closed interval on x=3 and open at x=5
for all values between these numbers, y=3
so [3,5)
Use the model to show to help find the sum 0.34 plus 0.49
Answer/Step-by-step explanation:
The idea to use in solving this problem using the model, is to express the number of shaded boxes in fraction form.
Thus, the blue red shaded boxes has 34 boxes shaded out of 100 boxes. This represents [tex] \frac{34}{100} [/tex]. This will give us 0.34.
The other shaded boxes represents [tex] \frac{49}{100} = 0.49 [/tex].
Using the model, we can solve 0.34 + 0.49.
Add both fractions together.
[tex] \frac{34}{100} + \frac{49}{100} = \frac{34+49}{100} [/tex]
[tex] \frac{83}{100} = 0.83 [/tex]
which rigid transformation would map triangle AQR to triangle AKP
Step-by-step explanation:
A rotation about point A a reflection across the line containing AR a reflection across the line containing AQ a rotation about point R
Answer:
A rotation about point A
Step-by-step explanation:
I am taking the test if it is wrong I will add a comment
Twelve apples cost $2.00. How much will 50 apples cost?
Answer:
$8.33
Step-by-step explanation:
[tex]Solve \:using \: proportion\\\\12\:apples = \$ 2\\50\:apples = \$ x\\Cross \: Multiply\\\\12x = 100\\\\\\\frac{12x}{12} = \frac{100}{12} \\\\x = \$ 8.333[/tex]
Answer:
About $8.33.
Step-by-step explanation:
Write a proportion. Make sure the values line up horizontally:
[tex]\frac{12\text{ apples}}{\$2} =\frac{50\text{ apples}}{\$x}[/tex]
Cross multiply:
[tex]100=12x\\x=25/3\approx\$8.33[/tex]
A Markov chain has 3 possible states: A, B, and C. Every hour, it makes a transition to a different state. From state A, transitions to states B and C are equally likely. From state B, transitions to states A and C are equally likely. From state C, it always makes a transition to state A.
(a) If the initial distribution for states A, B, and C is P0 = ( 1/3 , 1/3 , 1/3 ), find the distribution of X2
(b) Find the steady state distribution by solving πP = π.
Answer:
A) distribution of x2 = ( 0.4167 0.25 0.3333 )
B) steady state distribution = [tex]\pi a \frac{4}{9} , \pi b \frac{2}{9} , \pi c \frac{3}{9}[/tex]
Step-by-step explanation:
Hello attached is the detailed solution for problems A and B
A) distribution states for A ,B, C:
Po = ( 1/3, 1/3, 1/3 ) we have to find the distribution of x2 as attached below
after solving the distribution
x 2 = ( 0.4167, 0.25, 0.3333 )
B ) finding the steady state distribution solving
[tex]\pi p = \pi[/tex]
below is the detailed solution and answers
In a recent year, the scores for the reading portion of a test were normally distributed, with a mean of and a standard deviation of . Complete parts (a) through (d) below. (a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than . The probability of a student scoring less than is nothing. (Round to four decimal places as needed.) (b) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is between and . The probability of a student scoring between and is nothing. (Round to four decimal places as needed.) (c) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is more than . The probability of a student scoring more than is nothing. (Round to four decimal places as needed.) (d) Identify any unusual events. Explain your reasoning. Choose the correct answer below. A. than 0.05. B. than 0.05. C. The event in part is unusual because its probability is less than 0.05. D. The events in parts are unusual because its probabilities are less than 0.05.
The question is incomplete. Here is the complete question.
In a recent year, the socres for the reading portion of a test were normally distributed, with a mean of 23.3 and a standard deviation of 6.4. Complete parts (a) through (d) below.
(a) Find the probability that a randomly selected high school student who took the reading portion of the test has a score that is less than 18. (Round to 4 decimal places as needed.)
(b) Find a probability that a random selected high school student who took the reading portion of the test has a score that is between 19.9 and 26.7.
(c) Find a probability that a random selected high school student who took the reading portion of the test ahs a score that is more than 36.4.
(d) Identify any unusual events. Explain your reasoning.
Answer: (a) P(X<18) = 0.2033
(b) P(19.9<X<26.7) = 0.4505
(c) P(X>36.4) = 0.0202
(d) Unusual event: P(X>36.4)
Step-by-step explanation: First, determine the z-score by calculating:
[tex]z = \frac{x-\mu}{\sigma}[/tex]
Then, use z-score table to determine the values.
(a) x = 18
[tex]z = \frac{18-23.3}{6.4}[/tex]
z = -0.83
P(X<18) = P(z< -0.83)
P(X<18) = 0.2033
(b) x=19.9 and x=26.7
[tex]z = \frac{19.9-23.3}{6.4}[/tex]
z = -0.67
[tex]z = \frac{26.7-23.3}{6.4}[/tex]
z = 0.53
P(19.9<X<26.7) = P(z<0.53) - P(z< -0.67)
P(19.9<X<26.7) = 0.7019 - 0.2514
P(19.9<X<26.7) = 0.4505
(c) x=36.4
[tex]z = \frac{36.4-23.3}{6.4}[/tex]
z = 2.05
P(X>36.4) = P(z>2.05) = 1 - P(z<2.05)
P(X>36.4) = 1 - 0.9798
P(X>36.4) = 0.0202
(d) Events are unusual if probability is less than 5% or 0.05. So, part (c) has an unusual event.
The probability will be:
(a) 0.2038
(b) 0.4046
(c) 0.0203
(d) Event in part (c) is unusual.
According to the question,
[tex]\mu = 23.2[/tex][tex]\sigma = 6.4[/tex]Let,
"X" shows the test scores.(a)
The z-score for X=18 will be:
→ [tex]z = \frac{X- \mu}{\sigma}[/tex]
[tex]= \frac{18-23.3}{6.4}[/tex]
[tex]= -0.828[/tex]
So,
The probability will be:
→ [tex]P(X<18) = P(z < -0.828)[/tex]
[tex]= 0.2038[/tex]
(b)
The z-score for X=19.9 will be:
→ [tex]z = \frac{X -\mu}{\sigma}[/tex]
[tex]= \frac{19.9-23.3}{6.4}[/tex]
[tex]= -0.531[/tex]
The z-score for X=26.7 will be:
→ [tex]z = \frac{X -\mu}{\sigma}[/tex]
[tex]= \frac{26.7-23.3}{6.4}[/tex]
[tex]= 0.531[/tex]
So,
The probability will be:
→ [tex]P(19.9 < X< 23.3) = P(-0.531 < z< 0.531)[/tex]
[tex]= 0.4046[/tex]
(c)
The z-score for X=36.4 will be:
→ [tex]z = \frac{X -\mu}{\sigma}[/tex]
[tex]= \frac{36.4-23.3}{6.4}[/tex]
[tex]= 2.047[/tex]
So,
The probability will be:
→ [tex]P(X > 36.4 )= P(z > 2.047)[/tex]
[tex]= 0.0203[/tex]
(d)
Just because it's probability value is less than 0.05, so that the events is "part c" is unusual.
Learn more about probability here:
https://brainly.com/question/23044118
A random sample of 11 students produced the following data, where x is the hours spent per month playing games, and y is the final exam score (out of a maximum of 50 points). The data are presented below in the table of values.
x y
14 46
15 49
16 37
17 42
18 37
19 31
20 25
21 23
22 20
23 15
24 12
What is the value of the intercept of the regression line, b, rounded to one decimal place?
Answer:
b = - 3.7
Step-by-step explanation:
here are the data values:
x y XY X²
14 46 644 196
15 49 735 225
16 37 592 256
17 42 714 289
18 37 666 324
19 31 589 361
20 25 500 400
21 23 483 441
22 20 440 484
23 15 345 529
24 12 288 576
now we are required to find the summation (total) of all values of X, Y, XY and X².
∑X = 209
∑Y = 337
∑XY = 5996
∑X² = 4081
The formular for finding b is given as:
b = n∑XY - (X)(Y) / n∑X² - (∑X)²
= 11(5996) - (209)(337) / 11(4081) - (209)²
= 65956 - 70433 / 44891 - 43681
= -4477/ 1210
= -3.7
The question asked us to find the value of b but we can go further to find the equation of the regression line:
a = ∑Y - b∑X / n
= 337 - (-3.7)(209)/ 11
=1110.3/11
= 100.94
the equation is:
Y = 100.94 - 3.7X
I hope you find my solution useful!
=
I need help with these questions asap, I will post pictures if you know them all answer them in the order of the photos from 1-5 thank you.
Answer:
1. step 4
2.idk
3. step 2
4.-5n = 1 ---------> n= -1/5
n + 15 = -10 -------> -25
n/5 = -1/5 ------> n = -1
n - 13 = -12 ------> n = 1
5. cant see the drop down menu or possible answers
but if an answer is the addition one thing
then the second one is the subtraction thing
Step-by-step explanation:
Find all real solutions of the equation: x 2 + 3x − 10 = 0
Answer: x=8/3 or x= 2.6666....
Step-by-step explanation:
[tex]2+3x-10=0[/tex]
[tex]2-10=-8[/tex]
[tex]3x-8=0[/tex]
add 8 on both sides
[tex]3x-8+8=0+8[/tex]
[tex]3x=8[/tex]
divide 3 on both sides
[tex]x=\frac{8}{3}[/tex]
Answer:
8/3
Step-by-step explanation:
2 +3x + 10 = 0
2-10 +3x = 0
-8 + 3x = 0
3x = 8
x = 8/3
a sheet metal worker earns $26.80 per hour after receiving a 4.5% raise. what was the sheet metal worker's hourly pay before raise? Round your answer to the nearest cent
Answer
$25.59
Step-by-step explanation:
subtract by percentage or you can also do:
100% - 4.5% = 95.5%
95.5% x $26.80 = $25.594
IF ROUNDED: $25.59
Answer:
$25.65
Step-by-step explanation:
Let the original hourly rate be r.
Then 1.045r + $26.80/hr.
Dividing both sides by 1.045, we get:
$26.80/hr
r = ------------------ = $25.65 This was the before-raise pay rate.
1.045
(-1, 4) and (-2, 2).
Answer:
Slope : 2
slope-intercept: y = 2x + 6
Point-slope (as asked): y - 4 = 2 (times) (x + 1)
standered: 2x - y = -6
Step-by-step explanation:
Find the product of the roots of the equation
xl-5x - 36 = 0
Answer:
Step-by-step explanation:
Hello, I assume that you mean
[tex]x^2-5x-36[/tex]
The product is -36.
[tex]x_1 \text{ and } x_2 \text{ are the two roots, we can write}\\\\(x-x_1)(x-x_2)=x^2-(x_1+x_2)x+x_1\cdot x_2[/tex]
So in this example, it means that the sum is 5 and the product is -36.
Thank you
An article contained the following observations on degree of polymerization for paper specimens for which viscosity times concentration fell in a certain middle range:
418 421 421 422 425 428 431 435 437
438 445 447 448 453 458 462 465
(c) Calculate a two-sided 95% confidence interval for true average degree of polymerization. (Round your answers to two decimal places.) Note that it is plausible that the given sample observations were selected from a normal distribution and there are no outliers.
(___ , ___)
Does the interval suggest that 441 is a plausible value for true average degree of polymerization?
Yes or No
Does the interval suggest that 451 is a plausible value?
Yes or No
Answer:
Step-by-step explanation:
Form a set of values we get
n = 17
And with the help of a calculator
μ₀ = 438,47
σ = 14,79
Normal Distribution is : N ( 438,47 ; 14,79 )
c)
CI = 95 % means α = 5 % α/2 = 2,5 % α/2 = 0,025
and as n < 30 we should use t-student distribution with n -1 degree of freedom df = 16. t score for 0,025 and 16 s from t-table 2,120
By definition:
CI = [ μ₀ ± t α/2 ; n-1 * σ/√n ]
CI = [ μ₀ ± 2,120* 14,79/√17 ]
CI = [ μ₀ ± 7,60 ]
CI = [ 438,47 ± 7,60 ]
CI = [ 430,87 ; 446,07 ]
95% confidence interval for true average degree of polymerization is [430.87 ; 446.07] and this interval suggest that 441 is a plausible value for true average degree of polymerization and also this interval does not suggest that 451 is a plausible value.
Given :
Sample = [ 418, 421, 421, 422, 425, 428, 431, 435, 437, 438, 445, 447, 448, 453, 458, 462, 465 ]95% confidence interval.The total number of values given is, n = 17
Mean, [tex]\mu_0=438.47[/tex]
Standard Deviation, [tex]\sigma = 14.79[/tex]
The normal distribution is given by: N (438.47 ; 14.79)
If Cl is 95% then [tex]\alpha[/tex] is 5% and [tex]\alpha /2[/tex] is 2.5%
[tex]\alpha /2 = 0.025[/tex]
Now, use t-statistics distribution with (n-1) degree of freedom df = 16
So, the t score for 0.025 and 16 s from t-table 2.120.
[tex]\rm Cl = [\mu_0 \pm t_{\alpha /2};(n-1)\times \dfrac{\sigma}{\sqrt{n} }][/tex]
[tex]\rm Cl = [\mu_0 \pm 2.120\times \dfrac{14.79}{\sqrt{17} }][/tex]
[tex]\rm Cl = [\mu_0 \pm 7.60][/tex]
Cl = [430.87 ; 446.07]
Yes, the interval suggests that 441 is a plausible value for true average degree of polymerization.
No, the interval does not suggest that 451 is a plausible value.
For more information, refer to the link given below;
https://brainly.com/question/2561151
The size of a television is the length of the diagonal of its screen in inches. The aspect ratio of the screens of older televisions is 4:3, while the aspect ratio of newer wide-screen televisions is 16:9. Find the width and height of an newer 75-inch television whose screen has an aspect ratio of 16:9
Answer:
The Width = 65.44 inches
The Height = 36.81 inches
Step-by-step explanation:
We are told in the question that:
The width and height of an newer 75-inch television whose screen has an aspect ratio of 16:9
Using Pythagoras Theorem we known that:
Width² + Height² = Diagonal²
Since we known that the size of a television is the length of the diagonal of its screen in inches.
Hence, for this new TV
Width² + Height² = 75²
We are given ratio: 16:9 as aspect ratio
Width = 16x
Height = 9x
(16x)² +(9x)² = 75²
= 256x² + 81x² = 75²
337x² = 5625
x² = 5625/337
x² = 16.691394659
x = √16.691394659
x = 4.0855103303
Approximately x = 4.09
For the newer 75 inch tv set
The Height = 9x
= 9 × 4.09
= 36.81 inches
The Width = 16x
= 16 × 4.09
= 65.44 inches.
what is the difference between growth and development
Answer:
growth is usually reffered to as physical growth happening in size while development happens more gradually and happens mentally.
Step-by-step explanation:
idk if u meant pyscologically or not but that is my understanding.
Divide. Write the quotient in lowest terms. 3 3/4 ÷ 5/7
Rewrite 3 3/4 as an improper fraction
3 3/4 = 15/4
Now you have
15/5 / 5/7
When you divide fractions, change the division to multiplication and flip the second fraction over:
15/4 x 7/5
Now multiply the top numbers together and the bottom numbers together:
( 15 x 7) / (4 x 5) = 105/20
Write as a proper fraction:
105/20 = 5 1/4
if P(x)=1+6x-5x^2 represents the profit in selling x thousand Boombotix speakers, how many speakers should be sold to maximize profit?
Answer:
600
Step-by-step explanation:
[tex]p(x) = 1 + 6x - 5x^2[/tex]
x max = [tex]-b/2a[/tex]
a = -5
b = 6
-6/2(-5) = 6/10 = 3/5 = .6
.6 thousand = 600
600 speakers should be sold.
Alternatively, you can check the vertex of the parabola formed.
About how many feet are in 3.6 kilometers? 1 m = 39.37 in
Answer:
11811 feet
Step-by-step explanation:
Hope it helps!
There are about 11,812 feet in 3.6 kilometers.
To convert kilometers to feet, we need to use the conversion factor:
1 kilometer = 3,280.84 feet.
Now, to find how many feet are in 3.6 kilometers,
we can multiply 3.6 by the conversion factor:
So, 3.6 kilometers x 3,280.84 feet/kilometer
= 11,811.504 feet.
Thus, Rounded to a whole number, there are about 11,812 feet in 3.6 kilometers.
Learn more about Unit Conversion here:
https://brainly.com/question/14573907
#SPJ6
Suppose we want to choose 6 colors, without replacement, from 14 distinct colors. (a) How many ways can this be done, if the order of the choices matters? (b) How many ways can this be done, if the order of the choices does not matter?
Answer:
(a) 2,162,160
(b) 3,003
Step-by-step explanation:
(a) order matters
You can choose from 14 for the first pick. Then you have 13 left for the second pick. Then you have 12 left for the third pick. Keep going until you have 9 left for the 6th pick. The number when order matters is:
total = 14 * 13 * 12 * 11 * 10 * 9 = 2,162,160
(b) Order does not matter
Start with the same number as above for picking 6 out of 14. Since order does not matter, we divide by the number of ways you can arrange 6 items.
Since there are 6! ways of arranging 6 items,
total = 2,162,160/6! = 3,003
The number of ways when the order matters are 121080960.
The number of ways when order does not matters are 3003.
Given,
Choose 6 colors, without replacement, from 14 distinct colors.
We have to find:
- How many ways can this be done, if the order of the choices matters.
- How many ways can this be done if the order of the choices does not matter.
What are permutation and combination?We use permutation when the order of the arrangements matters.
It is given by:
[tex]^ nP_r[/tex] = n! / r!
We use combination when order does not matter.
It is given by:
[tex]^nC_{r}[/tex] = n! / r! (n-r)!
Find the number of ways when order matters.
We have,
n = 14 and r = 6
[tex]^{14}P_{6}[/tex]
= 14! / 6!
= (14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6!) / 6!
= 4 x 13 x 12 x 11 x 10 x 9 x 8 x 7
= 121080960
Find the number of ways when order does not matter.
We have,
n = 14 and r = 6
[tex]^{14}C_{6}[/tex]
= 14! / 6! 8!
= 14 x 13 x 12 x 11 x 10 x 9 / 6 x 5 x 4 x 3 x 2
= 7 x 13 x 11 x 3
= 3003
Thus,
The number of ways when the order matters are 121080960.
The number of ways when order does not matters are 3003.
Learn more about combination here:
https://brainly.com/question/28134115
#SPJ2
6. If x + 2 is the only factor of the polynomial P(x),then P(2) is:
Options:
A. Cannot be determined
B. Not Zero
C. R(2)
D. Zero
Answer:
P(x) = x + 2p(2) = 2 + 2 p(2) = 4So option B is the answer.
If x + 2 is the only factor of the polynomial P(x) then we need to find the P(2) is Not Zero. Therefore, the option B is the correct answer.
What is standard form of a polynomial?Suppose the considered polynomial is of only one variable.
Then, the standard form of that polynomial is the one in which all the terms with higher exponents are written on left side to those which have lower exponents.
Given information;
If x + 2 is the only factor of the polynomial P(x) then we need to find the P(2) :
P(x) = x + 2
p(2) = 2 + 2
p(2) = 4
The P(2) is Not Zero.
Therefore, the option B is the correct answer.
Learn more about standard form of a polynomial here:
https://brainly.com/question/15313798
#SPJ5
Solve for x: 3(x + 1)= -2(x - 1) + 6.
Answer:
x=1
Step-by-step explanation:
3(x + 1)= -2(x - 1) + 6.
Distribute
3x+3 = -2x+2+6
Combine like terms
3x+3 = -2x+8
Add 2x to each side
3x+3+2x = 8
5x+3 = 8
Subtract 3 from each side
5x =5
Divide by 5
x =1
A researcher measures daily driving distance from college and weekly cost of gas for a group of commuting college students. What kind of correlation is likely to be obtained for these two variables?
Answer:
There is a positive correlation between these two variables.
Step-by-step explanation:
Positive correlation is an association amid two variables in which both variables change in the same direction.
A positive correlation occurs when one variable declines as the other variable declines, or one variable escalates while the other escalates.
As the distance covered by the vehicle increases the amount of gas consumed also increases. Thus, the weekly cost of gas will also increase.
Thus, there is a positive correlation between these two variables.
Using Normal Distribution, what is the area to the right of 0.72 under the
standard normal curve?
Answer: 0.2358
Step-by-step explanation:
Using Normal Distribution, under the standard normal curve
The area to the right of z is given by P(Z>z)=1-P(Z<z)
So, the area to the right of z= 0.72 under the standard normal curve would be:
P(Z>0.72)=1-P(z<0.72)
=1-0.7642 [By using p-value table]
= 0.2358
Hence, the area to the right of z= 0.72 under the standard normal curve is 0.2358 .
Decide if the situation involves permutations, combinations, or neither. Explain your reasoning. Does the situation involve permutations, combinations, or neither? Choose the correct answer below. A. B. C. Neither. A line of people is neither an ordered arrangement of objects, nor a selection of objects from a group of objects.
Answer:
C. Neither
Step-by-step explanation:
The permutation is a selection of objects from a given sample in an ordered manner .
The combination is a selection of objects from a given sample irrespective of an order of arrangement.
The given line of people is neither an ordered arrangement of objects, nor a selection of objects from a group of objects So it fits neither of the combinations or permutations.
So the best answer is neither.
help with math ASAP!
Answer:
1.) [tex]\frac{1}{9^4}*9^3[/tex]
2.) [tex]\frac{1}{w^7}[/tex]
3.)
Step-by-step explanation:
When you have a negative exponent, rewrite:
[tex]x^{-a}=\frac{1}{x^a}[/tex]
Rewrite using this to change all negative exponents.
Answer:
Multiple Answers
Step-by-step explanation:
Note: When multiplying numbers with exponents, you add the exponents. When dividing numbers with exponents, you subtract exponents.When you have a negative exponent, flip the fraction and write it as a positive exponent.
1) -4 + 3= -1
So we have (9^-4) + (9^3)= (1/(9^1)
2) (1/w)^7
3) cannot read problem, but just apply the rules I wrote under "Note"
4) 14/y
5) cannot read problem,but just apply the rules I wrote under "Note"
6) 20d^4 n^? --Cannot read n exponents--.
7) cannot read problem
8) Cannot read problem
9) 90/z^4---only if exponents are 5,-3,and-6
10) 1/(9^5)
11) 54b^4
12) Cannot read problem
13) 16d^8c^8 ---if exponents are 5,3,6,2--
14) s^8
Hope this helps! Plz give brainly, I kinda need it.
The probability that a company will launch the product A and B are 0.45 and 0.60 respectively, in main while, probability that both products launched, is 0.35. what is the probability that Neither will of these products launch ? At least one product will be launched ?
Answer:
a) what is the probability that Neither will of these products launch ?
= 0.30
b) At least one product will be launched ?
= 0.70
Step-by-step explanation:
From the above question, we have the following information:
P(A) = 0.45
P(B) = 0.60
P(A ∩ B) = P(A and B) launching = 0.35
Step 1
We find the Probability that A or B will launch
P (A ∪ B) = P(A) + P(B) - P(A ∩ B)
= 0.60 + 0.45 - 0.35
= 1.05 - 0.35
= 0.70
a) what is the probability that Neither will of these products launch ?
1 - Probability ( A or B will launch)
= 1 - 0.70
= 0.30
b)At least one product will be launched?
This is equivalent to the probability that A or B will be launched
P (A ∪ B) = P(A) + P(B) - P(A ∩ B)
= 0.60 + 0.45 - 0.35
= 1.05 - 0.35
= 0.70
algebra and trigonometry difference
Answer:
Algebra deals with knowing the value of unknown variables and functional relationships, while trigonometry touches on triangles, sides and angles and the relationship between them.
Algebra is more on polynomial equations, x and y while trigonometry more on sine, cosine, tangent, and degrees.
Trigonometry is much more complicated than algebra but algebra has its uses in our daily lives, be it calculating distance from point to another or determining the volume of milk in a milk container.
Step-by-step explanation:
Answer:
Although both Algebra II and Trigonometry involve solving mathematical problems, Algebra II focuses on solving equations and inequalities while Trigonometry is the study of triangles and how sides are connected to angles.
hope this answer helps u
pls mark as brainliest .-.
4 solid cubes were made out of the same material. All four have different side lengths: 6cm, 8cm, 10cm, and 12cm. How to distribute the cubes onto two plates of a scale so the scale is balanced? Answer: A= the cube with side length 6 cm, B= the cube with side length 8 cm, C= the cube with side length 10 cm, D= the cube with side length 12 cm. On one side of the scale : , on the other side of the scale
Answer: The cube with side length of 12cm is alone in one plate, the other 3 cubes are in the other plate.
Step-by-step explanation:
We have 4 cubes with side lengths of:
6cm, 8cm, 10cm and 12cm.
Now, some things you need to know:
If we want a scale to be balanced, then the mass in both plates must be the same.
The volume of a cube of side length L is:
V = L^3
And the mass of an object of density D, and volume V is:
M = D*V.
As all the cubes are of the same material, all of them have the same density, so the fact that we do not know the value of D actually does not matter here.
Then we want to forms two groups of cubes in such a way that the total volume in each plate is the same (or about the same), the volumes of the cubes are:
Cube of 6cm:
V = (6cm)^3 = 216cm^3
Cube of 8cm:
V = (8cm)^3 = 512cm^3
Cube of 10cm:
V = (10cm)^3 = 1000cm^3
cube of 12cm
V = (12cm)^3 = 1728cm^3
First, if we add the volumes of the first two cubes, we have:
V1 = 216cm^3 + 512cm^3 = 728cm^3
Now we can see that we add 1000cm^3 the volume will be equal to the volume of the larger cube, so here we can also add the cube with side length of 10cm
Then the volume of the 3 smaller cubes together is:
V1 = 216cm^3 + 512cm^3 + 1000cm^3 = 1728cm^3.
Then, if we want to have the same volume in each plate, then we need to have the 3 smaller cubes in one plate, and the larger cube in the other plate.
What is the rise over run for the slope -11/9
Answer: 11 down and 9 right
Step-by-step explanation:
Slope IS rise over run where the top number of the fraction (numerator) determines the vertical distance --> positive is up, negative is down
and the bottom number of the fraction (denominator) determines the horizontal distance --> positive is right, negative is left.
Given slope = -11/9
the numerator is -11 so the "rise" is DOWN 11 units
the denominator is 9 so the "run" is RIGHT 9 units
Find the largest number apart from 840 that is a multiple of 24 and a factor of 840.
Answer:
168
Step-by-step explanation:
first, split both 840 and 24 into there primes.
840=2×2×2×3×5×7
24=2×2×2×3
therefore any multiples of 24 must have those factor.
so, factors of 840 that are multiples of 24 are
2×2×2×3=24
2×2×2×3×5=120
2×2×2×3×7=168
2×2×2×3×5×7=840
there the answer is 168
4 Points] Under the HMM generative model, what is p(z1 = z2 = z3), the probability that the same die is used for the first three rolls? b. [4 Points] Suppose that we observe the first two rolls. What is p(z1 = 1 | x1 = 2, x2 = 4), the probability that the casino used the fair die in the first roll?
Answer:
Step-by-step explanation:
We first examine a simple hidden Markov model (HMM). We observe a sequence of rolls of a four-sided die at an "occasionally dishonest casino", where at time t the observed outcome x_t Element {1, 2, 3, 4}. At each of these times, the casino can be in one of two states z_t Element {1, 2}. When z_t = 1 the casino uses a fair die, while when z_t = 2 the die is biased so that rolling a 1 is more likely. In particular: p (x_t = 1 | z_t = 1) = p (x_t = 2 | z_t = 1) = p (x_t = 3 | z_t = 2) = p (x_t = 4 | z_t = 1) = 0.25, p (X_t = 1 | z_t = 2) = 0.7, p (X_t = 2 | z_t = 2) = p (X_t = 3 | z_t = 2) = p (X_t = 4 | z_t = 2) = 0.1. Assume that the casino has an equal probability of starting in either state at time t = 1, so that p (z1 = 1) = p (z1 = 2) = 0.5. The casino usually uses the same die for multiple iterations, but occasionally switches states according to the following probabilities: p (z_t + 1 = 1 | z_t = 1) = 0.8, p (z_t = 2) = 0.9. The other transition probabilities you will need are the complements of these. a. Under the HMM generative model, what is p (z1 = z2 = z3), the probability that the same die is used for the first three rolls? b. Suppose that we observe the first two rolls. What is p (z1 = 1 | x1 = 2, x2 = 4), the probability that the casino used the fair die in the first roll? c. Using the backward algorithm, compute the probability that we observe the sequence x1 = 2, x2 = 3, x3 = 3, x4 = 3 and x5 = 1. Show your work (i.e., show each of your belief for based on time). Consider the final distribution at time t = 6 for both p (z_t = 1) = p (z_t = 2) = 1.
ANSWER:
Let say we have that the first state of the die is state 1. Therefore the probability of this is p(z1=1)=0.5.
Also the probability that the same die is used(i.e. casino would be in the same state) is p(z2=1|z1=1)=0.8.
Again, suppose the first state of the die is state 2. So, p(z1=2)=0.5 and p(z2=2|z1=2)=0.9.
Other transition probabilities can be written as
p(zt+1=2|zt=1)=1-p(zt+1=1|zt=1)=.2
p(zt+1=1|zt=2)=1-p(zt+1=2|zt=2)=.1
p(z3=1|z1=1) = [p(z3=1|z2=2)*p(z2=2|z1=1)]+[p(z3=1|z2=1)*p(z2=1|z1=1)] = 0.1*0.2+0.8*0.8 = 0.66
p(z3=2|z1=2) = [p(z3=2|z2=2)*p(z2=2|z1=2)]+[p(z3=2|z2=1)*p(z2=1|z1=2)] = 0.9*0.9+0.2*0.1 = 0.83
With this, the total probability that the same die is used for the first three rolls (i.e. casino would be in the same state) is given thus;
{p(z1=1)*p(z3=1|z1=1)}*{p(z1=2)*p(z3=2|z1=2)}
= 0.5*0.66+0.5*0.83 = 0.745
Prob = 0.745