A charge Q exerts a 1.2 N force on another charge q. If the distance between the charges is doubled, what is the magnitude of the force exerted on Q by q

Answers

Answer 1

Answer:

0.3 N

Explanation:

Electromagnetic force is F= Kq1q2/r^2, where r is the distance between charges. If r is doubled then the force will be 1/4F which is 0.3 N.

Answer 2

The magnitude of the force exerted on Q by q when the distance between them is doubled is 0.3 N

Coulomb's law equation

F = Kq₁q₂ / r²

Where

F is the force of attraction K is the electrical constant q₁ and q₂ are two point charges r is the distance apart

Data obtained from the question Initial distance apart (r₁) =  rInitial force (F₁) = 1.2 NFinal distance apart (r₂) = 2rFinal force (F₂) =?

How to determine the final force

From Coulomb's law,

F = Kq₁q₂ / r²

Cross multiply

Fr² = Kq₁q₂

Kq₁q₂ = constant

F₁r₁² = F₂r₂²

With the above formula, we can obtain the final force as follow:

F₁r₁² = F₂r₂²

1.2 × r² = F₂ × (2r)²

1.2r² = F₂ × 4r²

Divide both side by 4r²

F₂ = 1.2r² / 4r²

F₂ = 0.3 N

Learn more about Coulomb's law:

https://brainly.com/question/506926


Related Questions

It takes the elevator in a skyscraper 4.0 s to reach its cruising speed of 10 m/s. A 60 kg passenger gets aboard on the ground floor.
1. What is the passenger's apparent weight before the elevator starts moving?
2. What is the passenger's apparent weight whilethe elevator is speeding up?
3. What is the passenger's apparent weight afterthe elevator reaches its cruising speed?

Answers

Answer:

1. 588 N

2. 738 N

3. 588 N

Explanation:

time, t = 4 s

initial velocity, u = 0

final velocity, v = 10 m/s

mass, m= 60 kg

1.

Weight of passenger before starts

W =m g = 60 x 9.8 = 588 N

2.

When the elevator is speeding up

v = u + a t

10 = 0 + a x 4

a = 2.5 m/s2

Now the weight is

W' = m (a + g) = 60 (9.8 + 2.5) = 738 N

3.

When he reaches the cruising speed, the weight is

W = 588 N

A 10.0 L tank contains 0.329 kg of helium at 28.0 ∘C. The molar mass of helium is 4.00 g/mol . Part A How many moles of helium are in the tank? Express your answer in moles.

Answers

Answer:

82.25 moles of He

Explanation:

From the question given above, the following data were obtained:

Volume (V) = 10 L

Mass of He = 0.329 Kg

Temperature (T) = 28.0 °C

Molar mass of He = 4 g/mol

Mole of He =?

Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:

1 Kg = 1000 g

Therefore,

0.329 Kg = 0.329 Kg × 1000 g / 1 Kg

0.329 Kg = 329 g

Thus, 0.329 Kg is equivalent to 329 g.

Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:

Mass of He = 329 g

Molar mass of He = 4 g/mol

Mole of He =?

Mole = mass / molar mass

Mole of He = 329 / 4

Mole of He = 82.25 moles

Therefore, there are 82.25 moles of He in the tank.

An object is 2.0 cm from a double convex lens with a focal length of 1.5 cm. Calculate the image distance

Answers

Answer:

0.857 cm

Explanation:

We are given that:

The focal length for a convex lens to be (f) = 1.5cm

The object distance (u) = - 2.0 cm

We are to determine the image distance (v) = ??? cm

By applying the lens formula:

[tex]\dfrac{1}{f} = \dfrac{1}{u}+\dfrac{1}{v}[/tex]

By rearrangement and making (v) the subject of the above formula:

[tex]v = \dfrac{uf}{u-f}[/tex]

replacing the given values:

[tex]v = \dfrac{(-2.0)(1.5)}{(-2.0 -1.5)}[/tex]

[tex]v = \dfrac{-3.0}{(-3.5)}[/tex]

v = 0.857 cm

vector A has a magnitude of 8 unit make an angle of 45° with posetive x axis vector B also has the same magnitude of 8 unit along negative x axis find the magnitude of A+B?​

Answers

Answer:

45 × 8 units = A + B as formular

Based on the information in the table, what
is the acceleration of this object?

t(s) v(m/s)
0.0
9.0
1.0
4.0
2.0
-1.0
3.0
-6.0
A. -5.0 m/s2
B. -2.0 m/s2
C. 4.0 m/s2
D. 0.0 m/s2

Answers

Answer:

Option A. –5 m/s²

Explanation:

From the question given above, the following data were obtained:

Initial velocity (v₁) = 9 m/s

Initial time (t₁) = 0 s

Final velocity (v₂) = –6 m/s

Final time (t₂) = 3 s

Acceleration (a) =?

Next, we shall determine the change in the velocity and time. This can be obtained as follow:

For velocity:

Initial velocity (v₁) = 9 m/s

Final velocity (v₂) = –6 m/s

Change in velocity (Δv) =?

ΔV = v₂ – v₁

ΔV = –6 – 9

ΔV = –15 m/s

For time:

Initial time (t₁) = 0 s

Final time (t₂) = 3 s

Change in time (Δt) =?

Δt = t₂ – t₁

Δt = 3 – 0

Δt = 3 s

Finally, we shall determine the acceleration of the object. This can be obtained as follow:

Change in velocity (Δv) = –15 m/s

Change in time (Δt) = 3 s

Acceleration (a) =?

a = Δv / Δt

a = –15 / 3

a = –5 m/s²

Thus, the acceleration of the object is

–5 m/s².

When a rigid body rotates about a fixed axis, all the points in the body have the same Group of answer choices linear displacement. angular acceleration. centripetal acceleration. tangential speed. tangential acceleration.

Answers

Answer:

angular acceleration.

Explanation:

Newton's law of universal gravitation states that the force of attraction (gravity) acting between the Earth and all physical objects is directly proportional to the Earth's mass, directly proportional to the physical object's mass and inversely proportional to the square of the distance separating the Earth's center and that physical object.

Generally, when a rigid body is made to rotate about a fixed axis, all the points in the body would typically have the same angular acceleration, angular displacement, and angular speed.

what is time taken by radio wave to go and return back from communication satellite to earth??​

Answers

Answer:

Radio waves are used to carry satellite signals. These waves travel at 300,000 km/s (the speed of light). This means that a signal sent to a satellite 38,000 km away takes 0.13 s to reach the satellite and another 0.13 s for the return signal to be received back on Earth.

Explanation:

hope it help

The gravitational field strength due to its planet is 5N/kg What does it mean?

Answers

Answer:

The weight of an object is the force on it caused by the gravity due to the planet. The weight of an object and the gravitational field strength are directly proportional. For a given mass, the greater the gravitational field strength of the planet, the greater its weight.

Weight can be calculated using the equation:

weight = mass × gravitational field strength

This is when:

weight (W) is measured in newtons (N)

mass (m) is measured in kilograms (kg)

gravitational field strength (g) is measured in newtons per kilogram (N/kg)

need help pleaseee,question is in the pic​

Answers

Explanation:

For engine 1,

Energy removed = 239 J

Energy added = 567 J

[tex]\eta_1=\dfrac{239}{567}\cdot100=42.15\%[/tex]

For engine 2,

Energy removed = 457 J

Energy added = 789 J

[tex]\eta_2=\dfrac{457}{789}\cdot100=57.92\%[/tex]

For engine 3,

Energy removed = 422 J

Energy added = 1038 J

[tex]\eta_3=\dfrac{422}{1038}\cdot100=40.65\%[/tex]

So, the engine 2 has the highest thermal efficiency.

a. Give an example of the conversion of light energy to electrical energy.

b. Give an example of chemical energy converting to heat energy.

c. Give an example of mechanical energy converting to heat energy.

Answers

Explanation:

a) photovoltaic cell is a semiconductor device and it converts light energy to electrical energy

b) burning of coal converts chemical energy to heat energy

c) rubbing of both hands against each other converts mechanical to heat energy

Answer:

a. solar cells

b.coal,wood,petroleum

c.rubbing ours palms

A 64-ka base runner begins his slide into second base when he is moving at a speed of 3.2 m/s. The coefficient of friction between his clothes and Earth is 0.70. He slides so that his speed is zero just as he reaches the base.

Required:
a. How much mechanical energy is tout due to friction acting on the runner?
b, How far does he slide?

Answers

Answer:

Explanation:

From the given information:

mass = 64 kg

speed = 3.2 m/s

coefficient of friction [tex]\mu =[/tex] 0.70

The mechanical energy touted relates to the loss of energy in the system as a result of friction and this can be computed as:

[tex]W = \Delta K.E[/tex]

[tex]\implies \dfrac{1}{2}m(v^2 -u^2)[/tex]

[tex]= \dfrac{1}{2}(64.0 \kg) (0 - (3.2 \ m/s^2))[/tex]

Thus, the mechanical energy touted = 327.68 J

According to the formula used in calculating the frictional force

[tex]F_r = \mu mg[/tex]

= 0.70 × 64  kg× 9.8 m/s²

= 439.04 N

The distance covered now can be determined as follows:

d = W/F

d = 327.68 J/  439.04 N

d = 0.746 m

Hi can someon help me how to answer this?
Btw I'm from Philippines

Answers

Answer:

Test 1

1.True

2.True

3.True

4.False

5.True

6.True

7.False

8.True

9.True

10.True

yung iba nasa pic

A particle of mass 1.2 mg is projected vertically upward from the ground with a velocity of 1.62 x 10 cm/h. Use the above information to answer the following four questions: 7. The kinetic energy of the particle at time t = 0 s is A. 1.215 x 10-3 J B. 2.430 J C. 1215 J D. 9.72 x 106 J E. OJ (2)​

Answers

Answer:

K = 0 J

Explanation:

Given that,

The mass of the particle, m = 1.2 mg

The speed of the particle, [tex]v=1.62\times 10\ cm/h[/tex]

We need to find the kinetic energy of the particle at time t = 0 s.

At t = 0 s, the particle is at rest, v = 0

So,

[tex]K=\dfrac{1}{2}mv^2[/tex]

If v = 0,

[tex]K=0\ J[/tex]

So, the kinetic energy of the particle at time t = 0 s is 0 J.

Suppose the pucks start spinning after the collision, whereas they were not before. Will this affect your momentum conservation results

Answers

Answer:

No, it will not affect the results.

Explanation:

For elastic collisions in an isolated system, when a collision occurs, it means that the systems objects total momentum will be conserved under the condition that there will be no net external forces that act upon the objects.

What that means is that if the pucks start spinning after the collision, we are not told that there was any net external force acting on the puck and thus momentum will be conserved because momentum before collision will be equal to the momentum after the collision.

When a golfer tees off, the head of her golf club which has a mass of 158 g is traveling 48.2 m/s just before it strikes a 46.0 g golf ball at rest on a tee. Immediately after the collision, the club head continues to travel in the same direction but at a reduced speed of 32.7 m/s. Neglect the mass of the club handle and determine the speed of the golf ball just after impact.

Answers

Answer:

v₂ = 53.23 m/s

Explanation:

Given that,

The mass of a golf club, m₁ = 158 g = 0.158 kg

The initial speed of a golf club, u₁  =  48.2 m/s

The mass of a golf ball, m₂ = 46 g = 0.046 kg

It was at rest, u₂ = 0

Immediately after the collision, the club head continues to travel in the same direction but at a reduced speed of 32.7 m/s, v₁ = 32.7 m/s

We use the conservation of energy to find the speed of the golf ball just after impact as follows :

[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\\v_2=\dfrac{m_1u_1-m_1v_1}{m_2}\\\\v_2=\dfrac{0.158(48.2)-0.158(32.7)}{0.046}\\\\=53.23\ m/s[/tex]

So, the speed of the golf ball just after the impact is equal to 53.23 m/s.

A submarine has a "crush depth" (that is, the depth at which
water pressure will crush the submarine) of 400 m. What is
the approximate pressure (water plus atmospheric) at this
depth? (Recall that the density of seawater is 1025 kg/m3, g=
9.81 m/s2, and 1 kg/(m-s2) = 1 Pa = 9.8692 x 10-6 atm.)

Answers

Answer:

P =40.69 atm

Explanation:

We need to find the approximate pressure at a depth of 400 m.

It can be calculated as follows :

P = Patm + ρgh

Put all the values,

[tex]P=1\ atm+1025 \times 9.81\times 400\times 9.8692\times 10^{-6}\ atm/Pa\\\\P=40.69\ atm[/tex]

So, the approximate pressure is equal to 40.69 atm.

Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 35 cm while traveling through air. What are the
(a) frequency and
(b) wavelength as the signal travels through 3-mm-thick window glass into your room?

Answers

Answer:

(a) 8.57 x 10^8 Hz

(b) 23.3 cm

Explanation:

Wavelength = 35 cm = 0.35 m

speed =3 x10^8 m/s

Let the frequency is f.

(a) The relation is

speed  = frequency x wavelength

3 x 10^8 = 0.35 x f

f = 8.57 x 10^8 Hz

(b) refractive index of glass  is 1.5

The relation for the refractive index and the wavelength is

wavelength in glass= wavelength in air/ refractive index.

Wavelength in glass= 35/1.5 = 23.3 cm

Which of the following represents the velocity time relationship for a falling apple?

Answers

Answer "a" would be correct.

Answer:

d

Explanation:

There's an acceleration from gravity, thus the velocity is becoming faster and faster as it reaches the ground. Thus its D

Brainliest please~

a vechile having a mass of 500kg is moving with a speed of 10m/s.Sand is dropped into it at the rate of 10kg/min.What force is needed to keep the vechile moving with uniform speed​

Answers

Answer:

1.67 N

Explanation:

Applying,

F = u(dm/dt)+m(du/dt)................ Equation 1

Where F = force, m = mass of the vehicle, u = speed.

Since u is constant,

Therefore, du/dt = 0

F = u(dm/dt)............... Equation 2

From the question,

Given: u = 10 m/s, dm/dt = 10 kg/min = (10/60) kg/s

Substitute these values into equation 2

F = 10(10/60)

F = 100/60

F = 1.67 N

1. A block of mass m = 10.0 kg is released with a speed v from a frictionless incline at height 7.00 m. The
block reaches the horizontal ground and then slides up another frictionless incline as shown in Fig. 1.1. If the
horizontal surface is also frictionless and the maximum height that the block can slide up to is 26.0 m, (a) what
is the speed v of the block equal to when it is released and (b) what is the speed of the block when it reaches
the horizontal ground? If a portion of length 1 2.00 m on the horizontal surface is frictional with coefficient
of kinetic friction uk = 0.500 (Fig. 1.2) and the block is released at the same height 7.00 m with the same
speed v determined in (a), (c) what is the maximum height that the block can reach, (d) what is the speed of the
block at half of the maximum height, and (e) how many times will the block cross the frictional region before
it stops completely?
1 = 2.00 m (frictional region)

Answers

Let A be the position of the block at the top of the first incline; B its position at the bottom of the first incline; C its position at the bottom of the second incline; and D its position at the top of the second incline. I'll denote the energy of the block at a given point by E (point).

At point A, the block has total energy

E (A) = (10.0 kg) (9.80 m/s²) (7.00 m) + 1/2 (10.0 kg) v₀²

E (A) = 686 J + 1/2 (10.0 kg) v₀²

At point B, the block's potential energy is converted into kinetic energy, so that its total energy is

E (B) = 1/2 (10.0 kg) v₁²

The block then slides over the horizontal surface with constant speed v₁ until it reaches point C and slides up a maximum height of 26.0 m to point D. Its total energy at D is purely potential energy,

E (D) = (10.0 kg) (9.80 m/s²) (26.0 m) = 2548 J

Throughout this whole process, energy is conserved, so

E (A) = E (B) = E (C) = E (D)

(a) Solve for v₀ :

686 J + 1/2 (10.0 kg) v₀² = 2548 J

==>   v₀19.3 m/s

(b) Solve for v₁ :

1/2 (10.0 kg) v₁² = 2548 J

==>   v₁22.6 m/s

Now if the horizontal surface is not frictionless, kinetic friction will contribute some negative work to slow down the block between points C and D. Check the net forces acting on the block over this region:

• net horizontal force:

∑ F = -f = ma

• net vertical force:

F = n - mg = 0

where f is the magnitude of kinetic friction, a is the block's acceleration, n is the mag. of the normal force, and mg is the block's weight. Solve for a :

n = mg = (10.0 kg) (9.80 m/s²) = 98.0 N

f = µn = 0.500 (98.0 N) = 49.0 N

==>   - (49.0 N) = (10.0 kg) a

==>   a = - 4.90 m/s²

The block decelerates uniformly over a distance 2.00 m and slows down to a speed v₂ such that

v₂² - v₁² = 2 (-4.90 m/s²) (2.00 m)

==>   v₂² = 490 m²/s²

and thus the block has total/kinetic energy

E (C) = 1/2 (10.0 kg) v₂² = 2450 J

(c) The block then slides a height h up the frictionless incline to D, where its kinetic energy is again converted to potential energy. With no friction, E (C) = E (D), so

2450 J = (10.0 kg) (9.80 m/s²) h

==>   h = 25.0 m

(d) At half the maximum height, the block has speed v₃ such that

2450 J = (10.0 kg) (9.80 m/s²) (h/2) + 1/2 (10.0 kg) v₃²

==>   v₃15.7 m/s

The block loses speed and thus energy as it moves between B and C, but its energy is conserved elsewhere. If we ignore the inclines and pretend that the block is sliding over a long horizontal surface, then its velocity v at time t is given by

v = v₁ + at = 22.6 m/s - (4.90 m/s²) t

The block comes to a rest when v = 0 :

0 = 22.6 m/s - (4.90 m/s²) t

==>   t ≈ 4.61 s

It covers a distance x after time t of

x = v₁t + 1/2 at ²

so when it comes to a complete stop, it will have moved a distance of

x = (22.6 m/s) (4.61 s) + 1/2 (-4.90 m/s²) (4.61 s)² = 52.0 m

(e) The block crosses the rough region

(52.0 m) / (2.00 m) = 26 times




A student claimed that thermometers are useless because a
thermometer always registers its own temperature. How would you
respond?
[

Answers

the thermometer is the temperature that is around it so its registering the temperature its supposed to

The north pole of magnet A will __?____ the south pole of magnet B

Answers

Answer:

A will attract

B will repare

A body of mass 2kg is released from from a point 100m above the ground level. calculate kinetic energy 80m from the point of released.​

Answers

Answer:

1568J

Explanation:

Since the problem states 80 m from the point of drop, the height relative to the ground will be 100-80=20m.

Use conservation of Energy

ΔUg+ΔKE=0

ΔUg= mgΔh=2*9.8*(20-100)=-1568J

ΔKE-1568J=0

ΔKE=1568J

since KEi= 0 since the object is at rest 100m up, the kinetic energy 20meters above the ground is 1568J

A tire is filled with air at 22oC to a gauge pressure of 240 kPa. After driving for some time, if the temperature of air inside the tire is 45oC, what fraction of the original volume of air must be removed to maintain the pressure at 240 kPa?

Answers

Answer:

7.8% of the original volume.

Explanation:

From the given information:

Temperature [tex]T_1[/tex] = 22° C = 273 + 22 = 295° C

Pressure [tex]P_1[/tex] = 240 kPa

Temperature [tex]T_2[/tex] = 45° C

At initial temperature and pressure:

Using the ideal gas equation:

[tex]P_1V_1 =nRT_1[/tex]

making V_1 (initial volume) the subject:

[tex]V_1 = \dfrac{nRT_1}{P_1}[/tex]

[tex]V_1 = \dfrac{nR*295}{240}[/tex]

Provided the pressure maintained its rate at 240 kPa, when the temperature reached 45° C, then:

the final volume [tex]V_2[/tex] can be computed as:

[tex]V_2 = \dfrac{nR*318}{240}[/tex]

Now, the change in the volume ΔV =  V₂ - V₁

[tex]\Delta V = \dfrac{nR*318}{240}- \dfrac{nR*295}{240}[/tex]

[tex]\Delta V = \dfrac{23nR}{240}[/tex]

The required fraction of the volume of air to keep up the pressure at (240) kPa can be computed as:

[tex]= \dfrac{\dfrac{23nR}{240}}{ \dfrac{295nR}{240}}[/tex]

[tex]= {\dfrac{23nR}{240}} \times { \dfrac{240}{295nR}}[/tex]

[tex]= 0.078[/tex]

= 7.8% of the original volume.

In the following calculations, be sure to express the answer in standard scientific notation with the appropriate number of
significant figures.
3.88 x 1079 - 4.701 x 1059
x 10
g

Answers

Answer:

-45,597.07

Explanation:

if not in scientific calculator and yung answer nung sa scientific sa comment na lang dinadownload ko ka eh

A body of mass 4kg is moving with a velocity of 108km/h . find the kenetic energy of the body.​

Answers

Answer:

KE = 2800 J

Explanation:

Usually a velocity is expressed as m/s. Then the energy units are joules.

[tex]\frac{108 km}{hr} * \frac{1000m}{1 km} * \frac{1 hour}{3600 seconds} =\frac{108*1000 m}{3600sec}[/tex]

v = 30 m / sec

KE = 1/2 * 4 * (30)^2

KE =2800 kg m^2/sec^2

KE = 2800 Joules

A body starts from rest and accelerates uniformly at 5m/s. Calculate the time taken by the body to cover a distance of 1km

Answers

Answer:

20 seconds

Explanation:

We are given 2 givens in the first statement

v0=0 and a=5

And we are trying to find time needed to cover 1km or 1000m.

So we use

x-x0=v0t+1/2at²

Plug in givens

1000=0+2.5t²

solve for t

t²=400

t=20s

An inductor of inductance 0.02H and capacitor of capatance 2uF are connected in series to an a.c. source of frequency 200 Hz- Calculate the Impedance in the circuit . TC​

Answers

Explanation:

Given:

L = 0.02 H

C = [tex]2\:\mu \text{F}[/tex]

f = 200 Hz

The general form of the impedance Z is given by

[tex]Z = \sqrt{R^2 + (X_L - X_C)^2}[/tex]

Since this is a purely inductive/capacitive circuit, R = 0 so Z reduces to

[tex]Z = \sqrt{(X_L - X_C)^2} = \sqrt{\left(\omega L - \dfrac{1}{\omega C} \right)^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{\left(2 \pi L - \dfrac{1}{2 \pi f C} \right)^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{\left[2 \pi (200\:\text{Hz})(0.02\:\text{H}) - \dfrac{1}{2 \pi (200\:\text{Hz})(2×10^{-6}\:\text{F})} \right]^2}[/tex]

[tex]\:\:\:\:\:\:\:= \sqrt{(25.13\:\text{ohms} - 397.89\:\text{ohms})^2}[/tex]

[tex]\:\:\:\:\:\:\:=372.66\:\text{ohms}[/tex]

There are two beakers of water on the table. We can compare the average kinetic energy of the water molecules in the two beakers by measuring their

A temperatures.

B volumes.

C densities.

D masses.

Answers

Answer: masses

Explanation:

Trust me

The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane: y1(x, t) = (8.20 mm) sin(4.00πx - 430πt) y2(x, t) = (8.20 mm) sin(4.00πx + 430πt), with x in meters and t in seconds. An antinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?

Answers

Answer:

Explanation:

From the information given:

The angular frequency ω = 430 π rad/s

The wavenumber k = 4.00π which can be expressed by the equation:

k = ω/v

4.00 =  430 /v

v = 430/4.00

v = 107.5 m/s

Similarly: k  = ω/v = 2πf/fλ

We can say that:

k = 2π/λ

4.00 π = 2π/λ

wavelength λ = 2π/4.00 π

wavelength λ = 0.5 m

frequency of the wave can now be calculated by using the formula:

f = v/λ

f = 107.5/0.5

f = 215 Hz

Also, the Period(T) = 1/215 secs

The time at which particle proceeds from point A  to its maximum upward displacement  and to its maximum downward displacement  can be computed as t = T/2;

Thus, the distance(x) covered by each wave during this time interval(T/2) will be:

x = v * t

x = v * T/2

x = λ/2

x = 0.5/2

x =  0.25 m

Other Questions
Eukaryotes have three nuclear RNA polymerases. The primary function of RNA polymerase II is transcription of _____. As a girl pushes and object across a wood floor she suddenly comes to an area where the floor has been waxed recently making it slippery . What becomes true if the coefficient of kinetic friction WILL FIVE BRAINLIEST IF CORRECT!!! BE QUICK PLEASE!!!Which statement best completes the table?Structure of the Federal GovernmentThere are three branches of government.All branches of government have equal power.Each branch of government can check the power of the other two.?A. States can decide which branches of government to follow.B. Power is separated between three branches of government.C. Each branch of government passes its own laws.OD. The president controls every branch of government. Instructions: Find the missing angle in the image below. Do not include spaces in your answers A plane flies from Los Angeles west to Paradise Isle and returns. During both flights there is a steady upper air wind from the west at 80 mph. If the trip west to Paradise Isle took 17 hours and the return trip to Los Angeles took 13 hours, what was the plane's average airspeed? Calculate the return on investment for an advertisement from the given data. Net sales is $1,000, and advertising cost is $50. Qu problema haba entre Creta y Atenas? let's have a class named Distance having two private data members such as feet(integer), inches(float), one input function to input values to the data members, one Display function to show the distance. The distance 5 feet and 6.4 inches should be displayed as 5- 6.4. Then add the two objects of Distance class and then display the result (the + operator should be overloaded). You should also take care of inches if it's more than 12 then the inches should be decremented by 12 and feet to be incremented by 1. evaluate f(3) if (x) = -4x+5 Rewrite in simplest terms: (9x+5)-(-2x+10)(9x+5)(2x+10) EXERCISE C. Lea cada frase e indique si es cierta o falsa. Si es falsa, cmbiela para que sea cierta.1. Los gauchos son los vaqueros de Venezuela y Colombia.2. Se celebran las posadas en todos los pases de la Amrica Latina. Let be the set of permutations of whose first term is a prime. If we choose a permutation at random from , what is the probability that the third term is equal to Which political leader was among the individuals who led the Second Crusade A. Conrad |||B. Philip Augusts C. Godfrey de Bouillon D. Richard the Lionheart simplify 3[(15-3)^2 + 4] Describe fully the single transformation that maps triangle A onto triangle B Which EEG waves may appear transiently during sleep in normal adults but are most often observed in children and in intensely frustrated adults Find xHelp me please what was life like for great plains villagers?help me pleaseeee Is the product of two prime numbers a prime number or a composite number? The sum of four consecutive odd integers is 72. Write an equation to model this situation, and find the values of the four integers.