Answer:
I think it is heterogeneous mixture. have a good day
Answer:
heterogeneous mixture
Explanation:
i took the test
A circus tightrope walker weighing 800 N is standing in the middle of a 15 meter long cable stretched between two posts. The cable was originally horizontal. The lowest point of the cable is now at his feet and is 30 cm below the horizontal. Assume the cable is massless. What is the tension in the cable
Answer:
T = 10010 N
Explanation:
To solve this problem we must use the translational equilibrium relation, let's set a reference frame
X axis
Fₓ-Fₓ = 0
Fₓ = Fₓ
whereby the horizontal components of the tension in the cable cancel
Y Axis
[tex]F_{y} + F_{y} - W =0[/tex]
2[tex]F_{y}[/tex] = W
let's use trigonometry to find the angles
tan θ = y / x
θ = tan⁻¹ (0.30 / 0.50 L)
θ = tan⁻¹ (0.30 / 0.50 15)
θ = 2.29º
the components of stress are
F_{y} = T sin θ
we substitute
2 T sin θ = W
T = W / 2sin θ
T = [tex]\frac{ 800}{ 2sin 2.29}[/tex]
T = 10010 N
A car enters a 105-m radius flat curve on a rainy day when the coefficient of static friction between its tires and the road is 0.4. What is
the maximum speed which the car can travel around the curve without sliding
Static friction (magnitude Fs) keeps the car on the road, and is the only force acting on it parallel to the road. By Newton's second law,
Fs = m a = W a / g
(a = centripetal acceleration, m = mass, g = acceleration due to gravity)
We have
a = v ² / R
(v = tangential speed, R = radius of the curve)
so that
Fs = W v ² / (g R)
Solving for v gives
v = √(Fs g R / W)
Perpendicular to the road, the car is in equilibrium, so Newton's second law gives
N - W = 0
(N = normal force, W = weight)
so that
N = W
We're given a coefficient of static friction µ = 0.4, so
Fs = µ N = 0.4 W
Substitute this into the equation for v. The factors of W cancel, so we get
v = √((0.4 W) g R / W) = √(0.4 g R) = √(0.4 (9.80 m/s²) (105 m)) ≈ 20.3 m/s
The pickup truck has a changing velocity because the pickup truck
A.can accelerate faster than the other two vehicles
B.is traveling in the opposite direction from the other two vehicles
C.is traveling on a curve in the road
D.needs a large amount of force to move
please get right i need awnser today
Answer:
C. Is traveling on a curve in the road
Hope this helps :3
The pick up truck has a changing velocity because, it is travelling on a curve in the road. A change in direction results in its change in velocity because, velocity is a vector quantity.
What is velocity ?Velocity is a physical quantity that measures the distance covered by an object per unit time. It is a vector quantity, thus having magnitude as well direction.
The rate of change in velocity is called acceleration of the object. Like velocity, acceleration also is a vector quantity. Thus, a change in magnitude or direction or change in both for velocity make the object to accelerate.
Here, all the three vehicles are travelling with the same velocity. But, the truck is moving to a curve on the road. The curvature in the path will make a change in its velocity.
Find more on velocity:
https://brainly.com/question/16379705
#SPJ6
The image related with this question is attached below:
Two spherical objects are separated by a distance that is 1.08 x 10-3 m. The objects are initially electrically neutral and are very small compared to the distance between them. Each object acquires the same negative charge due to the addition of electrons. As a result, each object experiences an electrostatic force that has a magnitude of 3.89 x 10-21 N. How many electrons did it take to produce the charge on one of the objects
Answer:
the charge on the object is 71.043×10^-20 C and the number of electron is 4.44
Explanation:
from coulumbs law, The force that is acting over both charge can be computed as
F=( kq1q2)/r^2..............eqn(1)
Where
F=electrostatic force= 3.89 x 10-21 N
k= column constant= 9 x 10^9 Nm^2/C^2
q1 and q2= magnitude of the charges
r= distance between the charges= 1.08 x 10-3 m.
Since both charges are experiencing the same force, eqn(1) can be written as
F=( kq^2)/r^2.
We can make q subject of the formula
q= √(Fr^2)/k
= √[(3.89 x 10^-21× (1.08 x 10^-3)^2]/8.99 x 10^9
q= 71.043×10^-20 C
Hence, the charge is 71.043×10^-20 C
From quantization law, the number of electron can be computed as
N=q/e
Where
N= number of electron
q= charges
=1.6×10^-19C
N=71.043×10^-20/1.6×10^-19
=4.44
Hence, the charge on the object is 71.043×10^-20 C and the number of electron is 4.44
What do you think about the attached scenario?
As a laudably skeptical physics student, you want to test Coulomb's law. For this purpose, you set up a measurement in which a proton and an electron are situated 865 nm from each other and you study the forces that the particles exert on each other. As expected, the predictions of Coulomb's law are well confirmed. You find that the forces are attractive and the magnitude of each force is:______
Answer:
force F = 1.66 × [tex]10^{-13}[/tex] N
Explanation:
given data
proton and an electron = 865 nm
solution
we get here force that is express as
force F = k q1 q2 ÷ r² ......................1
put here value and we get
force F = 9 × [tex]10^{9}[/tex] × [tex]\frac{1.6\times (10^{-19})^{2}}{865 \times (10^{-9})^{2}}[/tex]
force F = 1.66 × [tex]10^{-13}[/tex] N
1. (6x + 8)(5x - 8)
a. 30x2 + 49x + 20
2. (5x + 6(5x - 5)
b. 24x3 + 8x2 + 6x + 4
3. (6x + 3)(6x - 4)
c. 25x2 + 5x - 30
4. (6x + 5)(5x + 5)
d. 30x2 - 8x - 64
e. 36x2 - 6x - 1
5. (4x + 2) (6x2 - x + 2)
Answer:
form 1 question??????????
The radius of the Sun is 6.96 x 108 m and the distance between the Sun and the Earth is roughtly 1.50 x 1011 m. You may assume that the Sun is a perfect sphere and that the irradiance arriving on the Earth is the value for AMO, 1,350 W/m2. Calculate the temperature at the surface of the Sun.
Answer:
5766.7 K
Explanation:
We are given that
Radius of Sun , R=[tex]6.96\times 10^{8} m[/tex]
Distance between the Sun and the Earth, D=[tex]1.50\times 10^{11}m[/tex]
Irradiance arriving on the Earth is the value for AMO=[tex]1350W/m^2[/tex]
We have to find the temperature at the surface of the Sun.
We know that
Temperature ,T=[tex](\frac{K_{sc}D^2}{\sigma R^2})^{\frac{1}{4}}[/tex]
Where [tex]K_{sc}=1350 W/m^2[/tex]
[tex]\sigma=5.67\times 10^{-8}watt/m^2k^4[/tex]
Using the formula
[tex]T=(\frac{1350\times (1.5\times 10^{11})^2}{5.67\times 10^{-8}\times (6.96\times 10^{8})^2})^{\frac{1}{4}}[/tex]
T=5766.7 K
Hence, the temperature at the surface of the sun=5766.7 K
Why does it rain more in West Ferris than in East Ferris? Explain your answer.
Answer:
This idea helps students explain why more rain forms over West Ferris than East Ferris. ... Therefore, when students explain that water vapor condenses higher in the atmosphere, they are actually explaining that water vapor condenses high in the troposphere, which is relatively low in the atmosphere.
Explanation:
Plz mark me brainliest thank u> have a good day
calculate ine gravitational potential energy of the ball using pe=m×g×h.(use g=9.8 n/kg)
A 4.0-kilogram ball held 1.5 meters above the floor has ________ joules of potential energy
Answer:
58.8J
Explanation:
Given parameters;
Mass of ball = 4kg
Height above the floor = 1.5m
g = 9.8n/kg
Unknown:
Potential energy = ?
Solution:
The potential energy of a body is the energy due to the position of the body.
It is mathematically expressed as:
Potential energy = mass x acceleration due to gravity x height
Potential energy = 4 x 9.8 x 1.5 = 58.8J
A particle with charge Q and mass M has instantaneous speed uy when it is at a position where the electric potential is V. At a later time, the particle has moved a distance R away to a position where the electric potential is V2 ) Which of the following equations can be used to find the speed uz of the particle at the new position?
a. 1/2M(μ2^2-μ1^2)=Q (v1-v2)
b. 1/2M(μ2^2-μ1^2)^2=Q(v1-v2)
c. 1/2Mμ2^2=Qv1
d. 1/2Mμ2^2=1/4πx0 (Q^2/R)
Answer:
A
Explanation:
Ke = 1/2 MV^2
Required
Momentum
The magnitude of the momentum of an object is 64 kg*m/s. If the velocity of the
object is doubled, what will be the magnitude of the momentum of the object? *
32 kg*m/s
64 kg*m/s
128 kg*m/s
256 kg*m/s
Answer:
C) 128 kg*m/s
Explanation:
When you double something you multiply it by 2 most of the time. 64*2=128 or you can add it 64+64=128. Hope this helps.
An electric range has a constant current of 10 A entering the positive voltage terminal with a voltage of 110 V. The range is operated for two hours, (a) Find the charge in coulombs that passes through the range, (b) Find the power absorbed by the range, (c) If electric energy costs 12 cents per kilowatt-hour, determine the cost of operating the range for two hours.
Answer:
A. 72000 C
B. 1100 W
C. 26.4 cents.
Explanation:
From the question given above, the following data were obtained:
Current (I) = 10 A
Voltage (V) = 110 V
Time (t) = 2 h
A. Determination of the charge.
We'll begin by converting 2 h to seconds. This can be obtained as follow:
1 h = 3600 s
Therefore,
2 h = 2 h × 3600 s / 1 h
2 h = 7200 s
Thus, 2 h is equivalent to 7200 s.
Finally, we shall determine the charge. This can be obtained as follow:
Current (I) = 10 A
Time (t) = 7200 s
Charge (Q) =?
Q = It
Q = 10 × 7200
Q = 72000 C
B. Determination of the power.
Current (I) = 10 A
Voltage (V) = 110 V
Power (P) =?
P = IV
P = 10 × 110
P = 1100 W
C. Determination of the cost of operation.
We'll begin by converting 1100 W to KW. This can be obtained as follow:
1000 W = 1 KW
Therefore,
1100 W = 1100 W × 1 KW / 1000 W
1100 W = 1.1 KW
Thus, 1100 W is equivalent to 1.1 KW
Next, we shall determine the energy consumption of the range. This can be obtained as follow:
Power (P) = 1.1 KW
Time (t) = 2 h
Energy (E) =?
E = Pt
E = 1.1 × 2
E = 2.2 KWh
Finally, we shall determine the cost of operation. This can be obtained as follow:
1 KWh cost 12 cents.
Therefore, 2.2 KWh will cost = 2.2 × 12
= 26.4 cents.
Thus, the cost of operating the range for 2 h is 26.4 cents.
If a cyclist travels 30 km in 2 h, What is her average speed?
Answer:
15km/h
Explanation:
→ Speed = Distance ÷ Time
30 ÷ 2 = 15km/h
Write the properties of Non Metals and the families containig non Metals.
Non-Malleable and Ductile: Non-metals are very brittle, and cannot be rolled into wires or pounded into sheets. Conduction: They are poor conductors of heat and electricity. Luster: These have no metallic luster and do not reflect light.
Group 15, the nitrogen family, contains two nonmetals: nitrogen and phosphorus. These non-metals usually gain or share three electrons when reacting with atoms of other elements. Group 16, the oxygen family, contains three nonmetals: oxygen, sulfur, and selenium.
Elements: Nitrogen; Oxygen; Phosphorus; Selenium...
Does changing the height of point C affect the speed of the coaster car at point D?
Without friction, NO.
The speed at D depends only on the difference in height between A and D. Whatever happens between them doesn't matter.
The speed of the coaster car at point D will be affected if the height of point C is changed.
Potencial Energy:
It is the enrgy in a body due to the position of differnt part of the object or system.
As we increase the the hight of the car the potetial enrgy increase, the gravitational acceleration on car will be more due to the high of the point C.
Therefore, the speed of the coaster car at point D will be affected if the height of point C is changed.
To know more about speed of the coaster car,
https://brainly.com/question/9178285