Answer:
answer= 73.1256 [tex]i[/tex]
Explanation:
The electric charge linear density is equal to 8.8 x[tex]10^{-9}[/tex]
the length of the string is 3.1m
The magnitude of the electric field at the length of the string equal to 5.2 meters can be calculated with the formula ;
- E = λ / 4πε₀ [ [tex]l[/tex] / α ( α +
Solution:
E = 8.8 x[tex]10^{-9}[/tex] / 4πε₀ [ 3.1/ 5.2( 5.2 + 3.1) ] [tex]i[/tex]
= 1018.0995 [0.07183] [tex]i[/tex]
= 73.1256 [tex]i[/tex]
Question 1 (2 points)
(01.01 LC)
Which of the following is a characteristic of science? (2 points)
QU
Reproducible by other scientists
Ob
The personal opinion of the scientist
С
Using variable conditions for each test
d
Including only the data that supports a hypothesis
Answer:
Reproducible by other scientists
Explanation:
I just took the test
Consider a block on a spring oscillating on a frictionless surface. The amplitude of the oscillation is 11 cm, and the speed of the block as it passes through the equilibrium position is 62 cm/s. What is the angular frequency of the block's motion
Answer:
The angular frequency of the block is ω = 5.64 rad/s
Explanation:
The speed of the block v = rω where r = amplitude of the oscillation and ω = angular frequency of the oscillation.
Now ω = v/r since v = speed of the block = 62 cm/s and r = the amplitude of the oscillation = 11 cm.
The angular frequency of the oscillation ω is
ω = v/r
ω = 62 cm/s ÷ 11 cm
ω = 5.64 rad/s
So, the angular frequency of the block is ω = 5.64 rad/s
Each corner of a right-angled triangle is occupied by identical point charges "A", "B", and "C" respectively. Draw a sketch of this arrangement. "A" exerts force F on "B". An equal force F is exerted by "C" on "B" (/_ ABC= 90 degrees). Determine an expression for the net force on "B".
Answer:
Fnet = F√2
Fnet = kq²/r² √2
Explanation:
A exerts a force F on B, and C exerts an equal force F on B perpendicular to that. The net force can be found with Pythagorean theorem:
Fnet = √(F² + F²)
Fnet = F√2
The force between two charges particles is:
F = k q₁ q₂ / r²
where
k is Coulomb's constant, q₁ and q₂ are the charges, and r is the distance between the charges.
If we say the charge of each particle is q, then:
F = kq²/r²
Substituting:
Fnet = kq²/r² √2
What is the approximate pressure of a storage cylinder of recovered r-410a that does not contain any non-condensable impurities and is stored in a room where the temperature is 80°f?
Answer:
173psig
Explanation:
The storage cylinder of recovered R-410A is mixture of difluoromethane and pentafluoroethane which is used as a refrigerant in air conditioning application. The refrigeration sector has low temperatures for installation. The pressure of cylinder at 80 F will be 173 psig. The pure refrigerants have inside a container have saturation temperature which is equal to ambient temperature.
A containment canister of recovered r-410a has an estimated pressure of 173psig.
The retrieved R-410A preservation container is a blend of difluoromethane and pentafluoroethane, that is used as a compressor in air conditioning systems.
Assembly conditions in the freezer industry are extremely low. At 80 degrees Fahrenheit, the cylinder pressure will be 173 pounds per square inch.
The specific heat capacity of pure refrigeration systems within a cylinder is the same as the room temperature.
Learn more:
https://brainly.com/question/5793747?referrer=searchResults
A central air-conditioner uses 3500W of electricity. If electricity costs $0.087/kW*h. calculate how much it would cost to operate the air-conditioner 24 hours a day for 4 months (120 days).
Answer:
$876.96
Explanation:
The energy used is:
3500 W × (24 hr/day) × (120 day) × (1 kW / 1000 W) = 10,080 kWh.
So the cost is:
10,080 kWh × ($0.087 / kWh) = $876.96
The length and breadth of rectangular sheet of metal are 4.234m, 1.005,
and 2.01cm respectively.
Give the area and volume of sheet to correct significant figures..
Answer:
The area of the sheet of metal = 4.255 m²
The volume of the sheet of metal = 0.08553 m³
Explanation:
The area of a rectangle is given by the following relation;
Area, A = Length × Breadth
Therefore, the area of the rectangular sheet of metal, A[tex]_m[/tex], is given as follows;
A[tex]_m[/tex] = 4.234 m × 1.005 m = 4.255 m²
The area of the sheet of metal = 4.255 m²
The volume of the metal sheet id given by the relation, volume V[tex]_m[/tex]= area × Thickness
The thickness of the sheet of metal = 2.01 cm = 0.0201 m
Therefore,
V[tex]_m[/tex] = 4.255 m × 0.0201 m = 0.08553 m³
The volume of the sheet of metal = 0.08553 m³.
Answer:
Are yarr mei bhi Indian hu.....
Explanation:
Tumse milkar accha laga
within a conventional light bulb, which of the following would not be considered a state of matter
a. the glass shell of the bulb
b. the metal base of the bulb
c. the air inside the bulb
d. the light from the bulb
Answer:
D
Explanation:
because light has no space nor mass
Why is it important to wear loose-fitting clothing when exercising?
It isn't best to wear loose fitting clothing when exercising, as you may not feel too comfortable. It depends on the person. However there are a few advantages.
• Tight clothing may not be comfortable as well
• Looser clothing allows easy evaporation of sweat
Then again when it says " loose - fitting " it may mean not too baggy. Baggy clothing can have an impact on your physical activity.
Answer All of the above
For people on a p e x
( TRUE false )
1.)manuals are the organic matter.
2.)combine is used for sowing the seeds.
3.) the first agricultural task is sowing of seeds.
4.) many plants are first grown in Kinder Gardens and then sown in fields.
5.) earthworm are farmer friendly.
6.)substance that kills
pests are called weedicides.
7.) animals which provide us both egg and flesh are called milch animals.
8.) Grains should be dried in Sun before storage.
9.)wheat,gram,barley,potato, are kharif crops.
10.) the crops on in June /July and harvested in September/ October are called rabi crops.
plz answerzz fast
Answer:
number 6 is wrong
the answer is pesticides
2.combines are used for harvesting or threshing.so number 2 is wrong
at least you tried
Explanation:
there is no such thing as weedicides
Answer:
1. True
2.True
3.False
4. True
5. True
6.False
7.False
8.True
9.False
10.False
Question is on the picture. Answers: A. 0.1 J/g*C B. 0.2 J/g*C C. 0.4 J/g*C D. 4 J/g*C
Answer:
B. 0.2 J/g/°C
Explanation:
The solid phase is the first segment (from 0°C to 50°C).
q = mCΔT
200 J = (20 g) C (50°C)
C = 0.2 J/g/°C
A projectile has a range of 60 m and can reach a maximum height of 15 m. Calculate the angle at which projectile is fired? ( g = 10m/s2 )
Answer:
The angle the projectile was fired is [tex]45^o[/tex]
Explanation:
Recall the formulas for maximum height and ranges for a projectile fired with initial velocity "v" at an angle [tex]\theta[/tex]:
[tex]h = \frac{v^2\,sin^2(\theta)}{2\,g}\\R=\frac{v^2\,sin(2\,\theta)}{g}[/tex]
we can use them to solve for the angle by first isolating the value [tex]v^2[/tex] which is common in both equations:
[tex]v^2=2\,h\,g/sin^2(\theta)=2\,(15)\,g/sin^2(\theta)=30\,(g)/sin^2(\theta) \\ \\v^2=R\,g/sin(2\,\theta)=60\,(g)/sin(2\,\theta)[/tex]
and now, making those to expressions equal and using the formula for the sine of a double angle, we get:
[tex]\frac{30\,(9.8)}{sin^2(\theta)} =\frac{60\,(g)}{sin(2\,\theta)} \\30\,(g)\,sin(2\,\theta)=60\,(g)\,sin^2(\theta)\\sin(2\,\theta)=2\,sin^2(\theta)\\2\,sin(\theta)\,cos(\theta)=2\,sin(\theta)\,sin(\theta)\\cos(\theta)=sin(\theta)[/tex]
This happens when [tex]\theta=45^o[/tex]
write down the reading shown on the instrument above in units of the instrument
Answer:
The reading of the vernier calliper is 3.93 mm
Explanation:
The given instrument is a micrometer screw gauge that has a main scale reading and a vernier scale reading
The the question, we have;
The individual divisions of the main scale = 0.5 mm
The reading on the main scale = 3.5 mm
The reading on the vernier scale = 43
The accuracy of the vernier caliper = 0.01
Reading on the vernier scale multiplied by the accuracy of the vernier caliper = 43 × 0.01 = 0.43 mm
The reading of the micrometer screw gauge = The reading on the main scale + Reading on the vernier scale multiplied by the accuracy of the vernier caliper
Therefore, the reading of the micrometer screw gauge = 3.5 + 0.43= 3.93 mm
The reading of the vernier calliper = 3.93 mm.
Students create a standing wave
with three loops on a slinky 3.75 m
long. They time 20 oscillations in
6.73 s. What is the wavelength of
the standing wave?
(Unit = m)
Explanation:
Given that,
Number of loops are 3
Length of slinky is 3.75 m
They time 20 oscillations in 6.73 s.
We need to find the wavelength of the standing wave.
For 3 loops, [tex]L=\dfrac{3\lambda}{2}[/tex]
Here, [tex]\lambda[/tex] is the wavelength of the standing wave
So,
[tex]\lambda=\dfrac{2L}{3}\\\\\lambda=\dfrac{2\times 3.75}{3}\\\\\lambda=2.5\ m[/tex]
So, the wavelength of the standing wave is 2.5 m.
As a way of determining the inductance of a coil used in a research project, a student first connects the coil to a 5.62 V battery and measures a current of 0.698 A. The student then connects the coil to a 35.1 V(rms), 93.1 Hz generator and measures an rms current of 0.36 A. What is the inductance
Answer:
Its inductance L = 166 mH
Explanation:
Since a current, I = 0.698 A is obtained when a voltage , V = 5.62 V is applied, the resistance of the coil is gotten from V = IR
R = V/I = 5.62/0.698 = 8.052 Ω
Since we have a current of I' = 0.36 A (rms) when a voltage of V' = 35.1 V (rms) is applied, the impedance Z of the coil is gotten from
V₀' = I₀'Z where V₀ = maximum voltage = √2V' and I₀ = maximum current = √2I'
Z = V'/I' = √2 × 35.1 V/√2 × 0.36 V = 97.5 Ω
WE now find the reactance X of the coil from
Z² = X² + R²
X = √(Z² - R²)
= √(97.5² - 8.05²)
= √(9506.25 - 64.8025)
= √9441.4475
= 97.17 Ω
Now, the reactance X = 2πfL where f = frequency of generator = 93.1 Hz and L = inductance of coil.
L = X/2πf
= 97.17/2π(93.1 Hz)
= 97.17 Ω/584.965 rad/s
= 0.166 H
= 166 mH
Its inductance L = 166 mH
a rock with mass of 5kg is carried up a small hill 10 meters high. how much work had to be done in carrying the rock up hill
Answer:
490Nm
Explanation:
Given the following :
Mass of rock = 5kg
Height or distance = 10 meters
A rock with mass of 5kg is carried up a small hill 10 meters high. how much work had to be done in carrying the rock up hill?
Workdone is product of force and distance.
Workdone = force * distance
Recall :
Force = mass * acceleration due to gravity (g)
g = 9.8m/s^2
Force = 5 * 9.8 = 49 N
Therefore,
Workdone = 49 × 10 = 490Nm
Mr. Franklin uses a machine that has an efficiency of 80%. The machine applies a force of 800 N through a distance of 20 m. Mr. Franklin applies a force of 50 N on the machine. Through what distance does Mr. Franklin apply the force? 4 m 16 m 260 m 400 m
Answer:
The distance Mr Franklin applied the force is 400 m
Explanation:
The efficiency of the machine = 80%
The force applied by the machine = 800 N
The distance over which the force is applied by the machine = 20 m
The force applied by Mr. Franklin = 50 N
The work done by the machine = 800 × 20 = 16000 J
The ideal work at 100% efficiency = X
80% of X = 16000 J
X = 16000 N/0.8 = 20,000 J
Therefore, we have have;
Work = Force × Distance;
20,000 J = 50 N × Distance Mr Franklin applied the force
Distance Mr Franklin applied the force = 20,000 J/(50 N) = 400 m
The distance Mr Franklin applied the force = 400 m.
Answer:
the awnser in 400m
Explanation:
did the test on edge 2020 and got it right
ASAP TWENTY POINTS What type of image is formed by a mirror if m = -0.4?
Answer:
OPTION (C)
Explanation:
m(magnification) = -0.4 means a real, inverted and diminished image is formed in front of the mirror.
numeria
problems
lifted
Joy
1
لوووو
G. Solue the
following
A load
800 Nis
effort
If
the load is
laced at
a distance
Lo cun from
achat will be the
effort distance ?
Solher load ( l = 8oon
Effort
(e) = 200N
the fularum,
Answer:
[tex] \boxed{40 \: cm}[/tex]Explanation:
Load ( L ) = 800 N
Effort ( E ) = 200 N
Load distance ( LD ) = 10 cm
Effort distance ( ED ) = ?
now, Let's find the effort distance:
[tex] \mathsf{L \times LD = E \times ED}[/tex]
Plug the values
[tex] \mathsf{800 \times 10 = 200 \times ED}[/tex]
Multiply the numbers
[tex] \mathsf{8000 = 200 \: ED}[/tex]
Swipe the sides of the equation
[tex] \mathsf{200 \: ED = 8000}[/tex]
Divide both sides of the equation by 200
[tex] \mathsf{ \frac{200 \: ED }{200} = \frac{8000}{200} }[/tex]
Calculate
[tex] \mathsf{ED \: = \: 40 \: cm}[/tex]
Hope I helped!
Best regards!
Most cars have a coolant reservoir to catch radiator fluid that may overflow when the engine is hot. A radiator is made of copper and is filled to its 21.1 L capacity when at 12.2°C. What volume of radiator fluid (in L) will overflow when the radiator and fluid reach a temperature of 95.0°C, given that the fluid's volume coefficient of expansion is β = 400 ✕ 10−6/°C? (Your answer will be a conservative estimate, as most car radiators have operating temperatures greater than 95.0°C).
Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
Which type of energy is produced
by vibrations traveling in waves?
A. chemical energy
B. nuclear energy
C. sound energy
Answer:
C. sound energy
Explanation:
hope this helps
An archer shoots an arrow in the air, horizontally. However, after moving some
distance, the arrow falls to the ground. Name and define the initial force that sets
the arrow in motion. Explain why the arrow ultimately falls down.
Answer:
The name of the force is elastic (spring) force
Explanation:
The elastic force which is the restoration force of an elastic (spring like) object that tries to return to its initial non-stretched state built up by the pulling of the bow by the archer (using the muscles) pushes on the arrow which the archer releases the same time he leaves the bow string, and the arrow flies in the direction already pointed by the archer
The arrow ultimately falls down due to gravity forces that acts on all objects within the Earths gravitational field. However due to the speed of constant horizontal speed of the arrow and increasing downward speed of the due to the gravity force, the falling of the arrow looks disappointing.
URGENT!! Look at attached image to see question.
Explanation:
The answer is option B
The number of reactant molecules and product molecules is even.
White light is spread out into its spectral components by a diffraction grating. If the grating has 1,970 grooves per centimeter, at what angle (in degrees) does red light of wavelength 640 nm appear in first order? (Assume that the light is incident normally on the gratings.)
Answer;
7.238°
Explanation
From question we know that the grating has 1,970 grooves per centimeter, we can convert to from (cm) to (nm) for unit consistency
The slit separation is expressed below
d=1cm/1970
d=0.0005076
=5076nm
Then the angle (in degrees) that the red light of wavelength 640 nm appear in first order can be calculated using expression below
Sin(x)= mλ/d
Where λ= wavelength=640 nm
d=slit separation
Sin(x)= mλ/d
Sin(x)=(1×640)/5076
=0.126
sin-1(0.126)
X= 7.238°
Therefore,the angle (in degrees) that the red light of wavelength 640 nm appear in first order is 7.238°
How does the athlete, in your sport, control their speed?
Answer:
What separates athletes from their competitors is the word itself, separation — gaining it on the offensive side, or taking it away on the defensive side (There are exceptions of course, one being the contest of offensive linemen and defensive linemen in football where the inverse is true). Speed, strength, and power are great ways to create separation in sports. However, speed, strength, and power all have genetic ceilings
a body weighs 100newtons and 80newtons when submerged in water.calculate the upthrust action on the body
Answer:
20 N
Explanation:
In air, the normal force is equal to the weight.
∑F = ma
N − mg = 0
N = mg
Submerged in water, the normal force is equal to the weight minus the buoyant force:
∑F = ma
B + N − mg = 0
N = mg − B
Plugging in values:
80 N = 100 N − B
B = 20 N
A rock is thrown at a window that is located 16.0 m above the ground. The rock is thrown from the ground at an angle of 40.0° above horizontal with an initial speed of 30.0 m/s and experiences no appreciable air resistance. If the rock strikes the window on its upward trajectory, from what horizontal distance from the window was it released?
Answer:
x = 27.3 m
Explanation:
This is a projectile launching exercise, let's start by looking for the time it takes for the rock to reach the height of the window.
Let's use trigonometry to find the velocities of the rock
sin 40 = [tex]v_{oy}[/tex] / v
cos 40 = v₀ₓ / v
v_{oy}= v sin 40
v₀ₓ = v cos 40
v_{oy} = 30 sin 40 = 19.28 m / s
v₀ₓ = v cos 40
v₀ₓ = 30 cos 40 = 22.98 m / s
we look for the time
[tex]v_{y}^2[/tex] = v_{oy}^2 - 2 g y
v_{y}^2 = 19.28 2 - 2 9.8 16 = 371.71 - 313.6 = 58.118
v_{y} = 7.623 m / s
we calculate the time
v_{y} = v_{oy} - gt
t = (v_{oy} - v_{y}) / g
t = (19.28 -7.623) / 9.8
t = 1,189 s
since the time is the same for both movements let's use this time to find the horizontal distance
x = v₀ₓ t
x = 22.98 1,189
x = 27.3 m
How is speed calculated? multiply velocity by displacement divide velocity by displacement multiply distance by time divide distance by time
Answer:
[tex]\huge\boxed{Divide\ distance \ by \ time}[/tex]
Explanation:
Speed = Distance / Time
So, to find distance, we actually divide distance by rime.
Answer:
[tex]\large \boxed{\mathrm{divide \ distance \ by \ time}}[/tex]
Explanation:
Using the formula to calculate speed:
[tex]\displaystyle \sf speed =\frac{distance}{time}[/tex]
We divide the distance by the time taken to get the average speed.
-
Speed is a scalar, a quantity that is
described by
alone.
Answer:
True
Explanation:
Thats is true since it cannot be a vector because speed only gives a magnitude, not a direction as well.
A vertical cylinder with a heavy piston contains air at 300 K. The initial pressure is 2.0 x 105 Pa and the initial volume is 0.35 m3 . Take the molar mass of air as 28.9 g/mol and assume Cv= 5 2R. (A) Find the specific heat of air at constant volume in units of J kg·K . (5 pts) (B) Calculate the mass of air in the cylinder. (5 pts) (C) Suppose the piston is fixed. Find the energy input required to raise the temperature to 700 K. (5 pts). (D) Assume again the conditions of the initial state and assume the piston is free to move. Find the energy input to raise the temperature to 700 K. (10 pts)
Find answers and explanations in the attachments
Answer:
Explanation:
) (C) Suppose the piston is fixed. Find the energy input required to raise the temperature to 700 K.
Atoms of the same element will always have the same number of Question Blank but will have different numbers of Question Blank if their mass numbers are different.
Answer:
proton and neutron respectively.
Explanation:
Atoms of the same element will always have the same number of proton but will have different numbers of neutron if their mass numbers are different.