A pool has some initial amount of water in it. Then it starts being filled so the water level rises at a rate of 666 centimeters per minute. After 202020 minutes, the water level is 220220220 centimeters.
Graph the relationship between the pool's water level (in centimeters) and time (in minutes).

Answers

Answer 1

I cant graph it on here but. if your graph goes by 10 then the slope should increase by 666 every minute on the x line

Answer 2

Answer:

The answer is in the screenshot

Step-by-step explanation:

PLEASE GIVE BRAINLIEST

A Pool Has Some Initial Amount Of Water In It. Then It Starts Being Filled So The Water Level Rises At

Related Questions

There were 2,300 applicants for enrollment to the freshman class at a small college in the year 2010. The number of applicants has risen linearly by roughly 170 per year. The number of applications f(x) is given by f(x) = 2,300 + 170x, where x is the number of years since 2010. a. Determine if the function g(x) = * = 2,300 is the inverse of f. 170 b. Interpret the meaning of function g in the context of the problem.
a. No
b. The value g(x) represents the number of years since the year 2010 based on the number of applicants to the freshman class, x.
a. Yes
b. The value 8(x) represents the number of applicants to the freshman class based on the number of years since 2010,
a. No
b. The value slx) represents the number of applicants to the freshman class based on the number of years since 2010,
a. Yes
b. The value six) represents the number of years since the year 2010 based on the number of applicants to the freshman class x

Answers

Answer:

The inverse function is [tex]g(x) = \frac{x - 2300}{170}[/tex]

The value of g(x) represents the number of applicants to the freshman class based on the number of years since 2010.

Step-by-step explanation:

Number of applicants in x years after 2010:

Is given by the following function:

[tex]f(x) = 2300 + 170x[/tex]

Inverse function:

We exchange the values of y = f(x) and x in the original function, and then find y. So

[tex]x = 2300 + 170y[/tex]

[tex]170y = x - 2300[/tex]

[tex]y = \frac{x - 2300}{170}[/tex]

[tex]g(x) = \frac{x - 2300}{170}[/tex]

The inverse function is [tex]g(x) = \frac{x - 2300}{170}[/tex]

Meaning of g:

f(x): Number of students in x years:

g(x): Inverse of f(x), is the number of years it takes for there to be x applicants, so the answer is:

The value of g(x) represents the number of applicants to the freshman class based on the number of years since 2010.

A medicine bottle contains 8 grams of medicine. One dose is 400 milligrams. How many milligrams does the bottle contain?

Answers

Answer:

8×1000 milligrams

8000 milligrams

A website manager has noticed that during the evening​ hours, about 3.23.2 people per minute check out from their shopping cart and make an online purchase. She believes that each purchase is independent of the others and wants to model the number of purchases per minute.

1. What model might you suggest to model the number of purchases per​ minute?

a. Binomial
b. Uniform
c. Poisson
d. Geometric

2. What is the probability that in any one minute at least one purchase is​ made?
3. What is the probability that no one makes a purchase in the next 2​ minutes?

Answers

Answer:

1.  c. Poisson

2. 0.9592 = 95.92% probability that in any one minute at least one purchase is​ made.

3. 0.0017 = 0.17% probability that no one makes a purchase in the next 2​ minutes.

Step-by-step explanation:

We have only the mean, which means that the Poisson distribution is used to solve this question, and thus the answer to question 1 is given by option c.

Poisson distribution:

In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

In which

x is the number of sucesses

e = 2.71828 is the Euler number

[tex]\mu[/tex] is the mean in the given interval.

Mean of 3.2 minutes:

This means that [tex]\mu = 3.2n[/tex], in which n is the number of minutes.

2. What is the probability that in any one minute at least one purchase is​ made?

[tex]n = 1[/tex], so [tex]\mu = 3.2[/tex].

This probability is:

[tex]P(X \geq 1) = 1 - P(X = 0)[/tex]

In which

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-3.2}*3.2^{0}}{(0)!} = 0.0408[/tex]

So

[tex]P(X \geq 1) = 1 - P(X = 0) = 1 - 0.0408 = 0.9592[/tex]

0.9592 = 95.92% probability that in any one minute at least one purchase is​ made.

3. What is the probability that no one makes a purchase in the next 2​ minutes?

2 minutes, so [tex]n = 2, \mu = 3.2(2) = 6.4[/tex]

This probability is P(X = 0). So

[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]

[tex]P(X = 0) = \frac{e^{-6.4}*6.4^{0}}{(0)!} = 0.0017[/tex]

0.0017 = 0.17% probability that no one makes a purchase in the next 2​ minutes.

Suppose a rumor is going around a group of 191 people. Initially, only 38 members of the group have heard the rumor, but 3 days later 68 people have heard it. Using a logistic growth model, how many people are expected to have heard the rumor after 6 days total have passed since it was initially spread? (Round your answer to the nearest whole person.)

Answers

Answer:

106 people.

Step-by-step explanation:

Logistic equation:

The logistic equation is given by:

[tex]P(t) = \frac{K}{1+Ae^{-kt}}[/tex]

In which

[tex]A = \frac{K - P_0}{P_0}[/tex]

K is the carrying capacity, k is the growth/decay rate, t is the time and P_0 is the initial value.

Suppose a rumor is going around a group of 191 people. Initially, only 38 members of the group have heard the rumor.

This means that [tex]K = 191, P_0 = 38[/tex], so:

[tex]A = \frac{191 - 38}{38} = 4.03[/tex]

Then

[tex]P(t) = \frac{191}{1+4.03e^{-kt}}[/tex]

3 days later 68 people have heard it.

This means that [tex]P(3) = 68[/tex]. We use this to find k.

[tex]P(t) = \frac{191}{1+4.03e^{-kt}}[/tex]

[tex]68 = \frac{191}{1+4.03e^{-3k}}[/tex]

[tex]68 + 274.04e^{-3k} = 191[/tex]

[tex]e^{-3k} = \frac{191-68}{274.04}[/tex]

[tex]e^{-3k} = 0.4484[/tex]

[tex]\ln{e^{-3k}} = \ln{0.4484}[/tex]

[tex]-3k = \ln{0.4484}[/tex]

[tex]k = -\frac{\ln{0.4484}}{3}[/tex]

[tex]k = 0.2674[/tex]

Then

[tex]P(t) = \frac{191}{1+4.03e^{-0.2674t}}[/tex]

How many people are expected to have heard the rumor after 6 days total have passed since it was initially spread?

This is P(6). So

[tex]P(6) = \frac{191}{1+4.03e^{-0.2674*6}} = 105.52[/tex]

Rounding to the nearest whole number, 106 people.

The cost of producing a custom-made clock includes an initial set-up fee of $1,200 plus an additional $20 per unit made. Each clock sells for $60. Find the number of clocks that must be produced and sold for the costs to equal the revenue generated. (Enter a numerical value.)

Answers

Answer:

30 clocks

Step-by-step explanation:

Set up an equation:

Variable x = number of clocks

1200 + 20x = 60x

Isolate variable x:

1200 = 60x - 20x

1200 = 40x

Divide both sides by 40:

30 = x

Check your work:

1200 + 20(30) = 60(30)

1200 + 600 = 1800

1800 = 1800

Correct!

Please help with this question

Answers

Answer:

im not too sure but try using a cartesuan plane and measure it precisely using a protractor then key in the measurements. Im not entirely sure its the correct method tho

What is the area of the circle in terms of [tex]\pi[/tex]?

a. 3.4225[tex]\pi[/tex] m²
b. 6.845[tex]\pi[/tex] m²
c. 7.4[tex]\pi[/tex] m²
d. 13.69[tex]\pi[/tex] m²

Answers

[tex] \sf \: d \: = 3.7m \\ \sf \: r \: = \frac{3.7}{2} = 1.85 \: m\\ \\ \sf \: c \: = \pi {r}^{2} \\ \\ \sf \: c \: = \pi ({1.85})^{2} \\ \sf c = 1.85 \times 1.85 \times \pi \\ \sf \: c = \boxed {\underline{ \bf a. \: 3.4225\pi \: m ^{2} }}[/tex]

7b please make the graph look nice and neat and easy to read.

Answers

Answer:

Step-by-step explanation:

Write the equation of the line in fully simplified slope-intercept form.

Answers

Answer:

y = -x+3

Step-by-step explanation:

Slope intercept form =>  y = mx+b

To find 'm', the slope, pick 2 coordinates.

(0,3)

(2,1)

Use this equation to find the slope using these 2 coordinates: (y1 - y2)/(x1 - x2)

(3 - 1)/(0 - 2) = -1

m = slope = -1

'b' is the y-intersept, or the point when a line passes through the y-axis. That's (0,3).

b = y-intercept = 3

So the equation will be y = -1x + 3, or y = -x + 3

The answer above me is correct

URGENT HELP!!!!
Picture included

Answers

Answer:

Length (L) = 72 feet

Step-by-step explanation:

From the question given above, the following data were obtained:

Period (T) = 9.42 s

Pi (π) = 3.14

Length (L) =?

The length of the pendulum can be obtained as follow:

T = 2π √(L/32)

9.42 = (2 × 3.14) √(L/32)

9.42 = 6.28 √(L/32)

Divide both side by 6.28

√(L/32) = 9.42 / 6.28

Take the square of both side

L/32 = (9.42 / 6.28)²

Cross multiply

L = 32 × (9.42 / 6.28)²

L = 72 feet

Thus, the Lenght is 72 feet

Suppose the method of tree ring dating gave the following dates A.D. for an archaeological excavation site. Assume that the population of x values has an approximately normal distribution.

1241 1210 1267 1314 1211 1299 1246 1280 1291

a. Determine if the data meets the initial conditions to construct a confidence interval.
b. Find the sample mean year x and sample standard deviation σ.
c. What is the maximal margin of error when finding a 90 % confidence interval for the mean of all tree-ring dates from this archaeological site?

Answers

Answer:

(1238.845 ;1285.376)

Step-by-step explanation:

Conditions for constructing a confidence interval :

Data must be random

Distribution should be normal and independent ;

Based on the conditions above ; data meets initial conditions ;

C. I = sample mean ± margin of error

Given the data :

1241 1210 1267 1314 1211 1299 1246 1280 1291

Mean, xbar = Σx / n = 11359 / 9 = 1262.11

The standard deviation, s = [√Σ(x - xbar)²/n - 1]

Using a calculator ; s = 37.525

The confidence interval :

C.I = xbar ± [Tcritical * s/√n]

Tcritical(0.10 ; df = n - 1 = 9 - 1 = 8)

Tcritical at 90% = 1.860

C. I = 1262.11 ± [1.860 * 37.525/√9]

C.I = 1262.11 ± 23.266

(1238.845 ;1285.376)

± 23.266

The margin of error :

[Tcritical * s/√n]

[1.860 * 37.525/√9]

C.I = ± 23.266

A boxcar contains six complex electronic systems. Two of the six are to be randomly selected for thorough testing and then classified as defective or not defective.
a. If two of the six systems are actually defective, find the probability that at least one of the two systems tested will be defective. Find the probability that both are defective.
b. If four of the six systems are actually defective, find the probabilities indicated in part (a).

Answers

Answer:

Step-by-step explanation:

Number of electronic systems = 6

(a) Number of defected systems = 2

Probability of getting at least one system is defective

1 defective and 1 non defective + 2 defective

= (2 C 1 ) x (4 C 1) + (2 C 2) / (6 C 2)

= 3 / 5

(b) four defective

Probability of getting at least one system is defective

2 defective and 2 non defective + 3 defective and 1 non defective + 4 defective  

= (4 C 2 ) x (2 C 2) + (4 C 3 )(2 C 1) + (4 C 4) / (6 C 4)

= 1

Answer:

(a)P(At least one defective)[tex]=0.6[/tex]

P(Both are defective)[tex]=0.067[/tex]

(b)P(At least one defective)[tex]=14/15[/tex]

P(Both are defective)[tex]=0.4[/tex]

Step-by-step explanation:

We are given that

Total number of complex electronic system, n=6

(a)Defective items=2

Non-defective items=6-2=4

We have to find the  probability that at least one of the two systems tested will be defective.

P(At least one defective)=[tex]\frac{2C_1\times 4C_1}{6C_2}+\frac{2C_2\times 4C_0}{6C_2}[/tex]

Using the formula

[tex]P(E)=\frac{favorable\;cases}{total\;number\;of\;cases}[/tex]

P(At least one defective)[tex]=\frac{\frac{2!}{1!1!}\times \frac{4!}{1!3!} }{\frac{6!}{2!4!}}+\frac{\frac{2!}{0!2!}\times \frac{4!}{4!}}{\frac{6!}{2!4!}}[/tex]

Using the formula

[tex]nC_r=\frac{n!}{r!(n-r)!}[/tex]

P(At least one defective)[tex]=\frac{2\times \frac{4\times 3!}{3!}}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}+\frac{1}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}[/tex]

P(At least one defective)[tex]=\frac{2\times 4}{3\times 5}+\frac{1}{3\times 5}[/tex]

P(At least one defective)[tex]=\frac{8}{15}+\frac{1}{15}=\frac{9}{15}[/tex]

P(At least one defective)[tex]=\frac{3}{5}=0.6[/tex]

Now, the probability that both are defective

P(Both are defective)=[tex]\frac{2C_2\times 4C_0}{6C_2}[/tex]

P(Both are defective)=[tex]\frac{\frac{2!}{0!2!}\times \frac{4!}{4!}}{\frac{6!}{2!4!}}[/tex]

P(Both are defective)[tex]=\frac{1}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}[/tex]

P(Both are defective)[tex]=\frac{1}{3\times 5}[/tex]

P(Both are defective)[tex]=0.067[/tex]

(b)

Defective items=4

Non- defective item=6-4=2

P(At least one defective)=[tex]\frac{4C_1\times 2C_1}{6C_2}+\frac{4C_2\times 2C_0}{6C_2}[/tex]

P(At least one defective)[tex]=\frac{\frac{4!}{1!3!}\times \frac{2!}{1!1!} }{\frac{6!}{2!4!}}+\frac{\frac{4!}{2!2!}\times \frac{2!}{2!}}{\frac{6!}{2!4!}}[/tex]

P(At least one defective)[tex]=\frac{2\times \frac{4\times 3!}{3!}}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}+\frac{\frac{4\times 3\times 2!}{2!\times 2\times 1}}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}[/tex]

P(At least one defective)[tex]=\frac{2\times 4}{3\times 5}+\frac{2\times 3}{3\times 5}[/tex]

P(At least one defective)[tex]=\frac{8}{15}+\frac{6}{15}=\frac{8+6}{15}[/tex]

P(At least one defective)[tex]=\frac{14}{15}[/tex]

P(Both are defective)[tex]=\frac{4C_2\times 2C_0}{6C_2}[/tex]

P(Both are defective)[tex]=\frac{\frac{4\times 3\times 2!}{2\times 1\times 2!}\times \frac{2!}{2!}}{\frac{6\times 5\times 4!}{2\times 1\times 4!}}[/tex]

P(Both are defective)[tex]=\frac{\frac{4\times 3\times 2\times 1}{2\times 1\times 2\times 1}}{3\times 5}[/tex]

P(Both are defective)[tex]=\frac{6}{15}=0.4[/tex]

P(Both are defective)[tex]=0.4[/tex]

HELP ASAP PLEASE! I tried inputting the numbers into the standard deviation equation but I did not get the right answer to find z. Can someone please help me? Thank you for your time!

Answers

Answer:

Z =  -1.60

it is low ... it appears that for this problem 2 standard deviations below must be reached to be considered "unusual"

Step-by-step explanation:

3.52 A coin is tossed twice. Let Z denote the number of heads on the first toss and W the total number of heads on the 2 tosses. If the coin is unbalanced and a head has a 40% chance of occurring, find (a) the joint probability distribution of W and Z; (b) the marginal distribution of W; (c) the marginal distribution of Z

Answers

Answer:

a)  The joint probability distribution

P(0,0) = 0.36, P(1,0) = 0.24,   P(2,0) = 0,   P(0,1) = 0,  P(1,1) = 0.24,  P(2,1)= 0.16

b)  P( W = 0 ) = 0.36,    P(W = 1 ) = 0.48,  P(W = 2 ) = 0.16

c) P ( z = 0 ) = 0.6

  P ( z = 1 ) = 0.4

Step-by-step explanation:

Number of head on first toss = Z

Total Number of heads on 2 tosses = W

% of head occurring = 40%

% of tail occurring = 60%

P ( head ) = 2/5 ,    P( tail ) = 3/5

a) Determine the joint probability distribution of W and Z

P( W =0 |Z = 0 ) = 0.6         P( W = 0 | Z = 1 ) = 0

P( W = 1 | Z = 0 ) = 0.4        P( W = 1 | Z = 1 ) = 0.6

P( W = 1 | Z = 0 ) = 0           P( W = 2 | Z = 1 ) = 0.4

The joint probability distribution

P(0,0) = 0.36, P(1,0) = 0.24,   P(2,0) = 0,   P(0,1) = 0,  P(1,1) = 0.24,  P(2,1)= 0.16

B) Marginal distribution of W

P( W = 0 ) = 0.36,    P(W = 1 ) = 0.48,  P(W = 2 ) = 0.16

C) Marginal distribution of Z ( pmf of Z )

P ( z = 0 ) = 0.6

P ( z = 1 ) = 0.4

Part(a): The required joint probability of W and Z is ,

[tex]P(0,0)=0.36,P(1,0)=0.24,P(2,0)=0,P(0,1)=0,P(1,1)=0.24,\\\\P(2,1)=0.16[/tex]

Part(b): The pmf (marginal distribution) of W is,

[tex]P(w=0)=0.36,P(w=1)=0.48,P(w=2)=0.16[/tex]

Part(c): The pmf (marginal distribution) of Z is,

[tex]P(z=0)=0.6,P(z=1)=0.4[/tex]

Part(a):

The joint distribution is,

[tex]P(w=0\z=0)=0.6,P(w=1|z=0)=0.4,P(w=2|z=0)=0[/tex]

Also,

[tex]P(w=0\z=1)=0,P(w=1|z=1)=0.6,P(w=2|z=1)=0.4[/tex]

Therefore,

[tex]P(0,0)=0.36,P(1,0)=0.24,P(2,0)=0,P(0,1)=0,P(1,1)=0.24,\\\\P(2,1)=0.16[/tex]

Learn More: https://brainly.com/question/13127182

Simplify this expression 3^-3
ASAPPPP PLSSSS

Answers

Step-by-step explanation:

-27 okay 3^-3 its same as 3^3

Answer: A)

[tex]3^{-3}[/tex]

[tex]3^{-3}=\frac{1}{3^3}[/tex]

[tex]=\frac{1}{3^3}[/tex]

[tex]3^3=27[/tex]

[tex]=\frac{1}{27}[/tex]

OAmalOHopeO

Which property was used to simplify the expression 4(b+2)=4b+8

Answers

Answer: distributive property

Step-by-step explanation: the 4 is multiplied by everting in the parenthesis

Which of the following is equivalent to a real number?
A. (-46)^1/2
B. (-10596)^1/8
C. (-4099)^1/5
D. (-5403)^1/6​

Answers

Answer:

C. (-4099)^1/5

Step-by-step explanation:

[tex]x^{\frac{1}{2} } = \sqrt{x}[/tex]

you can not take roots (real roots) of a negative number if the exponent is

even ... A,B,D have even exponents (in the denominator of the exponent.. in other words the index of the radical is even)...

the only odd index is in "B" (the 5 in the 1/5)

plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz help i will give
brainliest

Answers

Answer:

55

Step-by-step explanation:

55 appears 3 times, which is the most repetition in the data set

Answer:

55

Step-by-step explanation:

Mode = number that appears most often

The number 55 appears 3 times which is the most out of the other numbers

Hence mode = 55

find and sketch the domain of the function. f(x,y)=√(4-x^2-y^2) +√(1-x^2)

Answers

Answer:

Hello

Step-by-step explanation:

The domain is limited with 2 lines parallel: -1 ≤ x ≤ 1

and the disk ? (inside of a circle) of center (0,0) and radius 2

[tex]dom\ f(x,y)=\{(x,y) \in \mathbb{R} ^2 | \ -1\leq x \leq -1\ and \ ( -\sqrt{4-x^2} \leq \ y \leq \sqrt{4-x^2}\ ) \ \}\\[/tex]

A chemist has three different acid solutions.

The first solution contains 25% acid, the second contains 35%acid, and the third contains 55% acid.
She created 120 liters of a 40% acid mixture, using all three solutions. The number of liters of 55% solution used is 3 times the number of liters of 35% solution used.

How many liters of each solution was used?

Answers

Let x, y, and z be the amounts (in liters, L) of the 25%, 35%, and 55% solutions that the chemist used.

She ended up with 120 L of solution, so

x + y + z = 120 … … … [1]

x L of 25% acid solution contains 0.25x L of acid. Similarly, y L of 35% solution contains 0.35y L of acid, and z L of 55% solution contains 0.55z L of acid. The concentration of the new solution is 40%, so that it contains 0.40 (120 L) = 48 L of acid, which means

0.25x + 0.35y + 0.55z = 48 … … … [2]

Lastly,

z = 3y … … … [3]

since the chemist used 3 times as much of the 55% solution as she did the 35% solution.

Substitute equation [3] into equations [1] and [2] to eliminate z :

x + y + 3y = 120

x + 4y = 120 … … … [4]

0.25x + 0.35y + 0.55 (3y) = 48

0.25x + 2y = 48 … … … [5]

Multiply through equation [5] by -2 and add that to [4] to eliminate y and solve for x :

(x + 4y) - 2 (0.25x + 2y) = 120 - 2 (48)

0.5x = 24

x = 48

Solve for y :

x + 4y = 120

4y = 72

y = 18

Solve for z :

z = 3y

z = 54

Anthony read 46 pages of a book in 23 minutes.

To find the unit rate, use
.
Anthony read
pages per minute.

Answers

Answer:

2 pages per minute

Step-by-step explanation:

Take the number of pages and divide by the number of minutes

46 pages / 23 minutes

2 pages per minute

Answer:

2 Pages per Minute

Solutions:

46 ÷ 23 = 2

Final Answer:

Anthony can read 2 pages per minute.

if 3x=y+z, y=6-7, and z+x=8, what is the value of y/z?

Answers

Answer:

-4/25

Step-by-step explanation:

3x=y+z

y=6-7=-1

z+x=8

y/z=?

solution

3x=-1 + z

x= -1 + z\3 ...eq(*)

then, z= 8- x

z= 8 - (-1 +z)\3

z= 8 +(1- z )\3

z= 8+1\3 -z \3

= 24+1\3 - z\3

z=25\3-z\3

z+z\3=25\3

4z\3=25\3

4z=25

z=25/4

then,

25/4 +x = 8

x=8- 25/4

x= 32 - 25/4

x=7/4

so that,

y/z=-1 /25/4

=-4/25


If the cost of a 2.5 meter cloth is $30.5. What will be the cost of 22 meters ?

Answers

Answer:

268.40

Step-by-step explanation:

We can write a ratio to solve

2.5 meters        22 meters

-----------------  = --------------

30.5 dollars       x dollars

Using cross products

2.5 * x = 30.5 * 22

2.5x =671

Divide each side by 2.5

2.5x / 2.5 = 671/2.5

x =268.4

Please help with this question

Answers

9514 1404 393

Answer:

  (d)  -1/32

Step-by-step explanation:

It may be easier to rearrange the expression so it has positive exponents.

  [tex]\dfrac{1}{2^{-2}x^{-3}y^5}=\dfrac{2^2x^3}{y^5}=\dfrac{4(2)^3}{(-4)^5}=-\dfrac{4\cdot8}{1024}=\boxed{-\dfrac{1}{32}}[/tex]

[(2021-Y)-5]*X-X=XX cho biết X,Y,XX là gì?

Answers

nfbdjanckwochgducbenxikwks

(3) If a tire rotates at 400 revolutions per minute when the car is traveling 72km/h, what is the circumference of the tire?

Show all your steps.

Answers

Answer:

3 meters.

Step-by-step explanation:

400 rev / minute = 400 × 60 rev / 60 minutes

= 24,000 rev / hour

24,000 × C = 72,000 m : C is the circumference

C = 3 meters

Answer:

3 meters

Step-by-step explanation:

72 km / hour * 1 hour/ 60 min  * 1000m/ 1 km

72000 meters /60 minute

1200 meters / minute

velocity = radius * w

Where w is 2*pi * the revolutions per minute

1200 = r * 2 * pi *400

1200 / 800 pi = r

1.5 /pi = r meters

We want to find the circumference

C = 2 * pi *r

C = 2* pi ( 1.5 / pi)

C = 3 meters

Seventeen individuals are scheduled to take a driving test at a particular DMV office on a certain day, nine of whom will be taking the test for the first time. Suppose that six of these individuals are randomly assigned to a particular examiner, and let X be the number among the six who are taking the test for the first time. (a) What kind of a distribution does X have (name and values of al parameters)? 17 hx;6, 9, 17) O h(x; 6,? 17 bx; 6, 9,17) (x; 6, 9, 17) 17 (b) Compute P(X = 4), P(X S 4), and P(X PLX = 4) 0.2851 PX S 4)-13946X RX24) -0.1096 X 4). (Round your answers to four decimal places.) (c) Calculaethe mean value and standard deviation of X. (Round your answers to three decimal places.)

Answers

Answer:  

a) h(x; 6, 9, 17).

b) P[X=2] = 0.2036

P[X ≤ 2] = 0.2466

P[X ≥ 2] = 0.9570.

c) Mean  = 3.176.

Variance = 1.028.

Standard deviation = 1.014.

Step-by-step explanation:

From the given details K=6, n=9, N=-17.

We conclude that it is the hypergeometric distribution:  

a) h(x; 6, 9, 17).

b)

[tex]P[X=2]=\frac{(^{g}C_{2})^{17-9}C_{6-2}}{^{17}C_{6}\textrm{}}[/tex]

P[X=2] = 0.2036

P[X ≤ 2] = P(x=0)+ P(x=1) + P(x=2)

P[X ≤ 2] = 0.2466

P[X ≥ 2] = 1-[P(x=0)+P(x=1)]

P[X ≥ 2] = 0.9570.

c)

Mean= [tex]n\frac{K}{N}[/tex]

            = 3.176.

Variance = [tex]n\frac{K}{N}( \frac{N-K}{N})(\frac{N-n}{n-1} )[/tex]

               = 2.824 x 0.6471 x 0.5625

               = 1.028.

Standard deviation = [tex]\sqrt{1.028}[/tex] = 1.014.

How many subsets of at least one element does a set of seven elements have?

Answers

[tex]\boxed{\large{\bold{\blue{ANSWER~:) }}}}[/tex]

For each subset it can either contain or not contain an element. For each element, there are 2 possibilities. Multiplying these together we get 27 or 128 subsets. For generalisation the total number of subsets of a set containing n elements is 2 to the power n.

n=7 elemens

total subsets

2^n2⁷128

A wire 9 meters long is cut into two pieces. One piece is bent into a equilateral triangle for a frame for a stained glass ornament, while the other piece is bent into a circle for a TV antenna. To reduce storage space, where should the wire be cut to minimize the total area of both figures? Give the length of wire used for each: For the equilateral triangle:

Answers

The length of wire used for the equilateral triangle is approximately 5.61 meters.

The remaining length of wire used for the circle will be 9 - 5.61 ≈ 3.39 meters.

Here,

To minimize the total area of both figures, we need to find the optimal cut point for the wire.

Let's assume the length of the wire used for the equilateral triangle is x meters, and the remaining length of the wire used for the circle is (9 - x) meters.

For the equilateral triangle:

An equilateral triangle has all three sides equal in length.

Let's call each side of the triangle s meters. Since the total length of the wire is x meters, each side will be x/3 meters.

The formula to find the area of an equilateral triangle with side length s is:

Area = (√(3)/4) * s²

Substitute s = x/3 into the area formula:

Area = (√(3)/4) * (x/3)²

Area = (√(3)/4) * (x²/9)

Now, for the circle:

The circumference (perimeter) of a circle is given by the formula:

Circumference = 2 * π * r

Since the remaining length of wire is (9 - x) meters, the circumference of the circle will be 2π(9 - x) meters.

The formula to find the area of a circle with radius r is:

Area = π * r²

To find the area of the circle, we need to find the radius.

Since the circumference is equal to 2πr, we can set up the equation:

2πr = 2π(9 - x)

Now, solve for r:

r = (9 - x)

Now, substitute r = (9 - x) into the area formula for the circle:

Area = π * (9 - x)²

Now, we want to minimize the total area, which is the sum of the areas of the triangle and the circle:

Total Area = (√(3)/4) * (x²/9) + π * (9 - x)²

To find the optimal value of x that minimizes the total area, we can take the derivative of the total area with respect to x, set it to zero, and solve for x.

d(Total Area)/dx = 0

Now, find the critical points and determine which one yields the minimum area.

Taking the derivative and setting it to zero:

d(Total Area)/dx = (√(3)/4) * (2x/9) - 2π * (9 - x)

Setting it to zero:

(√(3)/4) * (2x/9) - 2π * (9 - x) = 0

Now, solve for x:

(√(3)/4) * (2x/9) = 2π * (9 - x)

x/9 = (8π - 2πx) / (√(3))

Now, isolate x:

x = 9 * (8π - 2πx) / (√(3))

x(√(3)) = 9 * (8π - 2πx)

x(√(3) + 2π) = 9 * 8π

x = (9 * 8π) / (√(3) + 2π)

Now, we can calculate the value of x:

x ≈ 5.61 meters

So, the length of wire used for the equilateral triangle is approximately 5.61 meters.

The remaining length of wire used for the circle will be 9 - 5.61 ≈ 3.39 meters.

To learn more on derivative click:

brainly.com/question/12445967

#SPJ4

A bus driver makes roughly $3280 every month. How much does he make in one week at this rate.

Answers

Answer:

I think around $36

Hope it helps!

Answer:

It depends...

Step-by-step explanation:

It depends how much weeks are in the month if there are three weeks and no extra days then you would have an answer of about 1093 (exact: 1093.33333333). just divide the number of weeks by the number of money.

Other Questions
According to Lincoln,safeguarding democracythe only waywas If you dont revise, you will fail. is what type of condition sentence Scotty is furious because the Enterprise warp drive is not working after hespent all day fixing it. When Captain Kirk calls Scotty to ask when the warp.drive will be ready, Scotty yells at him. If the Captain assumes that Scotty isyelling because he's just a cranky mechanic who has problems with authority,then the Captain is making a _____. In factons you divide the numerator and the whole number .. then denominatorCorrect? Choose ALL of the ordered pairs that are solutions to the equation. 5y = 2x - 7 a) (6, 0)b) ( 7, 21)c) (8, 18)d) ( -3, 4) A research team is testing a product that will minimize wrinkles among older adults. Volunteers in the age group of 40 to 45 are included in the research. The research team gives a cream to be applied on the face to one group and a placebo cream to the other group. Celebration of DPN includes recognizing that the movement caused increasing isolation of students and teachers increased the number of hearing students at the school resulted in adoption of an easier school curriculum spurred important legislation to benefit the Deaf A sporting goods store manager was selling a ski set for a certain price. The manager offered the markdowns shown, making the one-day sale price of the ski set $324. Find the original selling price of the ski set. Use the Internet to research external storage devices. Find at least three devices, with a minimum storage size of 1 terabyte (TB), from three different manufacturers. Write a paragraph, IN YOUR WORDS, for each device explaining the features and benefits. Provide the retail cost and include a reference link to each device. Next, write Ti sao bt ngt s lm tht mm hn trong qu trnh p Solid aluminum (AI) and oxygen (0) gas react to form solid aluminum oxide (AIO). Suppose you have 7.0 mol of Al and 13.0 mol of o, in a reactor. Suppose as much as possible of the Al reacts. How much will be left? Round your answer to the nearest 0.1 mol mol 0. I need help please ANYONE?????!!!! E(5,3) and F (2,-1) are two vertices of a square EFGH and H is in the x-axis .Find the coordinates of H and G. Please need answer quick with accurate explanation. Which car has the greatest potential energy? What type of potential energy does thecar have? What characteristics or properties does potential energy depend on? Whichcars have the least potential energy? Explain. Find the distance between (-5,5) and (2,-2) In what ways is a eukaryotic cell similar to a city? A thief sold some stolen goods to a dealer. Several weeks later, the police raided the dealer's store and arrested him. In this raid, the police seized the goods the thief sold to the dealer and a record book in which the dealer had recorded this transaction. However, at the dealer's subsequent trial for receiving stolen goods, the charges against him were dismissed when the court ruled that the search warrant had been improperly issued.The police were able to trace the stolen goods to the thief because of fingerprint identification and the information contained in the dealer's record book.At his trial, the thief made a motion to suppress the stolen goods and record book.What should the judge do? Brainly to whomever solves these proportion questions! I will give brainly to whomever has the most detailed answer, but I WILL report unrelated and unhelpful questions ( the more reports you get, the quicker you get kicked of brainly - SO DON'T TRY ME) Pls help me this is my homework Please help meeeeeeeeeeeeeeeeeee...WILL GIVE BRAINLIEST