Answer:
y = (-1/3)x + 2
Step-by-step explanation:
Since points (3,1) and (-6,4) lie on y = (-1/3)x + c , it should satisfy the this equation. Thus, intercept is 2.
Answer:
m = -⅓
Step-by-step explanation:
m = (y2- y1)/(x2 - x1)
m = (4 -1)/(-6-3)
m = -⅓
Use quadratic regression to find the
equation for the parabola going
through these 3 points.
(-4, -33) (1, 2) (9, 162)
HELP PLZ
9514 1404 393
Answer:
y = x^2 +10x -9
Step-by-step explanation:
Quadratic regression generally requires the use of "technology" to aid in finding the equation of the curve of best fit. Use the technology you've been introduced to.
__
When only a few data points are provided, I prefer to use the Desmos graphing calculator. It shows the equation to be ...
y = x^2 +10x -9
HELP PLEASE!!!!!!!!!!
Answer:
12
Step-by-step explanation:
I thought x-7 was the right answer because don't you need to subtract? But apparently it was wrong so then which one is the correct answer?
Answer:
It is 7x-7
Step-by-step explanation:
You have to add the two expressions, not subtract them.
Answer:
no you need to add, it would be 7x - 7
Step-by-step explanation:
You need to look at the line...they gave you the measurement for PR, and the measurement for RS...and they want you to find PS
You need to add because both PR and RS come together to form PS
If someone can pls give me the answer the would be greatly appreciated :)
Step-by-step explanation:
The Answer Is Provided Below ➳
(2²)² = 2⁴/2⁴ = 2⁰ × 2⁰ = 2⁰/2⁰
A hotel manager believes that 23% of the hotel rooms are booked. If the manager is right, what is the probability that the proportion of rooms booked in a sample of 610 rooms would differ from the population proportion by less than 3%
Answer:
0.9216 = 92.16% probability that the proportion of rooms booked in a sample of 610 rooms would differ from the population proportion by less than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
A hotel manager believes that 23% of the hotel rooms are booked.
This means that [tex]p = 0.23[/tex]
Sample of 610 rooms
This means that [tex]n = 610[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.23[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.23*0.77}{610}} = 0.017[/tex]
What is the probability that the proportion of rooms booked in a sample of 610 rooms would differ from the population proportion by less than 3%?
p-value of Z when X = 0.23 + 0.03 = 0.26 subtracted by the p-value of Z when X = 0.23 - 0.03 = 0.2. So
X = 0.26
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.26 - 0.23}{0.017}[/tex]
[tex]Z = 1.76[/tex]
[tex]Z = 1.76[/tex] has a p-value of 0.9608
X = 0.2
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.2 - 0.23}{0.017}[/tex]
[tex]Z = -1.76[/tex]
[tex]Z = -1.76[/tex] has a p-value of 0.0392
0.9608 - 0.0392 = 0.9216
0.9216 = 92.16% probability that the proportion of rooms booked in a sample of 610 rooms would differ from the population proportion by less than 3%
Using the quadratic formula, which of the following are the zeros of the quadratic equation below? y=x^2-x-5
Answer:
The roots(Zeros) are
x=2.7913 and -1.7913
3. Determine the Area and Perimeter of the
shape below.
13
5
12
Answer:
Perimeter: 30 Area: 30
Step-by-step explanation:
Perimeter of a triangle= Add all sides = 5+12+13 = 30
Area of a triangle= (B*H)/2 = (5*12)/2 = 60/2 = 30
Hope this helps! :)
Write an equation that represents the line.
Use exact numbers
Will marl brainliest! Please help :,)
Answer:
x= -4
Step-by-step explanation:
A line is 180 degrees. This means that we can use the equation
60+x+124=180
Simplify:
184+x=180
x= -4
We can check this answer by plugging it back in:
60 + (-4) +124 =180
180=180
I hope this helps!
Step-by-step explanation:
[tex]60 + 124 + x = 180 \\ 180 - 184 = x \\ x = - 4[/tex]
A researcher conducts a repeated-measures design study comparing 2 treatment conditions and obtains 20 scores in EACH treatment condition. How many participants participated in the study
Answer:
20 participants
Step-by-step explanation:
Given
[tex]Conditions = 2[/tex]
[tex]Scores = 20[/tex]
Type: Repeated design
Required
The number of participants (n)
The repeated measure design implies that the test was conducted repeatedly on the same sample size.
Since the score in each test is 20; then:
[tex]n = 20[/tex] --- the number of participants
The volume, V, of a sphere in terms of its radius, r, is given by , V(r)=4/3(pie)r^3. Express r as a function of V, and find the radius of a sphere with volume of 150 cubic feet. Round your answer for the radius to two decimal places.
r(V)=
A sphere with volume 150 cubic feet has radius
_________ feet.
Step-by-step explanation:
If
[tex]V=\dfrac{4\pi}{3}r^3[/tex]
then we can solve for r as
[tex]r = \sqrt[3]{\dfrac{3V}{4\pi}}[/tex]
If the volume of the sphere is 150 ft^3, then the radius is
[tex]r = \sqrt[3]{\dfrac{3(150\:\text{ft}^3)}{4\pi}} = 3.30\:\text{ft}[/tex]
The radius of the given sphere with a volume of 150 cubic feet is 2.29 feet, correct to two decimal places.
Given that
the volume of a sphere = 150 cubic feet.
the radius of the sphere=????
what is a Sphere?a round solid figure, or its surface, with every point on its surface equidistant from its center.
as we know,
the volume of a sphere
[tex]V=\frac{4}{3} *\pi *r^3[/tex]
[tex]r = \sqrt[3]{\frac{3V}{4\pi } }[/tex][tex]r = \sqrt[3]{\frac{3*150}{4\pi } }[/tex][tex]=2.29 feet[/tex]
therefore, the radius of the given sphere is 2.29feet
to get more about sphere refer to the link,
https://brainly.com/question/22807400
Trapezoid A B C D is shown. A diagonal is drawn from point B to point D. Sides B C and A D are parallel. Sides B A and C D are congruent. Angle C B D is 24 degrees and angle B A D is 116 degrees.
What is the measure of angle ABD in trapezoid ABCD?
24°
40°
64°
92°
Answer:
40 degrees un edge
Step-by-step explanation:
Answer:
The person above me got this correct, so the answer to this is 40! I just did the Unit Test and got a 100%!
will give brainyest (m^2/3 n^-1/3)^6
Step-by-step explanation:
here is the answer to your question
So for this problem I got the scientific notation however I can not seem to figure out the standard notation. I thought it is the same answer but it is not. Can someone please help me out here please?
Answer:
567000000
Step-by-step explanation:
Standard is the actual number. Multiply 5.67 and 10^8.
Ellis makes some biscuits. For every 200g of flour he uses, he needs 75g of butter
a. Write a ratio for the amount of flour to the amount of butter.
b. Write a formula forf, the amount of flour, in terms of the amount of butter, b.
c. Ellis makes 24 biscuits using 300g of flour.
How many biscuits can he make with 375g of butter?
Answer:
a) 8:3, b) no formula is there, c) 30
Step-by-step explanation:
because 200/75=8:3
because there formula being obtained
because 300/24=12.5
375/12.5=30
What is the volume of a cone with a height of 27 cm
and a radius of 13 cm? Round your answer to the
nearest tenth.
Use the button on your calculator to complete this
problem.
V=
cm3
Answer:4778.3 cm^3
Step-by-step explanation: The formula for volume of a cone is V=1/3h pi r^2. By plugging in the height and the radius we get our answer.
Answer:
4778.4 :)
Step-by-step explanation:
A man had 35 goats.he sold 10 of
them.how many did he remains with.
Answer:
He remained with 25 goats.
Step-by-step explanation:
35 - 10 = 25
Hope this helps.
Answer:
He remained with 25 goats
Step-by-step explanation:
35 - 10 = 25
What are the coordinates of the terminal point for 8 = 330°?
1
A.
-
I
22
1
V3
O B.
2
V3
1
O c.
2
D.
1 3
2 2
Answer:
Step-by-step explanation:
If you plot this angle in the coordinate plane, you will find yourself in the fourth quadrant with a referencew angle of 30. Constructing the triangle from that reference angle and using the Pythagorean triple for a 30-60-90 triangle, you get that the side adjacent to the reference angle is √3, the side opposite the reference angle is a -1, and the hypotenuse (which is NEVER negative!) is 2. The x and y coordinates of the terminal point result from the cos (related to the x coordinate) and the sin (related to the y coordinate). The cos of 30:
[tex]cos(30)=\frac{\sqrt{3} }{2}[/tex] and the sin of 30:
[tex]sin(30)=-\frac{1}{2}[/tex] so the coordinates of the terminal point on that angle are
[tex](\frac{\sqrt{3} }{2},-\frac{1}{2})[/tex]
You could also just go to your unit circle, find the angle 330 and look at the coordiantes they give you there for (cos, sin). But I'm a high school math teacher so I wanted you to know how to find this outside of the unti circle. Cuz what if you lost it!?
The sum of 3 consecutive odd numbers is 183. What is the third number in this sequence?
Answer:
61
Step-by-step explanation:
3x + 6 = 183
3x = 177
x = 59
(x+2) = (59+2) = 61
It is correct on khan academy
Answer:
The third number in this sequence is 63.
Step-by-step explanation:
Let the first odd number be x.
Since our sequence are consecutive odd numbers, the second term must be (x + 2) and the third (x + 4). If we only add one, we will get even numbers.
Their sum is 183. Hence:
[tex]x+(x+2)+(x+4)=183[/tex]
Solve for x. Combine like terms:
[tex]3x+6=183[/tex]
Subtract six from both sides:
[tex]3x=177[/tex]
And divide both sides by three. Hence:
[tex]x=59[/tex]
Therefore, our sequence is 59, 61, and 63.
The third number in this sequence is 63.
Note: If we do not get an odd number or if we get a fraction for x, we can conclude that no three consecutive integers sum to 183.
Which choice is equivalent to √3 *√8*√5
A. 2√30
B. 4√30
C. 10√12
D. 24√5
[tex]\implies {\blue {\boxed {\boxed {\purple {\sf { A. \:2 \sqrt{30} }}}}}}[/tex]
[tex]\sf \bf {\boxed {\mathbb {STEP-BY-STEP\:EXPLANATION:}}}[/tex]
[tex] = \sqrt{3} \times \sqrt{8} \times \sqrt{5} [/tex]
[tex] = \sqrt{3 \times 2 \times 2 \times 2 \times 5} [/tex]
[tex] = \sqrt{ ({2})^{2} \times 2 \times 3 \times 5} [/tex]
[tex] = 2 \sqrt{2 \times 3\times 5} [/tex]
[tex] = 2 \sqrt{30} [/tex]
Note:[tex] \sqrt{ ({a})^{2} } = a[/tex]
[tex]\bold{ \green{ \star{ \orange{Mystique35}}}}⋆[/tex]
Answer:
A. 2√30
Step-by-step explanation:
[tex] \small \sf \: \sqrt{3} \times \sqrt{8} \times \sqrt{5} \\ [/tex]
split √8
[tex] \small \sf \leadsto \sqrt{3 × 2 × 2 × 2 × 5} [/tex]
[tex] \small \sf \leadsto \: 2 \sqrt{2 \times 3 \times 5} [/tex]
[tex] \small \sf \leadsto \: 2 \sqrt{30} [/tex]
Which one is a better deal?
paying $2.88 for a 12 roll package of toilet paper
paying $1.20 for a 6 roll package of toilet paper
Answer:
paying $1.20 for a 6 roll package of toilet paper
Step-by-step explanation:
to find the answer, double 6 to equal 12 and double the price as well. therefore, it is 2.40. since 2.40 is cheaper than 2.88, it is a better deal.
A university dean is interested in determining the proportion of students who receive some sort of financial aid. Rather than examine the records for all students, the dean randomly selects 200 students and finds that 118 of them are receiving financial aid. If the dean wanted to estimate the proportion of all students receiving financial aid to within 1% with 90% reliability, how many students would need to be sampled
Answer:
6546 students would need to be sampled.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.
[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
In which
z is the z-score that has a p-value of [tex]1 - \frac{\alpha}{2}[/tex].
The margin of error is:
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
The dean randomly selects 200 students and finds that 118 of them are receiving financial aid.
This means that [tex]n = 200, \pi = \frac{118}{200} = 0.59[/tex]
90% confidence level
So [tex]\alpha = 0.1[/tex], z is the value of Z that has a p-value of [tex]1 - \frac{0.1}{2} = 0.95[/tex], so [tex]Z = 1.645[/tex].
If the dean wanted to estimate the proportion of all students receiving financial aid to within 1% with 90% reliability, how many students would need to be sampled?
n students would need to be sampled, and n is found when M = 0.01. So
[tex]M = z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]
[tex]0.01 = 1.645\sqrt{\frac{0.59*0.41}{n}}[/tex]
[tex]0.01\sqrt{n} = 1.645\sqrt{0.59*0.41}[/tex]
[tex]\sqrt{n} = \frac{1.645\sqrt{0.59*0.41}}{0.01}[/tex]
[tex](\sqrt{n})^2 = (\frac{1.645\sqrt{0.59*0.41}}{0.01})^2[/tex]
[tex]n = 6545.9[/tex]
Rounding up:
6546 students would need to be sampled.
You are on a 5.6-mile run and have already run 1.98 miles. How many more miles do you need to run?
Answer:
3.62 miles need to be run
How would you write 8^5 as a multiplication expression?
Answer:
8 * 8 * 8 * 8 * 8
Step-by-step explanation:
8^5 is basically 8 times itself five times.
16.7.1
One-fifth of the length of a foot-race is 7 miles. Find the length of the race.
Answer:
35 miles
Step-by-step explanation:
1/5 = 7
so each part is 7, which means that 5 parts would be 7*5.
7*5 = 35
cross check:
35/5 = 7
hope this helps :)
Suppose that you are headed toward a plateau 37 meters high. If the angle of elevation to the top of the plateau is , how far are you from the base of the plateau?
Answer:
21.36 meters
Step-by-step explanation:
Given
[tex]h = 37m[/tex]
[tex]\theta = 60^o[/tex]
Required
The distance from the base (b)
The question illustrates right-angled triangle (see attachment)
To solve for (b), we make use of tangent formula
[tex]\tan(60)=\frac{h}{b}[/tex]
Make b the subject
[tex]b =\frac{h}{\tan(60)}[/tex]
So:
[tex]b =\frac{37}{\tan(60)}[/tex]
[tex]b =\frac{37}{1.7321}[/tex]
[tex]b =21.36[/tex]
Last year, Manuel deposited $7000 into an account that paid 11% interest per year and $1000 into an account that paid 5% interest per year. No withdrawals were made from the accounts. Answer the questions below. Do not do any rounding. (a) What was the total interest earned at the end of year? (b) What was the percent interest for the total deposited?
Answer:
The total interest earned at the end of the year was $ 820, and the interest generated by the total deposited was 10.25%.
Step-by-step explanation:
Given that last year, Manuel deposited $ 7000 into an account that paid 11% interest per year and $ 1000 into an account that paid 5% interest per year, and no withdrawals were made from the accounts, to determine what was the total interest earned at the end of year and what was the percent interest for the total deposited, the following calculations must be performed:
7000 x 0.11 + 1000 x 0.05 = X
770 + 50 = X
820 = X
8000 = 100
820 = X
820 x 100/8000 = X
82,000 / 8,000 = X
10.25 = X
Therefore, the total interest earned at the end of the year was $ 820, and the interest generated by the total deposited was 10.25%.
Find the simplified product:
V9x* - 33x
O
V12x12
о
327x12
O
3x4
O
9.x
9514 1404 393
Answer:
(c) 3x^4
Step-by-step explanation:
The applicable rules of exponents are ...
(a^b)(a^c) = a^(b+c)
(a^b)^c = a^(bc)
___
[tex]\displaystyle\sqrt[3]{9x^4}\cdot\sqrt[3]{3x^8}=\sqrt[3]{9\cdot3x^4x^8}=\sqrt[3]{27x^{12}}=\sqrt[3]{(3x^4)^3}=\boxed{3x^4}[/tex]
The sum of three numbers is 3. The first number minus the second plus the third is -3. The first minus the third is 1 more than the second.
Find the numbers. What is the first number? What is the second number? What is the third number?
Answer: The first number is 2, the second number is 3 and the third number is -2
Step-by-step explanation:
Let the first number be 'x', the second number be 'y' and the third number be 'z'
The equations according to the question becomes:
⇒ x + y + z = 3 ....(1)
⇒ x - y + z = -3 ....(2)
⇒ x - z = 1 + y ....(3)
Rearranging equation 3:
⇒ x - y = 1 + z .....(4)
Putting in equation 2:
⇒ 1 + z + z = -3
⇒ 1 + 2z = -3
⇒ z = -2
Putting this value in equation 4 and equation 1, we get:
⇒ x - y = -1
⇒ x + y = 5
Cancelling 'y' by eliminiation method and equation becomes:
⇒ 2x = 4
⇒ x = 2
Putting value of 'x' and 'z' in equation 1:
⇒ 2 + y - 2 = 3
⇒ y = 3
Hence, the first number is 2, the second number is 3 and the third number is -2
Write an equation of the line that passes through the point (4, –5) with slope 2.
A. y−4=−2(x+5)
B. y+5=−2(x−4)
C. y+5=2(x−4)
D. y−4=2(x+5)