Answer:
A) P(Betty is first in line and mary is last) = P(B₁) + P(Mₙ) - (P(B₁) × P(Mₙ/B₁))
B) The method used is Relative frequency approach.
Step-by-step explanation:
From the question, we are told a sample of n kids line up for recess.
Now, the order in which they line up is random with each ordering being equally likely. Thus, this means that the probability of each kid to take a position is n(total of kids/positions).
Since we are being asked about 3 kids from the class, let's assign a letter to each kid:
J: John
B: Betty
M: Mary
A) Now, we want to find the probability that Betty is first in line or Mary is last in line.
In this case, the events are not mutually exclusive, since it's possible that "Betty is first but Mary is not last" or "Mary is last but Betty is not first" or "Betty is the first in line and Mary is last". Thus, there is an intersection between them and the probability is symbolized as;
P(B₁ ∪ Mₙ) = P(B₁) + P (Mₙ) - P(B₁ ∩ Mₙ) = P(B₁) + P(Mₙ) - (P(B₁) × P(Mₙ/B₁))
Where;
The suffix 1 refers to the first position while the suffix n refers to the last position.
Also, P(B₁ ∩ Mₙ) = P(B₁) × P(Mₙ/B₁)
This is because the events "Betty" and "Mary" are not independent since every time a kid takes his place the probability of the next one is affected.
B) The method used is Relative frequency approach.
In this method, the probabilities are usually assigned on the basis of experimentation or historical data.
For example, If A is an event we are considering, and we assume that we have performed the same experiment n times so that n is the number of times A could have occurred.
Also, let n_A be the number of times that A did occur.
Now, the relative frequency would be written as (n_A)/n.
Thus, in this method, we will define P(A) as:
P(A) = lim:n→∞[(n_A)/n]
Given this pair of probabilities, the probability that Mary is the first is n(A) = n-1!, while the probability that Betty is last is n(A) = n-1!
There are n! ways of making this arrangement
We have probability of A: Betty is the first person in this line
Probability of B: Mary is the last person
A U B = p(A) + p(B) - p(A ∩ B)
n(A) = n-1 that is given that Betty is the first person on the line.
then n(A) = n-1!
As the last person on the line P(B) = n-1!
Probability of (A∩B) =( n-2)! this has Mary as the first and Betty as the last person.
Remaining students that would have to be on this line are n-2
Prob(A∪B) = n(A ∪ B)/n!
= 2(n-2)/n(n-1)
What is the probability theory in Mathematics?This is the theory that talks about the chances or the likelihood of an event occuring in a pair of events.
Read more on probability here: https://brainly.com/question/24756209
How many feet are in 26 miles, 1, 155 feet? Enter only the number. Do not include units
The solution is
Answer:
137, 280 feet
Step-by-step explanation:
There are 5,280 feet in a mile.
26 * 5,280 = 137,280
There are 137, 280 feet in 26 miles.
There are 137,280 feet in 26 miles.
What is the unitary method?The unitary method is a method for solving a problem by the first value of a single unit and then finding the value by multiplying the single value.
We know that there are 5,280 feet in a mile.
So, the solution would be;
26 x 5,280 = 137,280
Thus, There are 137,280 feet in 26 miles.
Learn more about the unitary method;
https://brainly.com/question/23423168
#SPJ2
Find the vertex of this parabola:
y = x2 + 2x - 3
Answer:
(-1,-4)
Step-by-step explanation:
The equation of a parabola os written as: ax^2+bx+c
This parabola's equation is x^2+2x-3
● a= 1
● b= 2
● c = -3
The coordinates of the parabola are: ( (-b/2a) ; f(-b/2a) )
● -b/2a = -2/2 = -1
● f(-b/2a) = (-1)^2+2×(-1)-3=1-2-3= -4
So the vertex coordinates are (-1,-4)
Answer:
-1+2X
Step-by-step explanation:
An agriculture company is testing a new product that is designed to make plants grow taller. This can be thought of as a hypothesis test with the following hypotheses. H0: The product does not change the height of the plant. Ha: The product makes the plant grow taller. Is the following an example of a type I or type II error? The sample suggests that the product makes the plant grow taller, but it actually does not change the height of the plant.
Answer:
hi
Step-by-step explanation:
hji
nishan bought 7 marbles Rs.x per each. if he gave Rs.100 to the shop keeper. what is the balance he would receive?
Find the doubling time of an investment earning 8% interest if interest is compounded continuously. The doubling time of an investment earning 8% interest if interest is compounded continuously is ____ years.
Answer:
Step-by-step explanation:
Using FV = PV(1 + r)^n where FV = future value, PV = present value, r = interest rate per period, and n = # of periods
1/PV (FV) = (PV(1 + r^n)1/PV divide by PV
ln(FV/PV) = ln(1 + r^n) convert to natural log function
ln(FV/PV) = n[ln(1 + r)] by simplifying
n = ln(FV/PV) / ln(1 + r) solve for n
n = ln(2/1) / ln(1 + .08) solve for n, letting FV + 2, PV = 1 and rate = 8% or .08 compound annually
n = 9
n = ln(2/1) / ln(1 + .08/12) solve for n, letting FV + 2, PV = 1 and rate = .08/12 compound monthly
n = 104 months or 8.69 years
n = ln(2/1) / ln(1 + .08/365) solve for n, letting FV + 2, PV = 1 & rate = .08/365 compound daily
n = 3163 days or 8.67 years
Alternatively
A = P e ^(rt)
Given that r = 8%
= 8/100
= 0.08
2 = e^(0.08t)
ln(2)/0.08 = t
0.6931/0.08 = t
t= 8.664yrs
t = 8.67yrs
Which ever approach you choose to use,you will still arrive at the same answer.
If the function Q(t)=4e-0.00938t models the quantity (in kg) of an element in a storage unit after t years, how long will it be before the quantity is less than 1.5kg? Round to the nearest year.
Answer:
105 years
Step-by-step explanation:
Given the function :
Q(t) = 4e^(-0.00938t)
Q = Quantity in kilogram of an element in a storage unit after t years
how long will it be before the quantity is less than 1.5kg
Inputting Q = 1.5kg into the equation:
1.5 = 4e^(-0.00938t)
Divide both sides by 4
(1.5 / 4) = (4e^(-0.00938t) / 4)
0.375 = e^(-0.00938t)
Take the ln of both sides
In(0.375) = In(e^(-0.00938t))
−0.980829 = -0.00938t
Divide both sides by 0.00938
0.00938t / 0.00938 = 0.980829 /0.00938
t = 104.56599
When t = 104.56599 years , the quantity in kilogram of the element in storage will be exactly 1.5kg
Therefore, when t = 105 years, the quantity of element in storage will be less than 1.5kg
Please help with this
Answer:
B) x=80°
Step-by-step explanation:
This is a hexagon, so it has interior angles equaling 720°. (N-2)*180
So the equation would be
78+134+136+132+2x+x=720
480+3x=720
3x=720-480
3x=240
x=80°
Use the set of ordered pairs to determine whether the relation is a one-to-one function. {(−6,21),(−23,21),(−12,9),(−24,−10),(−2,22),(−22,−22)}
Answer:
the relation is not one-to-one.
Step-by-step explanation:
it can't because every number is in the 4th quadrant.
Hi I need help with 800×200= 8 × ______ hundreds=_____ Hundreds = _______ plz help me
Answer:
800×200= 8 × 200 hundreds= 1600 Hundreds = 160000
What number represents the same amount as 8 hundreds + 10 tens + 0 ones? i was told 810 is incorrect
Answer:
900
Step-by-step explanation:
You have 10 tens not 1 ten
8 * 100 + 10 * 10 + 0*1
800 + 100 + 0
900
Answer:
[tex]900[/tex]
Step-by-step explanation:
[tex]8 \times 100 + 10 \times 10 + 0 \times 1 \\ 800 + 100 + 0 \\ = 900[/tex]
A work shift for an employee at Starbucks consists of 8 hours (whole).
What FRACTION (part) of the employees work shift is represented by 2
hours? *
Answer:
1/4 of an hour
Step-by-step explanation:
2 divided by 8 = 1/4
Answer:
1/4
Step-by-step explanation:
A whole shift is 8 hours
Part over whole is the fraction
2/8
Divide top and bottom by 2
1/4
One way to calculate the target heart rate of a physically fit adult during exercise is given by the formula h=0.8( 220−x ), where h is the number of heartbeats per minute and x is the age of the person in years. Which formula is equivalent and gives the age of the person in terms of the number of heartbeats per minute?
Answer:
The answer is:
C. [tex]\bold{x = -1.25h+220}[/tex]
Step-by-step explanation:
Given:
[tex]h=0.8( 220-x )[/tex]
Where [tex]h[/tex] is the heartbeats per minute and
[tex]x[/tex] is the age of person
To find:
Age of person in terms of heartbeats per minute = ?
To choose form the options:
[tex]A.\ x=176-h\\B.\ x=176-0.8h\\C.\ x=-1.25h+220\\D.\ x=h-0.8220[/tex]
Solution:
First of all, let us have a look at the given equation:
[tex]h=0.8( 220-x )[/tex]
It is value of [tex]h[/tex] in terms of [tex]x[/tex].
We have to find the value of [tex]x[/tex] in terms of [tex]h[/tex].
Let us divide the equation by 0.8 on both sides:
[tex]\dfrac{h}{0.8}=\dfrac{0.8( 220-x )}{0.8}\\\Rightarrow \dfrac{1}{0.8}h=220-x\\\Rightarrow 1.25h=220-x[/tex]
Now, subtracting 220 from both sides:
[tex]\Rightarrow 1.25h-220=220-x-220\\\Rightarrow 1.25h-220=-x[/tex]
Now, multiplying with -1 on both sides:
[tex]-1.25h+220=x\\OR\\\bold{x = -1.25h+220}[/tex]
So, the answer is:
C. [tex]\bold{x = -1.25h+220}[/tex]
A sequence of 1 million iid symbols(+1 and +2), Xi, are transmitted through a channel and summed to produce a new random variable W. Assume that the probability of transmitting a +1 is 0.4. Show your work
a) Determine the expected value for W
b) Determine the variance of W
Answer:
E(w) = 1600000
v(w) = 240000
Step-by-step explanation:
given data
sequence = 1 million iid (+1 and +2)
probability of transmitting a +1 = 0.4
solution
sequence will be here as
P{Xi = k } = 0.4 for k = +1
0.6 for k = +2
and define is
x1 + x2 + ................ + X1000000
so for expected value for W
E(w) = E( x1 + x2 + ................ + X1000000 ) ......................1
as per the linear probability of expectation
E(w) = 1000000 ( 0.4 × 1 + 0.6 × 2)
E(w) = 1600000
and
for variance of W
v(w) = V ( x1 + x2 + ................ + X1000000 ) ..........................2
v(w) = V x1 + V x2 + ................ + V X1000000
here also same as that xi are i.e d so cov(xi, xj ) = 0 and i ≠ j
so
v(w) = 1000000 ( v(x) )
v(w) = 1000000 ( 0.24)
v(w) = 240000
Find the surface area of the figure. ft
Answer:
486
Step-by-step explanation:
Hello!
To find the surface area of a cube we use the equation
[tex]S = 6a^{2}[/tex]
S is the surface area
a is the side length
Put what we know into the equation
[tex]S = 6*9^{2}[/tex]
Solve
S = 6 * 81
S = 486
Hope this Helps!
Answer:486[tex]ft^{2}[/tex]
Step-by-step explanation:
surface area= 6[tex]l^{2}[/tex]
l=9
sa=6 ([tex]9^{2}[/tex])= 6 x 81=486[tex]ft^{2}[/tex]
If the length of the legs of a right triangle are 13 and 13,what is the length of the hypotenuse? Round your answer to the nearest tenth,if necessary.
Answer:
a² + b² = c²
13² + 13² = c²
169 + 169 = c²
338 = c²
c = √338 or 18.385 or 13√2
Answer:
18.4
Step-by-step explanation:
13² + 13² = x²
169 + 169 = x²
338 = x²
x = 18.38477....
A small company is creating a new product to sell to buyers. They have estimated that it will cost them $25 to produce each item and they will have start-up costs of $116000. This leads to the following expression, which gives the total cost, in dollars, to produce q of these new products: 25q+116000 Use this expression to predict how much it will cost them to produce 8900 items.
Answer:
[tex]Cost = 338500[/tex]
Step-by-step explanation:
Given
Startup = $116000
Cost per item = $25
Equation: 25q + 116000
Required
Determine the cost of producing 8900 items
The question implies that q = 8900
To solve further, we have to substitute 8900 for q in the given equation
Equation = 25q + 116000 becomes
[tex]Cost = 25 * 8900 + 116000[/tex]
[tex]Cost = 222500 + 116000[/tex]
[tex]Cost = 338500[/tex]
Hence, the cost of producing 8900 items is $338500
Which expression is equivalent to x+y+x+y+3(y+5)
Answer:
2x + 5y + 15
Step-by-step explanation:
add like terms
(x+x) + (y+y)+3y+15
2x+2y+3y+15
2x + 5y + 15
i hope this helps!
There are two pitchers of lemonade in the fridge there are 1.5 gallons of lemonade in 1 pitcher and 9 quarts of lemonade in the other pitcher how many cups of lemonade are there in the fridge
Answer:
52 cups
Step-by-step explanation:
1 gallon = 4 quarts
1.5 gallons = 6 quarts
6 + 9 = 13 quarts of lemonade in the fridge.
1 quart = 4 cups
13 quarts = 4 × 13 = 52 cups
52 cups of lemonade are in the fridge.
I would really appreciate it if you would mark me brainliest!
Have a blessed day!
Answer:
60 cups
Step-by-step explanation:
1 gal = 16 cups
1 quart = 4 cups
16 cups
1.5 gal x ------------- = 24 cups
1 gal.
4 cups
9 quarts x ----------- = 36 cups
1 quart
number of cups of lemonade in the fridge = 24 cups + 36 cups = 60 cups
A height is labeled on the triangle below.
Which line segment shows the base that corresponds to the given height of the triangle
Option A,B,C
Answer:
A
Step-by-step explanation:
The height is always perpinducular to the base. The height here is perpendicular to line segment A.
Answer:
A
Step-by-step explanation:
3. A medical devices company wants to know the number of MRI machines needed per day. A previous study found a standard deviation of four hours. How many MRI machines must the company study in order to have a margin of error of 0.5 hours when calculating a 90% confidence interval
Answer:
173 MRI machines
Step-by-step explanation:
Margin of error E = 0.5
Confidence interval 90% = 1-0.9 = 0.1
Standard deviation = 4 hours
Number of MRI machines needed per day n, = [(z alpha/2 * SD)/E]²
Z alpha/2 = 1.645 at alpha = 0.1
Inputting these values into n we have that
[(1.645*4)/0.5]²
= 13.16²
= 173.18 is approximately equal to 173
The company has to study 173 machines.
Complete the statement to describe the expression abc+def
The expression consists of ____ terms,and each term contains___ factors
Answer:
3 each
Step-by-step explanation:
The answer is already on this site
A population of bacteria P is changing at a rate of dP/dt = 3000/1+0.25t where t is the time in days. The initial population (when t=0) is 1000. Write an equation that gives the population at any time t. Then find the population when t = 3 days.
Answer:
- At any time t, the population is:
P = 375t² + 3000t + 1000
- At time t = 3 days, the population is:
P = 13,375
Step-by-step explanation:
Given the rate of change of the population of bacteria as:
dP/dt = 3000/(1 + 0.25t)
we need to rewrite the given differential equation, and solve.
Rewriting, we have:
dP/3000 = (1 + 0.25t)dt
Integrating both sides, we have
P/3000 = t + (0.25/2)t² + C
P/3000 = t + 0.125t² + C
When t = 0, P = 1000
So,
1000/3000 = C
C = 1/3
Therefore, at any time t, the population is:
P/3000 = 0.125t² + t + 1/3
P = 375t² + 3000t + 1000
At time t = 3 days, the population is :
P = 375(3²) + 3000(3) + 1000
= 3375 + 9000 + 1000
P = 13,375
Which geometric sequence has a first term equal to 55 and a common ratio of -5? {-55, 11, -2.2, 0.44, …} {55; 275; 1,375; 6,875; …} {55, 11, 2.2, 0.44, …} {55; -275; 1,375; -6,875; …}
Answer:
The answer is 55, -275, 1375, -6875......
Step-by-step explanation:
simplest form 2 3/4 x 4/5 *
Answer:
2 1/5
Step-by-step explanation:
2 3/4 * 4/5
Change the mixed number to an improper fraction
( 4*2+3)/4 * 4/5
11/4 * 4/5
The 4 in the numerator and denominator cancel
11/5
Changing back to a mixed number
5 goes into 11 2 times with 1 left over
2 1/5
Answer:
[tex]2\frac{1}{5}[/tex]
Step-by-step explanation:
[tex]2\frac{3}{4}*\frac{4}{5}\\\frac{11}{4}*\frac{4}{5}\\\frac{11}{5}\\ 2\frac{1}{5}[/tex]
Solve for x: 7 > x/4
Answer: x < 28
Step-by-step explanation:
For lunch, Kile can eat a sandwich with either ham or a bologna and with or without cheese. Kile also has the choice of drinking water or juice with his sandwich. The total number of lunches Kile can choose is
Answer:
8
Step-by-step explanation:
Ham with or without cheese-2 choices
Bologna with or without cheese-2 choices
Bologna with cheese with water or juice-2 choices
Bologna without cheese with juice or water-2 choices
Ham with cheese with juice or water -2 choices
Ham without cheese with juice or water -2 choices
2+2+2+2=8
Kile has 8 choices for lunch
A rotating light is located 16 feet from a wall. The light completes one rotation every 2 seconds. Find the rate at which the light projected onto the wall is moving along the wall when the light's angle is 20 degrees from perpendicular to the wall.
Answer:
a
Step-by-step explanation:
answer is a on edg
estimate the number 4576
Nearest 1000: 5000
Nearest 100: 4600
Nearest 10: 4580
Hope that helped!!! k
------------------------------------------------------------------------------------------
9.3.2 Listed below are body temperatures from five different subjects measured at 8 AM and again at 12 AM. Find the values of d overbar and s Subscript d. In general, what does mu Subscript d represent? Temperature (degrees Upper F )at 8 AM 98.1 98.8 97.3 97.5 97.9 Temperature (degrees Upper F )at 12 AM 98.7 99.4 97.7 97.1 98.0 Let the temperature at 8 AM be the first sample, and the temperature at 12 AM be the second sample. Find the values of d overbar and s Subscript d.
Answer:
[tex]\frac{}{d}[/tex] = −0.26
[tex]s_{d}[/tex] = 0.4219
Step-by-step explanation:
Given:
Sample1: 98.1 98.8 97.3 97.5 97.9
Sample2: 98.7 99.4 97.7 97.1 98.0
Sample 1 Sample 2 Difference d
98.1 98.7 -0.6
98.8 99.4 -0.6
97.3 97.7 -0.4
97.5 97.1 0.4
97.9 98.0 -0.1
To find:
Find the values of [tex]\frac{}{d}[/tex] and [tex]s_{d}[/tex]
d overbar ( [tex]\frac{}{d}[/tex]) is the sample mean of the differences which is calculated by dividing the sum of all the values of difference d with the number of values i.e. n = 5
[tex]\frac{}{d}[/tex] = ∑d/n
= (−0.6 −0.6 −0.4 +0.4 −0.1) / 5
= −1.3 / 5
[tex]\frac{}{d}[/tex] = −0.26
s Subscript d is the sample standard deviation of the difference which is calculated as following:
[tex]s_{d}[/tex] = √∑([tex]d_{i}[/tex] - [tex]\frac{}{d}[/tex])²/ n-1
[tex]s_{d}[/tex] =
√ [tex](-0.6 - (-0.26))^{2} + (-0.6 - (-0.26))^{2} + (-0.4 - (-0.26))^{2} + (0.4-(-0.26))^{2} + (-0.1 - (-0.26))^{2} / 5-1[/tex]
= √ (−0.6 − (−0.26 ))² + (−0.6 − (−0.26))² + (−0.4 − (−0.26))² + (0.4 −
(−0.26))² + (−0.1 − (−0.26))² / 5−1
= [tex]\sqrt{\frac{0.1156 + 0.1156 + 0.0196 + 0.4356 + 0.0256}{4} }[/tex]
= [tex]\sqrt{\frac{0.712}{4} }[/tex]
= [tex]\sqrt{0.178}[/tex]
= 0.4219
[tex]s_{d}[/tex] = 0.4219
Subscript d represent
μ[tex]_{d}[/tex] represents the mean of differences in body temperatures measured at 8 AM and at 12 AM of population.
Diabetic patients have normally distributed cholesterol with mean 200 and standard deviation=10.
Find the percentage of patients whose cholesterol is between 198 mg/dL and
207 mg/dL ?
Answer:
The percentage of patients whose cholesterol is between 198 mg/dL and 207 mg/dL is 33.73%
Step-by-step explanation:
To calculate this proportion, we follow the probability route, using the z-score statistics
Mathematically;
z-score = (x-mean)/SD
from the question, mean = 200 and SD = 10
So for 198
z-score = (198-200)/10 = -2/10 = -0.2
For 207
z-score = (207-200)/10 = 7/10 = 0.7
So the probability we want to calculate is;
P(-0.2<z<0.7)
Mathematically this can be calculated as;
P(z<0.7) - P(z<-0.2)
We can calculate the required probability using the standard normal distribution table
P(-0.2<x<0.7) = 0.3373 from the standard distribution table
So it is this 0.3373 that we now convert to percentage and that is 33.73%