Answer:
Every day, the chef consumes 5443.20 grams of butter, which is calculated using the conversion coefficients 16 oz/1 pound and 28.35 grams/1oz.
A restaurant chef uses 12 pounds of butter every day, as specified in the question.
We need to figure out how much butter the chef uses each day in grams.
Applying the conversion parameters provided, 16 oz/1 lb and 28.35 grams/1oz
According to the data provided, the needed solution is as follows: 12 lb 16 oz/1 lb 28.35 g/1 ounce 5443.20 grams
As a result, the chef consumes 5443.20 grams of butter every day.
Step-by-step explanation:
Brainliest pls
Halla los números desconocidos de estas operaciones
A)872+. +173=2000
B)9180:. =102
C). -99=706
Con los mismos números y las mismas operaciones podemos obtener diferentes resultados,coloca los paréntesis de manera que se obtengan los resultados indicados. A)3+5x7-2=40
B)3+5×7-2=54
C)3+5×7-2=28
ES PARA HOY PORFAVOR☹,PUEDEN HACER EN UNA HOJA O ESCRIBIR ASI PERO EXPLIQUEN BIEN!!!!!!AYUDA SI NO SABEN NO RESPONDAD
In equation A the missing number is 955, In equation B the missing number is 90 and In equation C the missing number is 805.
A) To find the missing number in the equation 872 + ? + 173 = 2000, we need to subtract 872 and 173 from 2000, which gives us:
2000 - 872 - 173 = 955
Therefore, the missing number is 955.
B) To find the missing number in the equation 9180 ÷ ? = 102, we need to divide 9180 by 102, which gives us:
9180 ÷ 102 = 90
Therefore, the missing number is 90.
C) To find the missing number in the equation ? - 99 = 706, we need to add 99 to 706, which gives us:
706 + 99 = 805
Therefore, the missing number is 805.
To obtain the indicated results with the same numbers and operations, we need to use parentheses to change the order of operations.
A) 3 + (5x7) - 2 = 40
B) (3 + 5) × 7 - 2 = 54
C) 3 + (5 × (7-2)) = 28
Equations are used extensively in various fields of science, engineering, economics, and finance, to name a few. It is formed by placing an equal sign between the two expressions. Equations are used to solve problems and find unknown values.
An equation can contain variables, constants, and mathematical operations such as addition, subtraction, multiplication, and division. The variables in an equation represent unknown values that need to be found, while the constants are known values that are already given. Solving an equation involves manipulating the expressions on both sides of the equal sign using mathematical operations to isolate the variable on one side and constants on the other. The final solution obtained is the value of the variable that satisfies the equation..
To learn more about Equation visit here:
brainly.com/question/29538993
#SPJ4
Complete Question: -
Find unknown numbers of these operations
A ) 872 +. + 173 = 2000
B ) 9180:. = 102
C ). -99 = 706
With the same numbers and the same operations we can obtain different results, place the parentheses so that the indicated results are obtained.
A ) 3 + 5 x 7-2 = 40
B ) 3 + 5 × 7-2 = 54
C ) 3 + 5 × 7-2 = 28
IT'S FOR TODAY PLEASE ☹, CAN DO IN A LEAF OR WRITE ASI BUT EXPLAIN WELL!!!!!!HELP IF THEY DON'T KNOW NO RESPOND
Select all of the following that are linear functions.
x = 5
y
-2
4
0
1
2
-2.
4
5
x + 7 = 4y
A) x = 5 is not a linear function since it is a vertical line and does not have a slope. B) The table description does not provide enough information to determine if it is a linear function. C) x + 7 = 4y is a linear function in slope-intercept form (y = (1/4)x + 7/4).
A linear function is a mathematical function that can be represented by a straight line with a constant slope. The equation of a linear function can be written in the form y = mx + b, where m is the slope of the line and b is the y-intercept (the point where the line crosses the y-axis). Option A (x = 5) is not a linear function, as it is a vertical line with an undefined slope. Option B is a linear function, as the table describes points that can be plotted to form a straight line. Option C is also a linear function, but it is in a different form (x + 7 = 4y). This equation can be rearranged to y = (1/4)x + 7/4, which is in the standard form of a linear function.
Learn more about the linear functions here: brainly.com/question/20286983
#SPJ4
Answer: C.) x + 7 = 4y and D
Step-by-step explanation: i hope this helps
why can't we use mean when a data set has one or two values that are much higher than all of the others
The reason we can't use the mean when a data set has one or two values that are much higher than all of the others is that it skews the average, making it not representative of the rest of the data.
What is the mean?The mean is a numerical measure of the central tendency of a data set. It is calculated by dividing the sum of all the values in a data set by the number of data points.
A data set is a collection of observations or measurements that are analyzed to obtain information. It can be represented graphically, in tabular form, or in any other format. The data set may be a sample or the entire population.
If a data set has one or two extremely high or low values, it can significantly impact the mean. These values are known as outliers. The outliers can cause the mean to be higher or lower than the actual middle value of the data.
Hence, in such cases, the median is a better choice for finding the central tendency of the data. The median is the middle value of the data set, and it is less affected by outliers than the mean. The mode, which is the value that occurs most frequently in the data set, is also a measure of central tendency that is less sensitive to outliers than the mean.
Learn more about mean here:
https://brainly.com/question/31101410
#SPJ11
Question 9(Multiple Choice Worth 2 points)
(Irrational Numbers LC)
Describe in words where √63 would be plotted on a number line.
O Between 3 and 4, but closer to 3
O Between 3 and 4, but closer to 4
O Between 2 and 3, but closer to 2
O Between 2 and 3, but closer to 3
For the function f(x)=x^2+4x-12 solve the following. F(x) ≤0
The solution to the inequality f(x) ≤ 0 is the interval [-6, 2]. In other words, the values of x that satisfy the inequality are those that lie between -6 and 2, inclusive.
To solve the inequality f(x) ≤ 0, we need to find the values of x for which the function f(x) is less than or equal to zero.
We start by factoring the quadratic expression f(x) = x^2 + 4x - 12:
f(x) = (x + 6)(x - 2)
Setting this expression to zero, we get:
(x + 6)(x - 2) = 0
This gives us two solutions: x = -6 and x = 2.
Now, we need to determine the sign of f(x) in the intervals between these two solutions. We can use a sign chart to do this:
x f(x)
-∞ +
-6 0
2 0
+∞ +
From the sign chart, we see that f(x) is positive for x < -6 and for x > 2, and it is negative for -6 < x < 2.
To summarize, the solution to the inequality f(x) ≤ 0 for the function f(x) = x^2 + 4x - 12 is the interval [-6, 2].
To learn more about interval
https://brainly.com/question/13708942
#SPJ4
Describe the error in finding the distance between A(6, 2) and B(1,−4)
The error is the substitution of coordinates. Coordinates are ordered pairs of points that help us locate any point in a 2D plane or 3D space.
Cartesian coordinates, also known as the coordinates of a point in a 2D plane, are two integers, or occasionally a letter and a number, that identifies a specific point's precise location on a grid. This grid is referred to as a coordinate plane.
The distance between two points A(x₁, y₁) and B(x₂, y₂) is given by
[tex]AB = \sqrt{(x_{1} , x_{2})^{2} + (y_{1} - y_{2})^{2} }[/tex]
Observe that the x-coordinate of B is subtracted from the x-coordinate of A. This goes with the y-coordinates.
Therefore, the error is the substitution of coordinates.
The correct computation is
[tex]AB = \sqrt{(6-1)^{2} + [2 - (-4)]^{2} }[/tex]
[tex]= \sqrt{5^{2} + 6^{2} }[/tex]
[tex]= \sqrt{25 + 36} \\[/tex]
[tex]= \sqrt{61}[/tex]
≈ 7.81
Learn more about the coordinates here: brainly.com/question/16634867
#SPJ4
The complete question is as follows:
Describe and correct the error in finding the distance between A(6, 2) and B(1, -4). AB = √[(6 - 2)² + {2 - (-4)}²] = √(4² + 5²) = √(16 + 25) = √41 ≈ 6.4.
5.4 ADDING A MULTIPLE OF THE ith ROW TO THE jth row. Example 6: Create a 5 by 5 matrix, E by typing: Type: Ε=[11 2-134:10-1-2-1; 8 3 2 11:10-2-3-2:1112-1]. Find det(E) by typing: Type DE =det(E)
The `det(E2) of the given matrix is equal to 366`.
Given a 5 by 5 matrix E= `[11 2 -1 -3 4;10 -1 -2 -1 -2;-1 2 3 2 1;1 1 1 -1 -1;2 -1 -2 1 1]`.
To find `det(E)`, we can use the following steps.
Step 1: Create a 5 by 5 matrix E1 by adding a multiple of the ith row to the jth row, given i = 3 and j = 5.
We need to add -1/3 times the 3rd row to the 5th row. It can be done by the following operation.`E1 = E` (start with the original matrix) `=> E1(5,:) = E(5,:) - E(3,:) / 3` (subtract the 3rd row of E divided by 3 from the 5th row of E)
This results in the matrix `E1 = [11 2 -1 -3 4;10 -1 -2 -1 -2;-1 2 3 2 1;1 1 1 -1 -1;1/3 -7/3 -7/3 7/3 4/3]
`Step 2: Create a 5 by 5 matrix E2 by adding a multiple of the ith row to the jth row, given i = 2 and j = 5.We need to add -20 times the 2nd row to the 5th row.
It can be done by the following operation.`E2 = E1` (start with the matrix from Step 1) `=> E2(5,:) = E1(5,:) - 20 * E1(2,:)` (subtract 20 times the 2nd row of E1 from the 5th row of E1)
This results in the matrix `E2 = [11 2 -1 -3 4;10 -1 -2 -1 -2;-1 2 3 2 1;1 1 1 -1 -1;0 -13 33 -13 44]
`Step 3: Find det(E2) by using the cofactor expansion along the 5th column.`det(E2) = 0 - (-13) * A1 + 33 * A2 - (-13) * A3 + 44 * A4 - 0 * A5`where A1, A2, A3, A4, and A5 are the 2 by 2 determinants of the submatrices obtained by deleting the 5th row and the ith column, for i = 1, 2, 3, 4, and 5. We can use the following notation.
A1 = det([11 -1 -3 4;10 -2 -1 -2;-1 3 2 1;]) = 324A2 = det([11 2 -3 4;10 -1 -1 -2;-1 2 2 1;]) = -54A3 = det([11 2 -1 4;10 -1 -2 -2;-1 2 3 1;]) = -142A4 = det([11 2 -1 -3;10 -1 -2 -1;-1 2 3 2;]) = 50A5 = det([11 2 -1 -3;10 -1 -2 -1;-1 2 3 2;]) = 366.
Therefore `det(E2) = 0 - (-13) * 324 + 33 * (-54) - (-13) * (-142) + 44 * 50 - 0 * 50 = 366`.
for such more questions on determinant
https://brainly.com/question/19799535
#SPJ11
The population of a slowly growing bacterial colony after t hours is given by p(t)=3t^2+24t+200. Find the growth rate after 2 hours.
The growth rate of a bacterial colony after a 2 hours is given by the derivative of its population function with respect to time is 36 .
The growth rate of a bacterial colony is given by the derivative of its population function.
Thus, we need to find the derivative of the population function p(t) with respect to time t, and then evaluate it at t = 2 to get the growth rate after 2 hours.
p(t) = 3t² + 24t + 200
Taking the derivative of p(t) with respect to t, we get:
p'(t) = 6t + 24
Now, evaluating p'(t) at t = 2, we get:
p'(2) = 6(2) + 24 = 36
Therefore, the growth rate of the bacterial colony after 2 hours is 36.
To practice more questions about the growth rate:
https://brainly.com/question/25849702
#SPJ11
What is an equation for the quadratic function represented by the table shown?
(0,-1),(2,3),(4,-1),(6,-13)
The equation of the quadratic function represented by the given table is y = -x² + 4x - 7.
What is a quadratic function?A quadratic function is a function of the form:\sf(x) = ax^2 + bx + c\swhere a, b, and c are constants and x is the parameter. The graph of a quadratic function is a parabola, which is an Inverted curve. Whether the parabola opens up (if a > 0) or down (if a 0) depends on the sign of the coefficient a.
The width of the parabola is also determined by the coefficient a. The parabola is narrow if |a| is greater than 1. (i.e. it has a small width relative to its height). The parabola is wide if |a| is greater than 1.
The standard form of the quadratic equation is given as:
y = ax² + bx + c
Substitute the value of x and y from the table:
3 = a(2)² + b(2) + c
4a + 2b + c = 3........(1)
For point (4, -1):
-1 = a(4)² + b(4) + c
16a + 4b + c = -1..........(2)
For (6, -13):
-13 = a(6)² + b(6) + c
36a + 6b + c = -13..........(3)
From 1 we have:
c = 3 - 4a - 2b
Substitute the value of c in equation 2 and 3:
16a + 4b + 3 - 4a - 2b = - 1
12a + 2b = - 4........(4)
36a + 6b + 3 - 4a - 2b = -13
32a + 4b = -16.......(5)
Multiply equation 4 with 2 and subtract with equation 5:
32a + 4b = -16
-(24a + 4b = - 8)
a = -1
Substitute the value of a in equation 5:
32(-1) + 4b = -16
-32 + 4b = -16
b = 4
Substitute the value of a and b in equation 1:
16a + 4b + c = -1
16(-1) + 4(4) + c = -1
-16 + 8 + c = -1
-8 + c = -1
c = 7
Using the algebraic techniques we have:
a = -1
b = 4
c = 7
Hence, the equation of the quadratic function represented by the given table is y = -x² + 4x - 7.
Learn more about quadratic equation here:
https://brainly.com/question/30098550
#SPJ1
smart mugs are the next generations of hot drinks dispensers tha om with built in technology to keep drinks at the perfect temperature for hours on end initial cost of a smart mug was aed 896, because of high demand in market the cost increased by 12% find the new price of the mug
PLS QUICK ITS DUE 1 HOUR!!
With a [tex]12[/tex]% price rise, the smart mug now costs AED [tex]1003.52[/tex].
Price and sell price: what are they?The sale price is the price an user pays to purchase a thing or a commodity. It is a cost that is higher than the market cost and also includes a portion of the profit. The cost price refers to the price paid by the seller for the item or service.
How would you define price?Price is the process of figuring out how much a something or service is worth. Price establishes a customer's cost, although it can or cannot be linked to the price a firm pays to manufacture a good or service.
We need to multiply the initial price by [tex]1.12[/tex] which represents a [tex]12[/tex]% increase in decimal form,
New price [tex]=[/tex] Initial price [tex]*[/tex] (1 [tex]+[/tex] Percent increase in decimal form)
New price[tex]= 896 * (1 + 0.12)[/tex]
New price [tex]= 896 * 1.12[/tex]
New price [tex]= 1003.52[/tex]
Therefore, the new price of the smart mug is AED [tex]1003.52[/tex] after a [tex]12[/tex]% increase.
To know more about price visit:
https://brainly.com/question/19091385
#SPJ1
what is this pls help
Answer:
x = 45.
Step-by-step explanation:
We know the full angle of this is 180 degrees.
Given: (2x+45) + x = 180
First, collect like terms ( in this case 2x and x, 180 and 45 )
2x + x = 180 - 45
Then calculate:
3x = 135. ( Divide both sides by 3 )
x = 45
Analyze the proportion below and complete the instructions that follow. Use a model to find the missing value in the proportion. A. 4 B. 5 C. 10 D. 22 Please select the best answer from the choices provided A B C D
Step-by-step explanation:
The area of a rectangle is 1,872 ft2. The ratio of the length to the width is 9:13. Find the perimeter of the rectangle.
176 ft
You want to make a scale drawing of your bedroom to help arrange your furniture. You decide on a scale of 3 in. = 2 ft. Your bedroom is a 12 ft by 14 ft rectangle. What should the dimensions of your drawing be?
18 in. by 21 in.
If 5/y + 7/x=24 and 12/y + 2/x=24, find the ratio of x to y.
5/7
Simplify the ratio 8ft/12in. Use the conversion 12 in. = 1 ft.
8/1
Analyze the proportion below and complete the instructions that follow.
2x+5/3 = x-5/4
-7
If a+b/2a-b = 5/4 and b/a+9 = 5/9, find the value of b.
30
Analyze the ratio below and complete the instructions that follow.
$30:$6
Simplify the ratio.
5:1
If 14/3 = x/y then 14/x =
3/y
Analyze the diagram below and complete the instructions that follow.
In the diagram, AB:BC is 3:4 and AC = 42. Find BC.
24
Analyze the diagram below and complete the instructions that follow.
If AB:BC is 3:11, solve for x.
9
If a, b, c, and d are four different numbers and the proportion a/b = c/d is true, which of the following is false?
b/a = c/d
Analyze the diagram below and complete the instructions that follow.
Find the ratio of the width to the length of the rectangle, then simplify the ratio. Use the conversion 100 cm = 1 m.
3/4
Simplify the ratio 3 gal./24 qt. Use the conversion 4 qt = 1 gal.
1/2
The area of a rectangle is 4,320 ft2. The ratio of the length to the width is 6:5. Find the length of the rectangle.
72 ft
Analyze the diagram below and complete the instructions that follow.
Given that CB/CA = DE/DF, find BA.
10.5
Analyze the proportion below and complete the instructions that follow.
2/3 = 8/x
3, 8
Analyze the diagram below and complete the instructions that follow.
Are the polygons shown here similar? Justify your answer. The images are not drawn to scale.
Yes, PQR ~TSV with a scale factor of 1:√3
All __________ are similar.
squares
Analyze the diagram below and complete the instructions that follow.
Determine which 2 triangles are similar to each other. The images are not drawn to scale.
GHI ~ JKL
Analyze the diagram below and complete the instructions that follow.
Pentagon PQRST ~ pentagon XYZVW. Find the value of b. The images are not drawn to scale.
3
Analyze the diagram below and complete the instructions that follow.
If ABC ~ XYZ, find XY. The images are not drawn to scale.
24
ABC is a right triangle. The legs of ABC are 9 ft and 12 ft. The shortest side of XYZ is 13.5 ft, and ABC ~ XYZ How long is the hypotenuse of XYZ?
22.5 ft
Choose the correct answer.
When you get the sum of a data set and divide by the number of values collected, you get the
A)quantitative data
B)qualitative data
C)median
D)mean
Consider a hash table, a hash function of key % 10. Which of the following programmer-defined constants for quadratic probing cannot be used in a quadratic probing equation? O c1 = 1 and 2 = 0 O c1 = 5 and c2 = 1 O c1 = 1 and c2 - 5 O c1 = 10 and 2
D: "[tex]c_{1} = 10[/tex] and [tex]c_{2} = 2[/tex]" are programmer-defined constants for quadratic probing that cannot be used in a quadratic probing equation. Option D is correct answer.
The quadratic probing equation is defined as:
h (k, i) = (h′(k) + [tex]c_{1}[/tex] * i + [tex]c_{2}[/tex] * i^2) mod m,
where h′(k) is the hash value of key
k and m is the size of the hash table.
The constants [tex]c_{1}[/tex] and [tex]c_{2}[/tex] are programmer-defined constants that are used to compute the new hash index when a collision occurs in the hash table.
The given hash function is h(k) = k % 10.
Therefore, the hash value of any key will be between `0` and `9`.Now, let's check which of the given programmer-defined constants for quadratic probing cannot be used in a quadratic probing equation:
Option A: `c1 = 1 and c2 = 0`This option can be used in the quadratic probing equation. It means that linear probing is being used.
Option B: [tex]c_1 = 5[/tex] and [tex]c_2 = 1[/tex] This option can be used in the quadratic probing equation. It means that the new index is being computed as `h(k, i) = (h′(k) + 5i + i^2) mod m`.
Option C: [tex]c_1 = 1[/tex] and [tex]c_2 = 5[/tex] This option can be used in the quadratic probing equation. It means that the new index is being computed as `h(k, i) = (h′(k) + i + 5i^2) mod m`.
Option D: [tex]c_1 = 10[/tex] and [tex]c_2 = 2[/tex] This option cannot be used in the quadratic probing equation. It means that the new index is being computed as `h(k, i) = (h′(k) + 10i + 2i^2) mod m`.
Since [tex]c_{1}[/tex] is greater than or equal to `m`, this equation will always result in a hash index that is greater than or equal to `m`. Therefore, it is not possible to use `[tex]c_{1}[/tex]= 10` in the quadratic probing equation. Hence, the correct option is D.
You can learn more about quadratic probing equation at
https://brainly.com/question/30033698
#SPJ11
a 3-digit pin number is selected. what it the probability that there are no repeated digits? the probability that no numbers are repeated is
The probability that no numbers are repeated = [tex]\frac{720}{1000}=0.72[/tex]
The probability that there are no repeated digits in a 3-digit pin number is 0.72.
Formula used:
[tex]P(n,r)=\frac{n!}{(n-r)!}\\ Probability=\frac{Number of favourable outcomes}{Total number of events in the samples pace}[/tex]
There are 10 digits (0,1,2,3,4,5,6,7,8,9) to choose from.
Therefore, the total number of possible 3-digit pin numbers with no repeated digits is
[tex]P(10,3)=\frac{10!}{(10-3)!}\\P(10,3)= \frac{10!}{7!}\\P(10,3)=720[/tex]
The total number of possible 3-digit pin numbers [tex]= 10 * 10 * 10 = 1000[/tex].
Thus, the probability that no numbers are repeated = [tex]\frac{720}{1000}=0.72[/tex]
Therefore, the probability that there are no repeated digits in a 3-digit pin number is 0.72.
Learn more about probability below
https://brainly.com/question/13604758
Jerry, Jack and Sophie are all hoping to save money! Jerry thinks saving money in a shoe box in his closet every month is a good idea. He decides to start with $125, and then save $50 each month. Jack was given $3520 from his Grandma, and decides to put the money
into an account that has a 6.5% interest rate that is compounded annually. Sophie has earned $3500 working at the movie theater decides to put her money in the bank in an account that has a 7.05% interest rate that is compounded continuously
Part 1: Describe the type of equation that models Jerry’s situation. Create that equation of Jerry’s situation. Using the equation you created, how much money will be in Jerry’s account after 3 years? 10 years?
Think: What do I know and what does it mean? What plan am I going to try?
PLEASE HELP!!!!!
Jerry will have $1825 in his account after 3 years and Jerry will have $6125 in his account after 10 year when compounded.
What is simple interest?Simple interest is computed just using the principle, which is the initial sum borrowed or put into an investment. The interest rate is constant throughout time and solely applies to the principal sum. Short-term loans or investments frequently employ simple interest.
The given situation can be modeled as a linear equation given by:
y = mx + c
For Jerry we have:
y = 50x + 125
For 3 years = 36 months we can substitute x = 36:
y = 50(36) + 125
y = 1825
For x = 10:
y = 50(120) + 125
y = 6125
Hence, Jerry will have $1825 in his account after 3 years and Jerry will have $6125 in his account after 10 year.
Learn more about simple interest here:
https://brainly.com/question/30824126
#SPJ1
Help due soon !!!!!!!!!
An expression for the length of the rectangle in terms of A is [tex]$\boxed{L=x+5}$[/tex]
How to find the expression?We are given that the area of a rectangle is [tex]$A=x^2+x-15$[/tex], and we want to find an expression for the length of the rectangle in terms of A.
Recall that the area of a rectangle is given by the formula: [tex]$A=L\cdot W$[/tex], where L is the length and W is the width. We can use this formula to write L in terms of A and W as [tex]$L=\frac{A}{W}$[/tex].
We know that the rectangle has a length and a width, so we need to find an expression for the width W in terms of A. We can rearrange the given formula for A to solve for W:
[tex]&& \text{(substitute }L=x+5\text{)}[/tex]
[tex]W&=\frac{x^2+x-15}{x+5} && \text{(divide both sides by }x+5\text{)}[/tex]
Now that we have an expression for W in terms of A, we can substitute it into our expression for L to get:
[tex]L&=\frac{A}{W}[/tex]
[tex]&=\frac{x^2+x-15}{\frac{x^2+x-15}{x+5}} && \text{(substitute the expression we found for }W\text{)}\&=x+5[/tex]
Therefore, an expression for the length of the rectangle in terms of A is [tex]$\boxed{L=x+5}$[/tex]
To know more about rectangle visit:
https://brainly.com/question/29123947
#SPJ1
LMN is a straight angle. Find m LMP and m NMP
From the given information provided, the value of angle LMP and angle NMP is 77 and 103 degrees respectively.
Since LMN is a straight angle, it measures 180 degrees.
We are given the measures of LMP and NMP, and we are told that LMP + NMP = LMN. Therefore, we can set up an equation:
LMP + NMP = LMN
(-16x + 13) + (-20x + 23) = 180
Simplifying and solving for x, we get:
-36x + 36 = 180
-36x = 144
x = -4
Now that we have found the value of x, we can substitute it back into the expressions for LMP and NMP to find their measures:
LMP = -16x + 13 = -16(-4) + 13 = 77 degrees
NMP = -20x + 23 = -20(-4) + 23 = 103 degrees
Therefore, the measures of LMP and NMP are 77 degrees and 103 degrees, respectively, and the measure of LMN is 180 degrees.
Question - LMN is a straight angle. LMP = -16x + 13 NMP = -20x + 23 LMP + NMP = LMN What are the measures?
Learn more about angle here: brainly.com/question/25770607
#SPJ4
Subtract the given equation
3x-(4x-11)
Answer:
3x - (4x - 11) = 3x - 4x + 11 = -x + 11
Step-by-step explanation:
Determine whether the statement is true or false. If it is false, rewrite it as a true statement. A sampling distribution is normal only if the population is normal. Choose the correct answer below. A. The statement is true. B. The statement is false. A sampling distribution is normal only if n≥30. C. The statement is false. A sampling distribution is normal if either n≥30 or the population. D. The statement is false. A sampling distribution is never normal.
A sampling distribution is normal only if the population is normal. This statement is false because A sampling distribution is normal only if n≥30.
If the underlying population is normally distributed, the sampling distribution (such as the sample mean distribution, also known as the xbar distribution) is also normally distributed. Even though the population is not normally distributed, the x(bar) distribution is approximately normal if n > 30, due to the central limit theorem. Some textbooks may use values above 30, but after a certain threshold the x(bar) distribution is effectively "normal".
Option B is close, but misses the normal population part. n > 30 is not necessary if we know the population is normal.
A sampling distribution is the probability distribution of a statistic obtained from a large number of samples drawn from a particular population. The sampling distribution for a given population is the frequency distribution of a range of different outcomes that can occur in the population.
In statistics, a population is the entire basin from which a statistical sample is drawn. A population can refer to an entire population of people, objects, events, hospital visits, or measurements. Thus, a population can be said to be a global observation of subjects grouped by common characteristics.
Learn more about Population:
https://brainly.com/question/29117685
#SPJ4
PLEASE HELP!!! WILL MARK BRANLIEST!!!
Answer:
The point z = 3+4i is plotted as a blue dot, and the two square roots are plotted as a red dot and a green dot. The magnitudes of z and its square roots are shown by the radii of the circles centered at the origin.
Step-by-step explanation:
qrt(z) = +/- sqrt(r) * [cos(theta/2) + i sin(theta/2)]
where r = |z| = magnitude of z and theta = arg(z) = argument of z.
Calculate the magnitude of z:
|r| = sqrt((3)^2 + (4)^2) = 5
And the argument of z:
theta = arctan(4/3) = 0.93 radians
Now, find the two square roots of z:
sqrt(z) = +/- sqrt(5) * [cos(0.93/2) + i sin(0.93/2)]
= +/- 1.58 * [cos(0.47) + i sin(0.47)]
= +/- 1.58 * [0.89 + i*0.46]
Using a calculator, simplify this expression to:
sqrt(z) = +/- 1.41 + i1.41 or +/- 0.2 + i2.8
Given the triangle, find the length of X. Give your answer in simpliest radical form.
Answer:
x = 4[tex]\sqrt{2}[/tex]
Step-by-step explanation:
using the cosine ratio in the lower right triangle and the exact value
cos45° = [tex]\frac{1}{\sqrt{2} } }[/tex] , then
cos45° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{4}{x}[/tex] = [tex]\frac{1}{\sqrt{2} }[/tex] ( cross- multiply )
x = 4[tex]\sqrt{2}[/tex]
Determine the force in each member of the truss with the method of joints and state if the
members are in tension (T) or compression (C). Set d = 1 m and P = 10 kN. (Hint: Look for zero-
force members to simplify the calculations)
if the members are in tension or compression. Identify all zero force members: Likewise, we can find the reaction force at A by taking minutes about point A: RA x 8m - 5kN x 8m - 5kN x 8m = 0 RA = 5kN
To begin with, we really want to find the reaction forces at An and G.
We can do this by taking minutes about point G.
We realize that the amount of minutes at any point is zero when the framework is in equilibrium.
Consequently, we can compose: 5kN x 8m - RA x 10m = 0 RA = 4kN
Likewise, we can find the reaction force at A by taking minutes about point A: RA x 8m - 5kN x 8m - 5kN x 8m = 0 RA = 5kN
Since we have two distinct qualities for RA, we can presume that the framework isn't in equilibrium.
This really intends that there should be some outside force following up on the framework.
The two obscure forces are at first thought to be ductile (for example pulling away from the joint). In the event that this underlying supposition is mistaken, the registered upsides of the pivotal forces will be negative, meaning pressure.
to know more about forces click here:
https://brainly.com/question/30284058
#SPJ4
the complete question is:
Question l Find the forces in members HE; FH, FE; and FC of the truss as shown in Figure Q1. State if the members are in tension or compression. Identify all zero force members: (10 marks) 8 m 5 KN 8 m 8 m 5 KN 8 m 10 m Figure Q1.
find the values of a and b such that
x^2- +5=(x-a)^2+b
The value οf a = 1/2 and b = 19/4 in the equatiοn x² - x + 5 = (x-a)² + b.
What dο yοu mean by algebra?The part οf mathematics in which letters and οther general symbοls are used tο represent numbers and quantities in fοrmulae and equatiοn is called algebra.
x² - x + 5 = (x-a)² + b
x² - x + 5 = x² + a² - 2xa + b
-x + 5 = -2xa + a² + b
By matching cοrrespοnding terms,
2a = 1 and a²+ b = 5
a= 1/2 and a²+ b = 5
Substituting value οf "a"
(1/2)² + b = 5
1/4 + b = 5
b = 5- 1/4
b = 19/4
Thus, a = 1/2 and b = 19/4.
To learn more about algebra, click on the link given below
https://brainly.com/question/22399890
#SPJ1
Sophie invested $92,000 in an account paying an interest rate of 6 1/8% compounded
continuously. Damian invested $92,000 in an account paying an interest rate of 6 5/8%
compounded monthly. After 14 years, how much more money would Damian have in
his account than Sophie, to the nearest dollar?
Answer:
Step-by-step explanation:
To solve this problem, we need to use the formula for compound interest:
A = P*e^(rt)
where A is the final amount, P is the principal (initial investment), e is the base of the natural logarithm (approximately 2.71828), r is the interest rate (expressed as a decimal), and t is the time (in years).
For Sophie's account, we have:
P = $92,000
r = 6 1/8% = 0.06125 (as a decimal)
t = 14 years
A = 92000*e^(0.06125*14)
A = $219,499.70 (rounded to the nearest cent)
For Damian's account, we have:
P = $92,000
r = 6 5/8% = 0.06625/12 = 0.005521 (as a monthly decimal rate)
t = 14*12 = 168 months
A = 92000*(1+0.005521)^168
A = $288,947.46 (rounded to the nearest cent)
Now we can subtract Sophie's final amount from Damian's final amount to find the difference:
Difference = $288,947.46 - $219,499.70
Difference = $69,447.76
Therefore, Damian would have about $69,448 more in his account than Sophie, to the nearest dollar.
PLEASE HURRY!!!!!!!!!!!!
Graph the solution to this inequality on the number line.
−5+x≥−3
Answer: 2
Step-by-step explanation:
To graph the solution to the inequality -5 + x ≥ -3 on the number line, we first need to isolate x.
Adding 5 to both sides of the inequality, we get:
x ≥ 2
This means that any value of x greater than or equal to 2 will satisfy the inequality. To graph this solution on a number line, we draw a closed circle at the point 2 and shade all the points to the right of 2, including the point 2 itself.
The resulting graph looks like this:
------•-------------------------------->
2
The shaded region on the right of 2 represents all the values of x that make the inequality true.
A photograph of sides 35cm by 22cm is mounted onto a frame of external dimension 45cm by 30cm.Find the area of the border surrounding the photograph
Dimension of photograph is 35cm and 22cm.
And external dimension of photo frame is 45cm and 30cm
So, the area of the border surrounding the photograph=Area of photo frame−Area of photo.
So, The area of the border surrounding the photograph [tex]=45\times30-35\times22[/tex]
[tex]=1350-770=580cm^2[/tex]
What will be the exponent of the product of 8.9 x 1012 and 4.7 x 10-2 in Scientific Notation?
the exponent of the product of 8.9 x 10¹² and 4.7 x 10⁻² in scientific notation is 11.
define exponentialExponential refers to a mathematical function or relationship in which a variable (such as x) is raised to a constant power (such as 2, 3, or e) to produce a result. The term "exponential" can also be used more broadly to describe any situation in which something grows or changes at an increasingly rapid rate over time, often with a compounding effect.
First, we multiply the two numbers:
(8.9 x 10¹²) x (4.7 x 10⁻²) = 41.83 x 10¹⁰
41.83 x 10¹⁰ = 4.183 x 10¹¹
Therefore, the exponent of the product of 8.9 x 10¹²and 4.7 x 10⁻² in scientific notation is 11.
To Know more about variables, visit:
https://brainly.com/question/17344045
#SPJ1
Let X be a random variable with the probability mass function (PMF) given below (figure not drawn to scale), where a=0, b=0.23, c=0.13, d=0.10, e=0.15. a. Find the cumulative distributive function (CDF) Fx(3). Round answer to two decimal points.
The cumulative distributive function (CDF) Fx(3) is 0.61.
The cumulative distributive function (CDF) of a random variable X is the probability that X takes a value less than or equal to x. In this case, we are asked to find Fx(3).
Since the random variable X is given with a probability mass function, we can calculate the CDF by summing the probabilities of X being less than or equal to 3. This can be expressed as: [tex]Fx(3) = P(X<=3).[/tex]
For X = 0, P(X<=3) = 0.23.
For X = 1, P(X<=3) = 0.23 + 0.13 = 0.36.
For X = 2, P(X<=3) = 0.23 + 0.13 + 0.10 = 0.46.
For X = 3, P(X<=3) = 0.23 + 0.13 + 0.10 + 0.15 = 0.61.
Therefore, the cumulative distributive function (CDF) Fx(3) is 0.61.
for such more questions on cumulative distributive function
https://brainly.com/question/28197165
#SPJ11
PLEASE HELP ME QUICKLY!
Step-by-step explanation:
it would mean that she made 53 batches of soap and 4 batches of lotion.
now, is it a solution ?
then both inequalities must be true with these values.
5×53 + 15×4 <= 325
265 + 60 <= 325
325 <= 325 correct
20×53 + 35×4 <= 1200
remember, 1 hour = 60 minutes.
1060 + 140 <= 1200
1200 <= 1200 correct
so, (53, 4) is the intersection point of both limit lines. and it is as such an extreme point and optimum.