[/tex]
[tex]X - 68.4 = 1.08*9.7[/tex]
[tex]X = 79[/tex]
The numerical limits for a B grade are 72 and 79, that is, a score between 72 and 79 results in a B grade.
What number can go in the box to make the number sentence true?
6 + 0 = 10
0.
4.
6.
10.
1. Consider a lottery with three possible outcomes:-$125 will be received with probability 0.2-$100 will be received with probability 0.3-$50 will be received with probability 0.5a. What is the expected value of the lottery
Answer:
The expected value of the lottery is $80
Step-by-step explanation:
To get the expected value, we have to multiply each outcome by its probability
Then we proceed to add up all of these to get the expected value of the lottery
we have this as ;;
125(0.2) + 100(0.3) + 50(0.5)
= 25 + 30 + 25 = $80
If 800g of a radioactive substance are present initially and 8 years later only 450g remain, how much of the substance will be present after 16 years? (Round answer to a whole number)
A=Pe^(rt)
P = 800g
t = 8 years
A = 450g
r = This is what we will try and find to start with
450=800e^(r*8)
After running the math through a calculator, we end with r = -0.07192
Now we just re-input this information into our equation: A=800e^(-0.07192*16)
A=800e^(1.15072)
Now we will re-write the equation using the negative exponent rule:
A = 800 1/e^1.15072
Combine right side:
A = 800/e^1.15072
Then do the math:
A = 253.12709836......
That will give us A = 253 (rounded to the whole number)
I hope this helps! :)
The substance that should be presented after 16 years is 253.
Given that,
If 800g of a radioactive substance are present initially and 8 years later only 450g remain.Based on the above information, the calculation is as follows:
We know that
[tex]A=Pe^{rt}[/tex]
Here
P = 800g
t = 8 years
A = 450g
[tex]450=800e^{r\times 8}\\\\A=800e^{-0.07192\times 16}\\\\A=800e^{1.15072}\\\\A = 800 \ 1 \div e^{1.15072}\\\\A = 800\div e^{1.15072}[/tex]
A = 253
Therefore we can conclude that the substance that should be presented after 16 years is 253.
Learn more: brainly.com/question/16115373
Building A is 170 feet shorter than building B. The total height of the two building is 1490 feet. Find the height of each building.
Answer:
Building A is 660 feet and Building B is 830 feet
Step-by-step explanation:
Let x represent the height of building B.
Since building A is 170 feet shorter than building B, it can be represented by x - 170.
Create an equation and solve for x:
(x) + (x - 170) = 1490
2x - 170 = 1490
2x = 1660
x = 830
So, the height of building B is 830 feet.
Subtract 170 from this to find the height of building A:
830 - 170
= 660
Building A is 660 feet and Building B is 830 feet
15. Find the x- and y-intercepts for the lineal equation - 3x + 4y = 24
Please explain steps! ❤️
Answer:
x (-8,0)
y (0,6)
Step-by-step explanation:
at the x-intercept, y = 0
at the y-intercept x=0
sub those values into your equation!
for the x-intercept,
-3x = 24
x = -8
for the y-intercept,
4y = 24
y = 6
Help please guys thanks
Answer:
5
Step-by-step explanation:
(625 ^2)^(1/8)
Rewriting 625 as 5^4
(5^4 ^2)^(1/8)
We know that a^b^c = a^(b*c)
5^(4*2)^1/8
5^8 ^1/8
5^(8*1/8)
5^1
5
Answer:
[tex]5[/tex]
Step-by-step explanation:
[tex] { {(625}^{2} )}^{ \frac{1}{8} } \\ { ({25}^{2 \times 2} )}^{ \frac{1}{8} } \\ {25}^{4 \times \frac{1}{8} } \\ {5}^{2 \times 4 \times \frac{1}{8} } \\ {5}^{ \frac{8}{8} } \\ {5}^{1} \\ = 5[/tex]
find x in this similar triangles
Answer:
6. x = 4
8. x = 13
Step-by-step explanation:
Using similar triangles theorem,
6. (5+4)/5 = (4x + 2)/(4x + 2 - 8)
9/5 = (4x + 2)/(4x - 6)
Cross multiply
9(4x - 6) = 5(4x + 2)
36x - 54 = 20x + 10
Collect like terms
36x - 20x = 54 + 10
16x = 64
16x/16 = 64/16
x = 4
8. (4x + 13)/20 = 52/16
(4x + 13)/20 = 13/4
Cross multiply
4(4x + 13) = 13(20)
16x + 52 = 260
16x = 260 - 52
16x = 208
x = 208/16
x = 13
Please help on this initial amount problem
Divide 5x^2+3x-2 by x + 1
5x + 8
I used long division
PLEASE HELPPPPPPPPPPP
Answer:
P(S or T) = 3/4
Step-by-step explanation:
Rate of change or rate of change
A farmer has 80 feet of wire mesh to surround a rectangular pen.
A) Express the area A of the pen as a function of x, also draw the figure of A indicating the admissible values of x for this problem.
B) What are the dimensions of the maximum area pen?
Answer:
Step-by-step explanation:
A). Let the dimensions of the rectangular pen are,
Length = l
Width = x
Since, farmer has the wire measuring 80 feet to surround the the pen.
Perimeter of the pen = 80 feet
2(l + x) = 80
l + x = 40
l = 40 - x ------(1)
Area of the rectangular pen = Length × width
= lx
By substituting the value of l from equation (1),
Area (A) of the pen will be modeled by the expression,
A = (40 - x)
A = 40x - x²
B). For maximum area of the pen,
Derivative of the area = 0
[tex]\frac{d}{dx}(A)=0[/tex]
[tex]\frac{d}{dx}(A)=\frac{d}{dx}(40x-x^2)[/tex]
= 40 - 2x
And (40 - 2x) = 0
x = 20
Therefore, width of the pen = 20 feet
And length of the pen = 40 - 20
= 20 feet
Dimensions of the pen should be 20 feet by 20 feet.
Suppose you make napkin rings by drilling holes with different diameters through two wooden balls (which also have different diameters). You discover that both napkin rings have the same height 5h. Use cylindrical shells to compute the volume V of a napkin ring of height 5 h created by drilling a hole with radius r through the center of a sphere of radius R and express the answer in terms of h .
Answer:
V = 1/6 π ( 5h)^3
Step-by-step explanation:
Height of napkin rings = 5h
Compute the volume V of a napkin ring
let a = 5
radius = r
express answer in terms of h
attached below is the detailed solution
Which expression is equivalent to 3(x - y) + y? 3x - 4y 3x - 3y 3x - 2y 3(x - 2y)
9514 1404 393
Answer:
(c) 3x - 2y
Step-by-step explanation:
Use the distributive property to eliminate parentheses, then collect terms.
3(x -y) +y = 3x -3y +y = 3x +(-3+1)y = 3x -2y
Now we have to find,
The expression which is equivalent to,
→ 3(x - y) + y
Let's get the solution,
→ 3(x - y) + y
→ 3x - 3y + y
→ 3x - 2y
Hence, required expression is 3x - 2y.
what 30 + 30+60+(56)-82=?
94 is the correct answer for that question
Step-by-step explanation:
30+30+60+56-82=94
Which of the following is a solution to 2sin2x+sinx-1=0?
Answer:
270 degrees
Step-by-step explanation:
If you plug in 270 in place of the x's, the function is true!
This is correct for Plate/Edmentum users!! Hope I could help :)
Evaluate z^2−3 z+4 , when z=−4
Answer:
8
Step-by-step explanation:
=z²-3z+4 when z is 4
=4²-3(4)+4
=16-12+4
=8
How would yo expand ln (1/49k)?
Answer:
Step-by-step explanation:
It depends on whether you mean ln(1/49k) or ln(1/(49k)).
cho f(x)= sign x và g(x) = x(1-x^2). tìm f(g(x))
Answer:
[tex]f(g(x))= sign(x(1-x^{2})) = sign(x-x^{3})[/tex]
Step-by-step explanation:
A rope is 56 in length and must be cut into two pieces. If one piece must be six times as long as the other, find the length of each piece. Round your answers to the nearest inch, if necessary.
Answer:
48, 6
Step-by-step explanation:
The ratio of the pieces is 6 to 1
Add them together to get the total
6+1 = 7
Divide the total length by 7
56/7 = 8
Multiply the ratios by 8
6*8 = 48
1*8 = 6
The peices are 48 and 6
what’s the missing side of the polygons
Answer:
the missing side is 21!!!!!!!!
Answer theas question
(1) Both equations in (a) and (b) are separable.
(a)
[tex]\dfrac xy y' = \dfrac{2y^2+1}{x+1} \implies \dfrac{\mathrm dy}{y(2y^2+1)} = \dfrac{\mathrm dx}{x(x+1)}[/tex]
Expand both sides into partial fractions.
[tex]\left(\dfrac1y - \dfrac{2y}{2y^2+1}\right)\,\mathrm dy = \left(\dfrac1x - \dfrac1{x+1}\right)\,\mathrm dx[/tex]
Integrate both sides:
[tex]\ln|y| - \dfrac12 \ln\left(2y^2+1\right) = \ln|x| - \ln|x+1| + C[/tex]
[tex]\ln\left|\dfrac y{\sqrt{2y^2+1}}\right| = \ln\left|\dfrac x{x+1}\right| + C[/tex]
[tex]\dfrac y{\sqrt{2y^2+1}} = \dfrac{Cx}{x+1}[/tex]
[tex]\boxed{\dfrac{y^2}{2y^2+1} = \dfrac{Cx^2}{(x+1)^2}}[/tex]
(You could solve for y explicitly, but that's just more work.)
(b)
[tex]e^{x+y}y' = 3x \implies e^y\,\mathrm dy = 3xe^{-x}\,\mathrm dx[/tex]
Integrate both sides:
[tex]e^y = -3e^{-x}(x+1) + C[/tex]
[tex]\ln(e^y) = \ln\left(C - 3e^{-x}(x+1)\right)[/tex]
[tex]\boxed{y = \ln\left(C - 3e^{-x}(x+1)\right)}[/tex]
(2)
(a)
[tex]y' + \sec(x)y = \cos(x)[/tex]
Multiply both sides by an integrating factor, sec(x) + tan(x) :
[tex](\sec(x)+\tan(x))y' + \sec(x) (\sec(x) + \tan(x)) y = \cos(x) (\sec(x) + \tan(x))[/tex]
[tex](\sec(x)+\tan(x))y' + (\sec^2(x) + \sec(x)\tan(x)) y = 1 + \sin(x)[/tex]
[tex]\bigg((\sec(x)+\tan(x))y\bigg)' = 1 + \sin(x)[/tex]
Integrate both sides and solve for y :
[tex](\sec(x)+\tan(x))y = x - \cos(x) + C[/tex]
[tex]y=\dfrac{x-\cos(x) + C}{\sec(x) + \tan(x)}[/tex]
[tex]\boxed{y=\dfrac{(x+C)\cos(x) - \cos^2(x)}{1+\sin(x)}}[/tex]
(b)
[tex]y' + y = \dfrac{e^x-e^{-x}}2[/tex]
(Note that the right side is also written as sinh(x).)
Multiply both sides by e ˣ :
[tex]e^x y' + e^x y = \dfrac{e^{2x}-1}2[/tex]
[tex]\left(e^xy\right)' = \dfrac{e^{2x}-1}2[/tex]
Integrate both sides and solve for y :
[tex]e^xy = \dfrac{e^{2x}-2x}4 + C[/tex]
[tex]\boxed{y=\dfrac{e^x-2xe^{-x}}4 + Ce^{-x}}[/tex]
(c) I've covered this in an earlier question of yours.
(d)
[tex]y'=\dfrac y{x+y}[/tex]
Multiply through the right side by x/x :
[tex]y' = \dfrac{\dfrac yx}{1+\dfrac yx}[/tex]
Substitute y(x) = x v(x), so that y' = xv' + v, and the DE becomes separable:
[tex]xv' + v = \dfrac{v}{1+v}[/tex]
[tex]xv' = -\dfrac{v^2}{1+v}[/tex]
[tex]\dfrac{1+v}{v^2}\,\mathrm dv = -\dfrac{\mathrm dx}x[/tex]
[tex]-\dfrac1v + \ln|v| = -\ln|x| + C[/tex]
[tex]\ln\left|\dfrac yx\right| -\dfrac xy = C - \ln|x|[/tex]
[tex]\ln|y| - \ln|x| -\dfrac xy = C - \ln|x|[/tex]
[tex]\boxed{\ln|y| -\dfrac xy = C}[/tex]
Fraces bonitas para decirle a tu nv?
minimo 6
Answer:
it's. is now the MA plz I miss you
si pudiera escoger entre vivir eternamente y vivir dos veces
yo escogeria vivir dos veces porque vivir una vida eterna sin ti a mi lado seria el mayor sufrimiento, ahora vivir dos veces me dejaria tranquilo porque despues del final de mi vida podria volver a encontrarme contigo y vivir todos los momentos bellos una vez mas y eso seria un sueño volviendose realidad
what are the zeros of this function?
Answer:
the Ans is c
Step-by-step explanation:
actually I don't know how to explain
18. Which of the following is true for a circle that has a circumference of approximately 75 feet?
O The diameter is approximately 12 feet.
O The radius is approximately 12 feet.
O The radius is approximately 12 square feet.
O The diameter is approximately 12 square feet.
Answer:
A) The diameter is approximately 12 feet.
Step-by-step explanation:
C= piD
sq ft would be wrong bc this is not talking ab area
Find the missing length indicated
Answer:
x = 175
Step-by-step explanation:
Help please!! Based on Pythagorean identities, which equation is true ??
Answer:
Last answer: [tex]cot^{2} \alpha - csc^{2} \alpha = -1[/tex]
sorry couldn't find theata so I just used alpha.
Game consoles: A poll surveyed 341 video gamers, and 95 of them said that they prefer playing games on a console, rather than a computer or hand-held device. An executive at a game console manufacturing company claims that the proportion of gamers who prefer consoles differs from . Does the poll provide convincing evidence that the claim is true
Answer:
proportion of gamers who prefer console does not differ from 29%
Step-by-step explanation:
Given :
n = 341 ; x = 95 ; Phat = x / n = 95/341 = 0.279
H0 : p = 0.29
H1 : p ≠ 0.29
The test statistic :
T = (phat - p) ÷ √[(p(1 - p)) / n]
T = (0.279 - 0.29) ÷ √[(0.29(1 - 0.29)) / 341]
T = (-0.011) ÷ √[(0.29 * 0.71) / 341]
T = -0.011 ÷ 0.0245725
T = - 0.4476532
Using the Pvalue calculator from test statistic score :
df = 341 - 1 = 340
Pvalue(-0.447, 340) ; two tailed = 0.654
At α = 0.01
Pvalue > α ; We fail to reject the null and conclude that there is no significant evidence that proportion of gamers who prefer console differs from 29%
When a fridge is imported, a customs value of 10% must be paid for its value. If the value of the fridge after paying the customs value is rs. 55,000/-. What is the value before paying customs duty?
Answer:
55000×100/90
61,111.111
The following data represents the age of 30 lottery winners.
22 30 30 35 36 37 37
37 39 39 41 51 51 54
54 55 57 57 58 58 61
64 68 69 72 74 75 78 79 80
Complete the frequency distribution for the data.
Age Frequency
20-29
30-39
40-49
50-59
60-69
70-79
80-89
Which of the following displays cannot be used to compare data from two different sets?
Answer:
Scatter plot charts are good for relationships and distributions, but pie charts should be used only for simple compositions — never for comparisons or distributions.