Answer:
reviewing the final statements, the correct one is the quarter
The nail exerts an equal force on the hammer in the opposite direction.
Explanation:
This is an action-reaction problem or Newton's third law, which states that forces in naturals occur in pairs.
This is the foregoing, the hammer exerts a force on the nail of magnitude F and it will direct downwards, if we call this action and the nail exerts a force on the hammer of equal magnitude but opposite direction bone directed upwards, each force is applied in one of the bodies.
The difference in result that each force is that the force between the nail exerts a very high pressure (relation between the force between the nail area), instead the area of the hammer is much greater, therefore the pressure is small.
When reviewing the final statements, the correct one is the quarter
The nail exerts an equal force on the hammer in the opposite direction.
Light of wavelength 519 nm passes through two slits. In the interference pattern on a screen 4.6 m away, adjacent bright fringes are separated by 5.2 mm in the general vicinity of the center of the pattern. What is the separation of the two slits?
Answer:
The separation of the two slits is 0.456 mm.
Explanation:
Given the wavelength of light = 519 nm
The indifference pattern = 4.6 m
Adjacent bright fringes = 5.2 mm
In the interference, the equation required is Y = mLR/d
Here, d sin theta = mL
L = wavelgnth
For bright bands, m is the order = 1,2,3,4
For dark bands, m = 1.5, 2.5, 3.5, 4.5
R = Distance from slit to screen (The indifference pattern)
Y = Distance from central spot to the nth order fringe or fringe width
Thus, here d = mLR/Y
d = 1× 519nm × 4.6 / 5.2mm
d = 0.459 mm
What is the density of the unknown fluid in Figure below? ρwater = 1000 kgm−3
Answer:
2500 kg/m³
Explanation:
P = P
ρgh = ρgh
ρh = ρh
(1000 kg/m³) (8.9 cm) = ρ (3.5 cm)
ρ ≈ 2500 kg/m³
Two coherent sources of radio waves, A and B, are 5.00 meters apart. Each source emits waves with wavelength 6.00 meters. Consider points along the line connecting the two sources.Required:a. At what distance from source A is there constructive interference between points A and B?b. At what distances from source A is there destructive interference between points A and B?
Answer:
a
[tex]z= 2.5 \ m[/tex]
b
[tex]z = (1 \ m , 4 \ m )[/tex]
Explanation:
From the question we are told that
Their distance apart is [tex]d = 5.00 \ m[/tex]
The wavelength of each source wave [tex]\lambda = 6.0 \ m[/tex]
Let the distance from source A where the construct interference occurred be z
Generally the path difference for constructive interference is
[tex]z - (d-z) = m \lambda[/tex]
Now given that we are considering just the straight line (i.e points along the line connecting the two sources ) then the order of the maxima m = 0
so
[tex]z - (5-z) = 0[/tex]
=> [tex]2 z - 5 = 0[/tex]
=> [tex]z= 2.5 \ m[/tex]
Generally the path difference for destructive interference is
[tex]|z-(d-z)| = (2m + 1)\frac{\lambda}{2}[/tex]
=> [tex]|2z - d |= (0 + 1)\frac{\lambda}{2}[/tex]
=> [tex]|2z - d| =\frac{\lambda}{2}[/tex]
substituting values
[tex]|2z - 5| =\frac{6}{2}[/tex]
=> [tex]z = \frac{5 \pm 3}{2}[/tex]
So
[tex]z = \frac{5 + 3}{2}[/tex]
[tex]z = 4\ m[/tex]
and
[tex]z = \frac{ 5 -3 }{2}[/tex]
=> [tex]z = 1 \ m[/tex]
=> [tex]z = (1 \ m , 4 \ m )[/tex]
We can reasonably model a 75 W incandescent light bulb as a sphere 6.0 cm in diameter. Typically only about 5% of the energy goes to visible light; the rest goes largely to non-visible infrared radiation. (a) What is the visible light intensity at the surface of the bulb
Answer:
Visible light intensity at the surface of the bulb (I) = 331 W/m²
Explanation:
Given:
Energy = 75 W
Radius = 6 /2 = 3 cm = 3 × 10⁻² m
Energy goes to visible light = 5% = 0.05
Find:
Visible light intensity at the surface of the bulb (I)
Computation:
Visible light intensity at the surface of the bulb (I) = P / 4A
Visible light intensity at the surface of the bulb (I) = (0.05)(75) / 4π(3 × 10⁻²)²
Visible light intensity at the surface of the bulb (I) = 3.75 / 4π(9 × 10⁻⁴)
Visible light intensity at the surface of the bulb (I) = 331 W/m²
A 28.0 kg child plays on a swing having support ropes that are 2.30 m long. A friend pulls her back until the ropes are 45.0 ∘ from the vertical and releases her from rest.
A: What is the potential energy for the child just as she is released, compared with the potential energy at the bottom of the swing?
B: How fast will she be moving at the bottom of the swing?
C: How much work does the tension in the ropes do as the child swings from the initial position to the bottom?
Answer
A)184.9J
B)=3.63m/s
C) Zero
Explanation:
A)potential energy of the child at the initial position, measured relative the her potential energy at the bottom of the motion, is
U=Mgh
Where m=28kg
g= 9.8m/s
h= difference in height between the initial position and the bottom position
We are told that the rope is L = 2.30 m long and inclined at 45.0° from the vertical
h=L-Lcos(x)= L(1-cosx)=2.30(1-cos45)
=0.674m
Her Potential Energy will now
= 28× 9.8×0.674
=184.9J
B)we can see that at the bottom of the motion, all the initial potential energy of the child has been converted into kinetic energy:
E= 0.5mv^2
where
m = 28.0 kg is the mass of the child
v is the speed of the child at the bottom position
Solving the equation for v, we find
V=√2k/m
V=√(2×184.9/28
=3.63m/s
C)we can find work done by the tension in the rope is given using expresion below
W= Tdcosx
where W= work done
T is the tension
d = displacement of the child
x= angle between the directions of T and d
In this situation, we have that the tension in the rope, T, is always perpendicular to the displacement of the child, d. x= 90∘ and cos90∘=0 hence, the work done is zero.
Kasek rides his bicycle down a 6.0° hill (incline is
6° with the horizontal) at a steady speed of 4.0
m/s. Assuming a total mass of 75 kg (bicycle and
Kasek), what must be Kasek's power output to
climb the same hill at the same speed?
Answer:
P = 2923.89 W
Explanation:
Power is
P = F v
for which we must calculate the force, let's use Newton's second law, let's set a coordinate system with a flat parallel axis and the other axis (y) perpendicular to the plane
X Axis
F - Wₓ = 0
F = Wₓ
Y Axis
N - [tex]W_{y}[/tex] = 0
let's use trigonometry for the components of the weight
sin 6 = Wₓ / W
cos 6 = W_{y} / W
Wₓ = W sin 6
W_{y} = W cos 6
F = mg cos 6
F = 75 9.8 cos 6
F = 730.97 N
let's calculate the power
P = F v
P = 730.97 4.0
P = 2923.89 W
How wide is the central diffraction peak on a screen 2.20 mm behind a 0.0328-mmmm-wide slit illuminated by 588-nmnm light?
Answer:
[tex]y = 0.0394 \ m[/tex]
Explanation:
From the question we are told that
The distance of the screen is [tex]D = 2.20 \ m[/tex]
The distance of separation of the slit is [tex]d = 0.0328 \ mm = 0.0328*10^{-3} \ m[/tex]
The wavelength of light is [tex]\lambda = 588 \ nm = 588 *10^{-9} \ m[/tex]
Generally the condition for constructive interference is
[tex]dsin\theta = n * \lambda[/tex]
=> [tex]\theta = sin^{-1} [ \frac{ n * \lambda }{d } ][/tex]
here n = 1 because we are considering the central diffraction peak
=> [tex]\theta = sin^{-1} [ \frac{ 1 * 588*10^{-9} }{0.0328*10^{-3} } ][/tex]
=> [tex]\theta = 1.0274 ^o[/tex]
Generally the width of central diffraction peak on a screen is mathematically evaluated as
[tex]y = D tan (\theta )[/tex]
substituting values
[tex]y = 2.20 * tan (1.0274)[/tex]
[tex]y = 0.0394 \ m[/tex]
A ball travels with velocity given by [21] [ 2 1 ], with wind blowing in the direction given by [3−4] [ 3 −4 ] with respect to some co-ordinate axes. What is the size of the velocity of the ball in the direction of the wind?
Answer:
2/5 m/s
Explanation:
There are two vectors v and w . Let θ be angle b/w the two vector.
[tex]cos\theta =\frac{\overleftarrow{v}\cdot \overleftarrow{w}}{\left | v \right |\left | w \right |}\\=\frac{6-4}{\sqrt(2^2+1^2)\sqrt(3^2+4^2)} =\frac{2}{5\sqrt(5)}[/tex]
velocity of the ball in direction of the the wind
[tex]\left | vcos\theta \right |\\\left | v \right |cos\theta\\\sqrt(2^2+1^2)\frac{2}{5\sqrt(5)} = \frac{2}{5}[/tex]
The size of the velocity of the ball in the direction of the wind is 2/5 ms.
Calculation of the size of velocity:Since there are two vectors v and w
Also, here we assume θ be angle b/w the two vector.
So
Cos θ = 6-4 / √(2^2 + 1^2) √(3^2 + 4^2)
= 2/5√5
Now the velocity of the ball should be
= √(2^2 + 1^2) 2 ÷ 5√(5)
= 2 /5
hence, The size of the velocity of the ball in the direction of the wind is 2/5 ms.
Learn more about velocity here: https://brainly.com/question/1303810
What is the separation in meters between two slits for which 594 nm orange light has its first maximum at an angle of 32.8°?
Answer:
1.1micro meter
Explanation:
Given that
Constructive interference is
ma = alpha x sin theta
Alpha = 1 x 594 x10^ -9/ sin 32.8°
= 1.1 x 10^ -6m
Explanation:
please help !!!!!!!!!!
Answer:
Lighthouse 1 during the day will be warmer, lighthouse 2 during the night will be warmer.
Explanation:
As the paragraph stated land absorbs heat and heats up faster than water. So during the day the lighthouse farthest away from the water will be hotter. But then the converse is true also land losses heat faster than water at night. So the water retains the heat from the day better making the lighthouse by the water warmer at night.
48. A patient presents with a thrombosis in
the popliteal vein. This thrombosis most likely
causes reduction of blood flow in which of the
following veins?
Answer:
the interation blood veins
Explanation:
A microwave oven operates at 2.4 GHz with an intensity inside the oven of 2300 W/m2 . Part A What is the amplitude of the oscillating electric field
Answer:
The amplitude of the oscillating electric field is 1316.96 N/C
Explanation:
Given;
frequency of the wave, f = 2.4 Hz
intensity of the wave, I = 2300 W/m²
Amplitude of oscillating magnetic field is given by;
[tex]B_o = \sqrt{\frac{2\mu_o I}{c} }[/tex]
where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A
I is intensity of wave
c is speed of light = 3 x 10⁸ m/s
[tex]B_o = \sqrt{\frac{2*4\pi *10^{-7}*2300}{3*10^8} } \\\\B_o = 4.3899 *10^{-6} \ T[/tex]
The amplitude of the oscillating electric field is given by;
E₀ = cB₀
E₀ = 3 x 10⁸ x 4.3899 x 10⁻⁶
E₀ = 1316.96 N/C
Therefore, the amplitude of the oscillating electric field is 1316.96 N/C
At what temperature (degrees Fahrenheit) is the Fahrenheit scale reading equal to:_____
(a) 3 times that of the Celsius and
(b) 1/5 times that of the Celsius
Answer:
C = 26.67° and F = 80°C = -20° and F = -4°Explanation:
Find:
3 times that of the Celsius and 1/5 times that of the CelsiusComputation:
F = (9/5)C + 32
3 times that of the Celsius
If C = x
So F = 3x
So,
3x = (9/5)x + 32
15x = 9x +160
6x = 160
x = 26.67
So, C = 26.67° and F = 80°
1/5 times that of the Celsius
If C = x
So F = x/5
So,
x/5 = (9/5)x + 32
x = 9x + 160
x = -20
So, C = -20° and F = -4°
What did the results of photoelectric-effect experiments establish?
Answer:
Option A
Electrons are emitted if low intensity, high-frequency light hits a metal surface.
Explanation:
From the experiments conducted to study the photoelectric effect, conclusions were made that the key factor that contributes to the emission of electrons from the surface of the metal is the frequency of the beam of light. This frequency has to be beyond a minimum threshold, if not, there will be no emission of electrons from the metal surface no matter the intensity of the beam of light or the length of time it is incident upon the metal surface.
This makes option A correct because it highlights the contributions made by the threshold frequency to the photoelectric effect.
When a monochromatic light of wavelength 433 nm incident on a double slit of slit separation 6 µm, there are 5 interference fringes in its central maximum. How many interference fringes will be in the central maximum of a light of wavelength 632.9 nm for the same double slit?
Answer:
The number of interference fringes is [tex]n = 3[/tex]
Explanation:
From the question we are told that
The wavelength is [tex]\lambda = 433 \ nm = 433 *10^{-9} \ m[/tex]
The distance of separation is [tex]d = 6 \mu m = 6 *10^{-6} \ m[/tex]
The order of maxima is m = 5
The condition for constructive interference is
[tex]d sin \theta = n \lambda[/tex]
=> [tex]\theta = sin^{-1} [\frac{5 * 433 *10^{-9}}{ 6 *10^{-6}} ][/tex]
=> [tex]\theta = 21.16^o[/tex]
So at
[tex]\lambda_1 = 632.9 nm = 632.9*10^{-9} \ m[/tex]
[tex]6 * 10^{-6} * sin (21.16) = n * 632.9 *10^{-9}[/tex]
=> [tex]n = 3[/tex]
Which one of the following actions would make the maxima in the interference pattern from a grating move closer together?
A. Increasing the number of lines per length.
B. Decreasing the number of lines per length.
C. Increasing the distance to the screen.
D. Increasing the wavelength of the laser.
Answer:
Answer:
A. Increasing the number of lines per length.
What would happen in a State if its citizens lack relevant knowledge, skills
and positive attitude?
Answer:
If the older generation is lacking, the younger generation would likely have knowledge, skill, or a positive attitude in some combination, but it is relative to the culture.
The simple reason is the desirability for genetic variation using recessive genes.
In other words, if the older generation lacks something, it tends to be something they don’t need, but something that will look good on young people. But mostly relative to the culture and education system.
Hope this helps
The hot glowing surfaces of stars emit energy in the form of electromagnetic radiation. It is a good approximation to assume that the emissivity eee is equal to 1 for these surfaces.
Required:
a. Find the radius RRigel of the star Rigel, the bright blue star in the constellation Orion that radiates energy at a rate of 2.7 x 10^31 W and has a surface temperature of 11,000 K.
b. Find the radius RProcyonB of the star Procyon B, which radiates energy at a rate of 2.1 x 10^23 W and has a surface temperature of 10,000 K. Assume both stars are spherical. Use σ=5.67 x 10−8^ W/m^2*K^4 for the Stefan-Boltzmann constant.
Given that,
Energy [tex]H=2.7\times10^{31}\ W[/tex]
Surface temperature = 11000 K
Emissivity e =1
(a). We need to calculate the radius of the star
Using formula of energy
[tex]H=Ae\sigma T^4[/tex]
[tex]A=\dfrac{H}{e\sigma T^4}[/tex]
[tex]4\pi R^2=\dfrac{H}{e\sigma T^4}[/tex]
[tex]R^2=\dfrac{H}{e\sigma T^4\times4\pi}[/tex]
Put the value into the formula
[tex]R=\sqrt{\dfrac{2.7\times10^{31}}{1\times5.67\times10^{-8}\times(11000)^4\times 4\pi}}[/tex]
[tex]R=5.0\times10^{10}\ m[/tex]
(b). Given that,
Radiates energy [tex] H=2.1\times10^{23}\ W[/tex]
Temperature T = 10000 K
We need to calculate the radius of the star
Using formula of radius
[tex]R^2=\dfrac{H}{e\sigma T^4\times4\pi}[/tex]
Put the value into the formula
[tex]R=\sqrt{\dfrac{2.1\times10^{23}}{1\times5.67\times10^{-8}\times(10000)^4\times4\pi}}[/tex]
[tex]R=5.42\times10^{6}\ m[/tex]
Hence, (a). The radius of the star is [tex]5.0\times10^{10}\ m[/tex]
(b). The radius of the star is [tex]5.42\times10^{6}\ m[/tex]
Consider two parallel wires where the magnitude of the left currentis 2 I0(io) and that of the right current is I0(io). Point A is midway between the wires,and B is an equal distance on the other side of the wires.
The ratio ofthe magnitude of the magnetic field at point A to that at point Bis________
Answer:
Explanation:
At the point midway between wires
magnetic field due to wire having current 2I₀
= 10⁻⁷ x 2 x2I₀ / r where 2r is the distance between wires .
magnetic field due to wire having current I₀
= 10⁻⁷ x 4 I₀ / r
magnetic field due to wire having current I₀
= 10⁻⁷ x 2I₀ / r
= 10⁻⁷ x 2 I₀ / r where 2r is the distance between wires .
these fields are in opposite direction as direction of current is same in both .
net magnetic field = (4 - 2 )x 10⁻⁷ x I₀ / r
= 2 x 10⁻⁷ x I₀ / r
At point A net magnetic field = 2 x 10⁻⁷ x I₀ / r
At point B , we shall calculate magnetic field
magnetic field due to nearer wire having current 2 I₀ = 10⁻⁷ x 4 I₀ / r
magnetic field due to wire far away = 10⁻⁷ x 2 I₀ / 3r
These magnetic fields act in the same direction so they will add up
net magnetic field = [ (4 I₀ / r) + (2 I₀ / 3r) ] x 10⁻⁷
= (14 I₀ / 3r ) x 10⁻⁷
Magnetic field at point B = (14 I₀ / 3r ) x 10⁻⁷
Ratio of field at A and B
= 3 / 7 . Ans
The ratio of the magnitude of the magnetic field at point A to point B is :
3 / 7
Given data :
Magnitude of the left current is 2I₀
Magnitude of the right current is I₀
First step : Determine the magnetic field at point A
The magnetic field due to the left current ( 2I₀ )
10⁻⁷ * 2 * 2I₀ / r ( 2r = distance between wires )
The magnetic field due to the right current ( I₀ )
10⁻⁷ * 2 I₀ / r
From the expressions above the magnetic fields are in opposite direction
∴ Net magnetic field = (4 - 2 )* 10⁻⁷ * I₀ / r = 2 * 10⁻⁷ * I₀ / r
Hence The magnetic field at point A = 2 * 10⁻⁷ * I₀ / r
Next step : determine the magnetic field at point B
Magnetic field due to the closest wire to point B ( i.e.2I₀ ) = 10⁻⁷ * 4 I₀ / r
Magnetic field due to the wire away from point A = 10⁻⁷ * 2 I₀ / 3r
Since the fields acts in the same directions
The net magnetic field = (4 I₀ / r) + (2 I₀ / 3r) ] * 10⁻⁷ = ( 14 I₀ / 3r ) * 10⁻⁷
Hence The magnetic field at point A = ( 14 I₀ / 3r ) * 10⁻⁷
Therefore the ratio of the magnitude of the magnetic field at point A to point B = 3/ 7
Hence we can conclude that the ratio of the magnitude of the magnetic field at point A to point B = 3 / 7
Learn more : https://brainly.com/question/22403676
A radar installation operates at 9000 MHz with an antenna (dish) that is 15 meters across. Determine the maximum distance (in kilometers) for which this system can distinguish two aircraft 100 meters apart.
Answer:
R = 36.885 km
Explanation:
In order to distinguish the two planes we must use the Rayleigh criterion that establishes two distinguishable objects if in their diffraction the central maximum of one coincides with the first minimum of the other
The diffraction equation for slits is
a sin θ = m λ
the first minimum occurs for m = 1
sin θ = λ a
as the diffraction experiments the angles are very small, we approximate
sin θ = θ
θ = λ / a
This expression is for a slit, in the case of circular objects, when solving the system in polar coordinates, a numerical constant appears, leaving the expression of the form
θ = 1.22 λ / a
In this problem they give us the frequency, let's find the wavelength with the relation
c = λ f
λ = c / f
θ = 1.22 c/ f a
since they ask us for the distance between the planes, we can use the definition of radians
θ = s / R
if we assume that the distance is large, we can approximate the arc to the horizontal distance
s = x
we substitute
x / R = 1.22 c / fa
R = x f a / 1.22c
Let's reduce the magnitudes to the SI system
f = 9000 MHz = 9 109 Hz
a = 15 m
x = 100 m
let's calculate
R = 100 10⁹ 15 / (1.22 3 108)
R = 3.6885 10⁴ m
let's reduce to km
R = 3.6885 10¹ km
R = 36.885 km
Just wondering if I did this right
Yeah
All they are all correct
Simple harmonic oscillations can be modeled by the projection of circular motion at constant angular velocity onto the diameter of a circle. When this is done, the analog along the diameter of the acceleration of the particle executing simple harmonic motion is
Answer:
the analog along the diameter of the acceleration of the particle executing simple harmonic motion is the projection along the diameter of the centripetal acceleration of the particle in the circle
Water is pumped with a 120 kPa compressor entering the lower pipe (1) and flows upward at a speed of 1 m/s. Acceleration due to gravity is 10 m/s and water density is1000 kg/m-3. What is the water pressure on the upper pipe (II).
Answer:
The water pressure on the upper pipe is 92.5 kPa.
Explanation:
Given that,
Pressure in lower pipe= 120 kPa
Speed of water in lower pipe= 1 m/s
Acceleration due to gravity = 10 m/s²
Density of water = 1000 kg/m³
Radius of lower pipe = 12 m
Radius of uppes pipe = 6 m
Height of upper pipe = 2 m
We need to calculate the velocity in upper pipe
Using continuity equation
[tex]A_{1}v_{1}=A_{2}v_{1}[/tex]
[tex]\pi r_{1}^2\times v_{1}=\pi r_{2}^2\times v_{2}[/tex]
[tex]v_{2}=\dfrac{r_{1}^2\times v_{1}}{r_{2}^2}[/tex]
Put the value into the formula
[tex]v_{2}=\dfrac{12^2\times1}{6^2}[/tex]
[tex]v_{2}=4\ m/s[/tex]
We need to calculate the water pressure on the upper pipe
Using bernoulli equation
[tex]P_{1}+\dfrac{1}{2}\rho v_{1}^2+\rho gh_{1}=P_{2}+\dfrac{1}{2}\rho v_{2}^2+\rho gh_{2}[/tex]
Put the value into the formula
[tex]120\times10^{3}+\dfrac{1}{2}\times1000\times1^2+1000\times10\times0=P_{2}+\dfrac{1}{2}\times1000\times(4)^2+1000\times10\times2[/tex]
[tex]120500=P_{2}+28000[/tex]
[tex]P_{2}=120500-28000[/tex]
[tex]P_{2}=92500\ Pa[/tex]
[tex]P_{2}=92.5\ kPa[/tex]
Hence, The water pressure on the upper pipe is 92.5 kPa.
If the solenoid is 45.0 cm long and each winding has a radius of 8.0 cm , how many windings are in the solenoid
Answer:
The number of windings is 1.
Explanation:
The radius of the solenoid = 8.0 cm = 0.08 m
Length of the solenoid = 45.0 cm = 0.45 m
number of turn = ?
circumference of each winding = 2πr = 2 x 3.142 x 0.08 = 0.503 m
The number of windings = (Length of the solenoid)/(circumference of each winding)
==> 0.45/0.503 = 0.89 ≅ 1
For a beam of light in air (n = 1) reflecting off glass (n = 1.5), what is Brewster's angle to the nearest degree?
Answer: 56°
Explanation:
Brewster's angle refers to the angle at the point where light of a certain polarization passes through a transparent dielectric surface and is transmitted perfectly such that no reflection is made.
The formula is;
[tex]= Tan^{-1} (\frac{n_{2} }{n_{1}} )[/tex]
[tex]= Tan^{-1} (\frac{1.5 }{1} )[/tex]
= 56.30993247
= 56°
Given a double slit apparatus with slit distance 2 mm, what is the theoretical maximum number of bright spots that I would see when I shine light with a wavelength 500 nm on the slits
Answer:
The values is [tex]m_{max} = 8001 \ bright \ spots[/tex]
Explanation:
From the question we are told that
The slit distance is [tex]d = 2 \ mm = 2*10^{-3} \ m[/tex]
The wavelength is [tex]\lambda = 500 \ nm = 500 *10^{-9} \ m[/tex]
At the first half of the screen from the central maxima
The number of bright spot according to the condition for constructive interference is
[tex]n = \frac{d * sin (\theta )}{\lambda}[/tex]
For maximum number of spot [tex]\theta = 90^o[/tex]
So
[tex]n = \frac{2*10^{-3} * sin (90 )}{500 *10^{-9}}[/tex]
[tex]n =4000[/tex]
Now for the both sides plus the central maxima we have
[tex]m_{max} = 2 * n + 1[/tex]
substituting values
[tex]m_{max} = 2 * 4000 + 1[/tex]
[tex]m_{max} = 8001 \ bright \ spots[/tex]
Which unbalanced force accounts for the direction of the net force of the rocket?
a. Air resistance
b. Friction
c. Gravity
d. Thrust of rocket engine
It depends on what stage of the mission you're talking about.
==> While it's sitting on the pad before launch, the forces on the rocket are balanced, so there's no net force on it.
==> When the engines ignite, their thrust (d) is greater than the force of gravity. So the net force on the rocket is upward, and the spacecraft accelerates upward.
==> After the engines shut down, the net force acting on the rocket is due to Gravity (c).
. . . If the rocket has enough vertical speed, it escapes the Earth completely, and just keeps going.
. . . If it has enough horizontal speed, it enters Earth orbit.
. . . If it doesn't have enough vertical or horizontal speed, it falls back to Earth.
A rocket will preserve to speed up so long as there's a resultant pressure upwards resulting from the thrust of the rocket engine.
What unbalanced force bills for the course of the internet pressure of the rocket?A rocket launches whilst the pressure of thrust pushing it upwards is greater than the burden force because of gravity downwards. This unbalanced pressure reasons a rocket to accelerate upwards. A rocket will maintain to hurry up so long as there's a resultant force upwards resulting from the thrust of the rocket engine.
What's the net pressure of unbalanced?
If the forces on an item are balanced, the net pressure is zero. If the forces are unbalanced forces, the results do not cancel each difference. Any time the forces acting on an object are unbalanced, the net pressure is not 0, and the movement of the item modifications.
Learn more about the thrust of the rocket engine. here: https://brainly.com/question/10716695
#SPJ2
Vector has a magnitude of 6.0 m and points 30° north of east. Vector has a magnitude of 4.0 m and points 30° east of north. The resultant vector + is given by
Answer:
The resultant vector is [tex]\vec R = \vec A + \vec B = 7.196\,i + 6.464\,j[/tex].
Explanation:
First, each vector is determined in terms of absolute coordinates:
6-meter vector with direction: 30º north of east.
[tex]\vec A = (6\,m)\cdot (\cos30^{\circ} \,i + \sin 30^{\circ}\,j)[/tex]
[tex]\vec A = 5.196\,i + 3\,j[/tex]
4-meter vector with direction: 30º east of north.
[tex]\vec B = (4\,m)\cdot (\cos 60^{\circ}\,i + \sin 60^{\circ}\,j)[/tex]
[tex]\vec B = 2\,i + 3.464\,j[/tex]
The resultant vector is obtaining by sum of components:
[tex]\vec R = \vec A + \vec B = 7.196\,i + 6.464\,j[/tex]
The resultant vector is [tex]\vec R = \vec A + \vec B = 7.196\,i + 6.464\,j[/tex].
You have three resistors: R1 = 1.00 Ω, R2 = 2.00 Ω, and R3 = 4.00 Ω in parallel. Find the equivalent resistance for the combination
Answer:
4 / 7
Explanation:
1/total resistance = 1/1 + 1/2 + 1/4
= 1¾
total resistance = 1 ÷ 1¾
= 4/7
Suppose a 58-turn coil lies in the plane of the page in a uniform magnetic field that is directed into the page. The coil originally has an area of 0.150 m2. It is stretched to have no area in 0.100 s. What is the magnitude (in V) and direction (as seen from above) of the average induced emf if the uniform magnetic field has a strength of 1.10 T? magnitude V direction ---Select--- †\
Answer:
95.7v
Explanation
Using Faraday's law of electromagnetic induction we know that rate of change in magnetic flux will induce EMF in closed loop
So it is given as
E= Ndစ/dt
E= N BA-0/ deta t
Given that
N = 58turns
B = 1.10T
A = 0.150m^²
Deta t= 0.1s
now we have
E = 58(1.10x0.150)/0.1
= 95.7v
Magnetic flux is decreasing, so the direction of the current will be to aid the decreasing flux $decrease= CLOCKWISE
Explanation: