Answer:
[tex]t=2413s[/tex]
Explanation:
From the question we are told that:
Velocity [tex]v=1.5m/s[/tex]
Time [tex]t=30min=>30*60=>1800[/tex]
Distance [tex]d=24.3km[/tex]
Generally the Newton's equation for Speed going down the stream is mathematically given by
[tex]v + u = \frac{d}{t}[/tex]
[tex]1.5+v=frac{24300}{1800}[/tex]
[tex]v=12m/s[/tex]
Therefore
[tex]v + u = \frac{d}{t}[/tex]
[tex]t=\frac{24300}{12-1.5}[/tex]
[tex]t=2413s[/tex]
Erica (37 kg ) and Danny (45 kg ) are bouncing on a trampoline. Just as Erica reaches the high point of her bounce, Danny is moving upward past her at 4.7 m/s . At that instant he grabs hold of her. What is their speed just after he grabs her?
Answer:
V = 2.58 m/s
Explanation:
Below is the calculation:
Given the weight of Erica = 37 kg
The weight of Danny = 45 kg
Danny's speed to move upward = 4.7 m/s
Use below formula to find the answer.
m1 * u1 = (m1+m2) * V
V = m1*u1 / (m1+m2)
Here, m1 = 45
u1 = 4.7
m1 = 45
m2 = 37
Now plug the values in formula:
V = m1*u1 / (m1+m2)
V = (45*4.7)/(45+37)
V = 2.58 m/s
Find the ratio of speeds of a proton and an alpha particle accelerated through the same voltage, assuming nonrelativistic final speeds. Take the mass of the alpha particle to be 6.64 ✕ 10−27 kg.
Answer:
The required ratio is 1.99.
Explanation:
We need to find the atio of speeds of a proton and an alpha particle accelerated through the same voltage.
We know that,
[tex]eV=\dfrac{1}{2}mv^2[/tex]
The LHS for both proton and an alpha particle is the same.
So,
[tex]\dfrac{v_p}{v_a}=\sqrt{\dfrac{m_a}{m_p}} \\\\\dfrac{v_p}{v_a}=\sqrt{\dfrac{6.64\times 10^{-27}}{1.67\times 10^{-27}}} \\\\=1.99[/tex]
So, the ratio of the speeds of a proton and an alpha particle is equal to 1.99.
The correct formula for finding the relative velocity of an object is:
WILL MARK BRAINLIEST TO THE CORRECT ANSWER!!
Answer:
[tex]V_{a/c} = V_{a/b} + V_{b/c}[/tex]
Explanation:
The relative velocity of an object is the velocity of the object relative to the observer or frame of reference.
The velocity of particle "A" with respect to particle "B" is written as [tex]V_{A/B} = V_{A} - V_{B}[/tex]
From the given options, the second option is the correct answer.
[tex]V_{a/c} = V_{a/b} + V_{b/c}\\\\Re-arrange \ the \ above \ equation;\\\\V_{a/c} - V_{b/c}= V_{a/b}\\\\or\\\\V_{a/b}= V_{a/c} - V_{b/c}[/tex]
26.
Which one of the following is not a vector quantity?
(2)
A) acceleration
C) displacement
E) instantaneous velocity
B) average speed
D) average velocity
Answer:
Answer: Speed is not a vector quantity. It has only magnitude and no direction and hence it is a scalar quantity.
A kangaroo kicks downward with a 1000N force. According to Newton's Law the kangaroo is propelled into the air by:
A) gravitational force
B) his muscles
C) The earth
D) wallabies
Explanation:
Specifically his leg muscles. As the leg muscles expand, they push down on the ground. Newton's 3rd law says that for any action, there's an opposite and equal reaction. That means a downward push into the ground will have the ground push back, more or less, and that's why the kangaroo will jump. The ground (and the earth entirely) being much more massive compared to the animal means that the ground doesn't move while the kangaroo does move. Perhaps on a very microscopic tiny level the ground/earth does move but it's so small that we practically consider it 0.
This experiment can be done with a wall as well. Go up to a wall and lean against it with your hands. Then do a pushup to move further away from the wall, but you don't necessarily need to lose contact with the wall's surface. As you push against the wall, the wall pushes back, and that causes you to move backward. If the wall was something flimsy like cardboard, then you could easily push the wall over and you wouldn't move back very much. It all depends how much mass is in the object you're pushing on.
PLEASE HELP ME WITH THIS ONE QUESTION
Given the atomic mass of Boron-9 is 9.0133288 u, what is the nuclear binding energy of Boron-9? (Mproton = 1.0078251, Mneutron = 1.0086649, c^2 = 931.5 eV/u)
A) 59 eV
B) 58 eV
C) 57 eV
D) 56 eV
Answer:
a. 59 ev. helpful answer
A long, straight metal rod has a radius of 5.75 cm and a charge per unit length of 33.3 nC/m. Find the electric field at the following distances from the axis of the rod, where distances are measured perpendicular to the rod's axis.
Answer:
Explanation:
From the question;
We will make assumptions of certain values since they are not given but the process to achieve the end result will be the same thing.
We are to calculate the following task, i.e. to determine the electric field at the distances:
a) at 4.75 cm
b) at 20.5 cm
c) at 125.0 cm
Given that:
the charge (q) = 33.3 nC/m
= 33.3 × 10⁻⁹ c/m
radius of rod = 5.75 cm
a) from the given information, we will realize that the distance lies inside the rod. Provided that there is no charge distribution inside the rod.
Then, the electric field will be zero.
b) The electric field formula [tex]E = \dfrac{kq }{d}[/tex]
[tex]E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{0.205}[/tex]
E = 1461.95 N/C
c) The electric field E is calculated as:
[tex]E = \dfrac{9 \times 10^9 \times (33.3 \times 10^{-9}) }{1.25}[/tex]
E = 239.76 N/C
The steps to determine the sum are shown. (6.74x104)+(8.95 x 104) Step 1. Rearrange the expression: (6.74+8.95) 104 Step 2. Add the coefficients: (15.69) 104 Step 3. Write in scientific notation: 1.569x 10 What is the value of k in Step 3? =
Answer:
We want to solve the sum:
6.74*10⁴ + 8.95*10⁴
first, we take the common factor 10⁴ out, so we get:
(6.74 + 8.95)*10⁴
Now we solve the sum:
(15.66)*10⁴
Now we want to rewrite it in exponential form, wo we can rewrite it as:
(15.66)*10⁴ = (1.566*10)*10⁴ = (1.566)*10*10⁴ = (1.566)*10⁴⁺¹ = 1.566*10⁵
k = 5.
How much power does it take to lift 70.0 N to 5.0 m high in 5.00 s?
Answer:
Power = 70 W
Explanation:
Given that,
Force, F = 70 N
Height, h = 5 m
Time, t = 5 s
We need to find the power of the object. We know that,
Power = work done/time
Put all the values,
[tex]P=\dfrac{Fd}{t}\\\\P=\dfrac{70\times 5}{5}\\\\P=70\ W[/tex]
So, the required power is 70 W.
Which statement describes an action-reaction pair?
O A. You push on a car, and the car pushes back on you.
B. A book pushes down on a table, and the table pushes down on the
Earth.
C. The Moon pulls on Earth, and Earth pulls on the Sun.
D. You push down on your shoe, and Earth's gravity pulls down on the
shoe.
Answer:
A
Explanation:
a pex
Hydrogen carried in light phase
Answer:
because it is helpful to human beings I think
Using pascals principle, F1/A1=F2/A2, solve this like a proportion.
A force of 50 N is applied to an area of 200 sq feet, how much force will be applied of the area to be covered is 50 sq feet?
Answer:
NO CLUE
Explanation:
GOOD LUCK THOUGH
PLEASE HELP ME WITH THIS ONE QUESTION
The half-life of Barium-139 is 4.96 x 10^3 seconds. A sample contains 3.21 x 10^17 nuclei. What is the decay constant for this decay?
Answer:
[tex]\lambda=1.39\times 10^{-4}\ s^{-1}[/tex]
Explanation:
Given that,
The half-life of Barium-139 is [tex]4.96\times 10^3[/tex]
A sample contains [tex]3.21\times 10^{17}[/tex] nuclei.
We need to find the decay constant for this decay. The formula for half life is given by :
[tex]T_{1/2}=\dfrac{0.693}{\lambda}\\\\\lambda=\dfrac{0.693}{T_{1/2}}[/tex]
Put all the values,
[tex]\lambda=\dfrac{0.693}{4.96\times 10^3}\\\\=1.39\times 10^{-4}\ s^{-1}[/tex]
So, the decay constant is [tex]1.39\times 10^{-4}\ s^{-1}[/tex].
Is the following chemical reaction balanced?
2H202-H2O + O2
yes
no
. A car increases velocity from 20 m/s to 60 m/s in a time of 10 seconds. What was the acceleration of the car?
Answer:
0.3333
Explanation:
Acceleration = change in velocity/time
a = 20 m/s / 60 m/s
a = 0.3333 m/s^2
A balloon pops, making a loud noise that startles you. What kind of energy best describes this experience?
A. Thermal Energy
B. Sound Energy
C. Gravitational Energy
D. Radiant Energy
Why is it that, when we observe an extragalactic source whose diameter is about one lightday, we are unlikely to see fluctuations in light output in times shorter than about one day
The reason why we are unlikely to see fluctuations in light output in extragalactic sources with a diameter of about one light day over timescales shorter than about one day is due to the size and distance of the source, as well as the speed of light.
How to observe extragalactic sources whose diameter is about one light day?When we observe an extragalactic source with a diameter of about one light day, we are essentially observing light that has traveled a very long distance through space to reach us. This light may have originated from a region of the source that is changing in brightness or emitting intense bursts of light, but by the time the light reaches us, these fluctuations are smeared out over a longer period of time due to the speed of light.
For example, if the source were emitting a burst of light that lasted for only a few hours, by the time that light travelled a distance of one light day (which is about 25 billion miles or 40 billion kilometres), the burst would be spread out over a longer period of time. This is because the light emitted at the beginning of the burst would have already traveled a significant distance away from the light emitted at the end of the burst by the time it reached us. As a result, we would observe the burst as a more gradual increase and decrease in light output over a period of several days, rather than a sharp increase and decrease over a few hours.
In addition, the turbulent interstellar and intergalactic media that the light passes through can also scatter and delay the light, further smearing out any short-term fluctuations in light output. This effect is known as interstellar scintillation and can make it even more difficult to observe short-term variations in the light output of extragalactic sources.
To know more about extragalactic sources follow
https://brainly.com/question/15023361
#SPJ6
scripture union was founded by who in what year
Answer:
Josiah Spiers in 1867 was when scripture union was founded
two particles woth each charge magnitude 2.0×10^-7 c but opposite signs are held 15cm apart.what are the magnitude and direction of the electric field E at tge point midway between charges
Answer:
The magnitude of the electric field strength is 6.4 x 10⁵ N/C, directed from positive particle to negative particle.
Explanation:
Given;
charge of each particle, Q = 2 x 10⁻⁷ C
distance between the two charges, r = 15 cm = 0.15 m
distance midway between the charges = 0.075 m
The magnitude of the electric field is calculated as;
[tex]E_{net} = E_{+q} + E_{-q}\\\\E_{net} = \frac{kQ}{r_{1/2}^2} + \frac{kQ}{r_{1/2}^2}\\\\E_{net} = 2(\frac{kQ}{r_{1/2}^2})\\\\E_{net} = 2 (\frac{9\times 10^9 \ \times 2\times 10^{-7}}{0.075^2} )\\\\E_{net} = 6.4\times 10^5 \ N/C[/tex]
The direction of the electric field is from positive particle to negative particle.
A 12 kg hanging sculpture is suspended by a 80-cm-long, 6.0 g steel wire. When the wind blows hard, the wire hums at its fundamental frequency. What is the frequency of the hum
Answer:
[tex]F=78.3hz[/tex]
Explanation:
From the question we are told that:
Mass [tex]m=12[/tex]
Length [tex]l=80cm=0.8m[/tex]
Linear density [tex]\mu= 6.0g[/tex]
Generally the equation for Frequency is mathematically given by
[tex]F=\frac{1}{2l}\sqrt{\frac{T}{K}}[/tex]
[tex]F=\frac{1}{2(0.8)}\sqrt{\frac{12*9.8*0.8}{6*10^{-3}}}[/tex]
[tex]F=78.3hz[/tex]
an artificial satellite is moving in a circular orbit of radius 36000 kilometre calculate its speed if it takes 24 hours to revolve around the earth
Explanation:
9420 km/hr is the correct answer
Hope this helps...☺
If a magnifying glass has a power of 10.0 D, what is the magnification it produces when held 6.55 cm from an object?
Answer: The magnification of the magnifying glass is -2.9
Explanation:
The equation for power is given as:
[tex]P=\frac{1}{f}[/tex]
where,
P = Power = 10 D
f = focal length
Putting values in above equation, we get:
[tex]f=\frac{1}{10}=0.1m=10 cm[/tex] (Conversion factor: 1 m = 100 cm)
The equation for lens formula follows:
[tex]\frac{1}{f}=\frac{1}{v}+\frac{1}{u}[/tex]
where,
v = image distance
u = Object distance = 6.55 cm
Putting values in above equation, we get:
[tex]\frac{1}{v}=\frac{1}{10}-\frac{1}{(6.55)}\\\\\frac{1}{v}=\frac{6.55-10}{10\times 6.55}\\\\v=\frac{65.5}{-3.45}=-18.98cm[/tex]
Magnification (m) can be written as:
[tex]m=\frac{-v}{u}[/tex]
Putting values in above equation, we get:
[tex]m=\frac{-18.98}{6.55}\\\\m=-2.9[/tex]
Hence, the magnification of the magnifying glass is -2.9
PLEASE HELP ME WITH THIS ONE QUESTION
The color orange has a wavelength of 590 nm. What is the energy of an orange photon? (h = 6.626 x 10^-19, 1 eV = 1.6 x 10^-19 J)
A) 2.81 eV
B) 3.89 eV
C) 2.10 eV
D) 2.78 eV
k = [tex] \dfrac{ (\dfrac{h}{ \lambda} )^{2} }{2m} [/tex]
k = (6.626×10-¹⁹/590 × 10-⁹ )^{2} /2 × 1.673 × 10-²⁷
k = (1.12 × 10-³⁰)^2/3.346×10-²⁷
k = 1.25 × 10-⁶⁰ /3.346×10-²⁷
k = 0
ldk why, my answer is coming this :(
why does a spherometer have three legs?
spherometer is a device used to measure curved in surface
it have 3 legs which form equivalent triangle.
geometry says that 3 point determine a plane that's why it have 3 legs
Electromagnetic radiation from a 8.25 mW laser is concentrated on a 1.23 mm2 area. Suppose a 1.12 nC static charge is in the beam, and moves at 314 m/s. What is the maximum magnetic force it can feel
Answer:
The maximum magnetic force is 2.637 x 10⁻¹² N
Explanation:
Given;
Power, P = 8.25 m W = 8.25 x 10⁻³ W
charge of the radiation, Q = 1.12 nC = 1.12 x 10⁻⁹ C
speed of the charge, v = 314 m/s
area of the conecntration, A = 1.23 mm² = 1.23 x 10⁻⁶ m²
The intensity of the radiation is calculated as;
[tex]I = \frac{P}{A} \\\\I = \frac{8.25 \times 10^{-3} \ W}{1.23 \ \times 10^{-6} \ m^2} \\\\I = 6,707.32 \ W/m^2[/tex]
The maximum magnetic field is calculated using the following intensity formula;
[tex]I = \frac{cB_0^2}{2\mu_0} \\\\B_0 = \sqrt{\frac{2\mu_0 I}{c} } \\\\where;\\\\c \ is \ speed \ of \ light\\\\\mu_0 \ is \ permeability \ of \ free \ space\\\\B_0 \ is \ the \ maximum \ magnetic \ field\\\\B_0 = \sqrt{\frac{2 \times 4\pi \times 10^{-7} \times 6,707.32 }{3\times 10^8} } \\\\B_0 = 7.497 \times 10^{-6} \ T[/tex]
The maximum magnetic force is calculated as;
F₀ = qvB₀
F₀ = (1.12 x 10⁻⁹) x (314) x (7.497 x 10⁻⁶)
F₀ = 2.637 x 10⁻¹² N
PLEASE HELP ME WITH THIS ONE QUESTION
The color orange has a wavelength of 590 nm. What is the energy of an orange photon? (h = 6.626 x 10^-19, 1 eV = 1.6 x 10^-19 J)
A) 2.81 eV
B) 3.89 eV
C) 2.10 eV
D) 2.78 eV
The color orange has a wavelength of 590 nm. The energy of an orange photon is approximately 0.337 eV.
The correct answer is option E.
To calculate the energy of a photon, we can use the equation:
E = (hc) / λ
where E is the energy of the photon, h is the Planck's constant (6.626 x [tex]10^-^3^4[/tex]J·s or 6.626 x[tex]10^-^1^9^[/tex] eV·s), c is the speed of light (3.00 x [tex]10^8[/tex] m/s), and λ is the wavelength of the light.
Given that the wavelength of orange light is 590 nm (or 590 x [tex]10^-^9[/tex]m), we can substitute the values into the equation:
E = [(6.626 x[tex]10^-^1^9^[/tex] eV·s) x (3.00 x [tex]10^8[/tex] m/s)] / (590 x[tex]10^-^9[/tex]m)
E = (1.9878 x [tex]10^-^1^0[/tex]eV·m) / (590 x [tex]10^-^9[/tex] m)
E = 3.3695 x [tex]10^-^1[/tex] eV
For more such information on: wavelength
https://brainly.com/question/4881111
#SPJ8
The question probable may be:
The color orange has a wavelength of 590 nm. What is the energy of an orange photon? (h = 6.626 x [tex]10^-^1^9^[/tex], 1 eV = 1.6 x[tex]10^-^1^9^[/tex]J)
A) 2.81 eV
B) 3.89 eV
C) 2.10 eV
D) 2.78 eV
E) 0.337 eV
You throw a football straight up. Air resistance can be neglected. When the football is 4.00 mm above where it left your hand, it is moving upward at 0.500 m/sm/s. What was the speed of the football when it left your hand
Answer:
u=8.868 m/s
Explanation:
The displacement of the ball is 4 meters
The final speed of the ball is 0.5 m/s
The initial speed of the ball is to be calculated. Using the equation of the rectilinear motion,
[tex]v^{2} =u^{2} +2as[/tex]
Plugging the values in the above expression,
[tex]\\0.5^{2} =u^{2} +2*(-9.8)*4\\\\u^{2} =78.4+0.25\\\\u^{2} =78.65\\\\u=8.868 m/s[/tex]
The drag force Fd, imposed by the surrounding air on a vehicle moving with velocity V is given by:
Fd =C dA 2 pV2
where Cd is a constant called the drag coefficient, A is the projected frontal area of the vehicle, and \rhorho is the air density.
Determine the power, in hp, required to overcome aerodynamic drag for an automobile moving at
(a) 25 miles per hour,
(b) 70 miles per hour.
Assume Cd=0.28,
A= 25ft2
and p=0.075Ib/ft2
Answer:
Explanation:
a)
Given that:
V = 25 mi/hr
To ft/sec, we have:
[tex]V = 25 \times \dfrac{5280}{3600} ft/s[/tex]
[tex]V = \dfrac{110}{3} ft/s[/tex]
[tex]\rho = 0.075 \ lb/ft^3[/tex]
[tex]\rho = 0.075 \times \dfrac{1 \ lbf s^2/ft}{32.174 \ lbm}[/tex]
[tex]\rho = \dfrac{0.075}{32.174 } lbf.s^2/ft^4[/tex]
[tex]C_d = 0.28[/tex]
A = 25ft²
Recall that:
The drag force [tex]F_d =\dfrac{C_dA \rho V^2}{2}[/tex]
[tex]F_d =\dfrac{1}{2}\times 0.28 \times 25\times \dfrac{0.075}{32.174}\times (\dfrac{110}{3})^2[/tex]
[tex]F_d =10.967 \ lbf[/tex]
[tex]P = F_dV \\ \\ P = 10.97 \times (\dfrac{110}{3}} \\ \\ P = 402.3 \ hp[/tex]
For 70 miles per hour, we have:
[tex]V = 70 \times \dfrac{5280}{3600} ft/s[/tex]
[tex]V = \dfrac{308}{3} ft/s[/tex]
The drag force [tex]F_d =\dfrac{C_dA \rho V^2}{2}[/tex]
[tex]F_d =\dfrac{1}{2}\times 0.28 \times 25\times \dfrac{0.075}{32.174}\times (\dfrac{308}{3})^2[/tex]
[tex]F_d =85.99 \ lbf[/tex]
[tex]P = F_dV \\ \\ P = 85.99 \times (\dfrac{308}{3}}) \\ \\ P = 8828.2 \ hp[/tex]
Need in hurry important please
Answer:
I don't see anything on your question?
A mass of 4 kg is traveling over a quarter circular ramp with a radius of 10 meters. At the bottom of the incline the mass is moving at 21.3 m/s and at the top of the incline the mass is moving at 2.8 m/s. What is the work done by all non-conservative force in Joules?
Answer:
499.7 J
Explanation:
Since total mechanical energy is conserved,
U₁ + K₁ + W₁ = U₂ + K₂ + W₂ where U₁ = potential energy at bottom of incline = mgh₁, K₁ = kinetic energy at bottom of incline = 1/2mv₁² and W₁ = work done by friction at bottom of incline, and U₂ = potential energy at top of incline = mgh₂, K₁ = kinetic energy at top of incline = 1/2mv₂² and W₂ = work done by friction at top of incline. m = mass = 4 kg, h₁ = 0 m, v₁ = 21.3 m/s, W₁ = 0 J, h₂ = radius of circular ramp = 10 m, v₂ = 2.8 m/s, W₂ = unknown.
So, U₁ + K₁ + W₁ = U₂ + K₂ + W₂
mgh₁ + 1/2mv₁² + W₁ = mgh₂ + 1/2mv₂² + W₂
Substituting the values of the variables into the equation, we have
mgh₁ + 1/2mv₁² + W₁ = mgh₂ + 1/2mv₂² + W₂
4 kg × 9.8 m/s²(0) + 1/2 × 4 kg × (21.3 m/s)² + 0 = 4 kg × 9.8 m/s² × 10 m + 1/2 × 4 kg × (2.8 m/s)² + W₂
0 + 2 kg × 453.69 m²/s² = 392 kgm²/s² + 2 kg × 7.84 m²/s² + W₂
907.38 kgm²/s² = 392 kgm²/s² + 15.68 kgm²/s² + W₂
907.38 kgm²/s² = 407.68 kgm²/s² + W₂
W₂ = 907.38 kgm²/s² - 407.68 kgm²/s²
W₂ = 499.7 kgm²/s²
W₂ = 499.7 J
Since friction is a non-conservative force, the work done by all the non-conservative forces is thus W₂ = 499.7 J