9514 1404 393
Answer:
459 mgabout 20 hoursStep-by-step explanation:
The decay factor is 1 -25% = 0.75 per hour, so the exponential equation can be written ...
r(t) = 1450·0.75^t . . . . . milligrams remaining after t hours
__
a) After 4 hours, the amount remaining is ...
r(4) = 1450·0.75^4 ≈ 458.79 . . . mg
About 459 mg will remain after 4 hours.
__
b) To find the time it takes before the amount remaining is less than 5 mg, we need to solve ...
r(t) < 5
1450·0.75^t < 5 . . . . use the function definition
0.75^t < 5/1450 . . . . divide by 1450
t·log(0.75) < log(1/290) . . . . . take logarithms (reduce fraction)
t > log(1/290)/log(0.75) . . . . . divide by the (negative) coefficient of t
t > 19.708
It will take about 20 hours for the amount of the drug remaining to be less than 5 mg.
(SAT PREP) Find the value of x in each of the following excersises
Answer:
The answer is 155.
Step-by-step explanation:
We can find the remaining parts of the triangle angles.
If (4x-5) :(9x-5) = 3:8 find the value of x.
Answer:
x is 5
Step-by-step explanation:
[tex] \frac{4x - 5}{9x - 5} = \frac{3}{8} \\ \\ 8(4x - 5) = 3(9x - 5) \\ 32x - 40 = 27x - 15 \\ 5x = 25 \\ x = \frac{25}{5} \\ \\ x = 5[/tex]
Step-by-step explanation:
as you can see as i solved above. all you need to do was to rationalize the both equations
what Is the si unit of temperature
Answer:
the Si unit of temprature in Kelvin (K)
Step-by-step explanation:
Answer:
The answer is Kelvin (k).
Step-by-step explanation:
The kelvin (K) is defined by taking the fixed numerical value of the Boltzmann constant k to be [tex]1.380649*10^{-23}[/tex] when expressed in the unit of joule per kelvin. The temperature 0 K is commonly referred to as "absolute zero." On the widely used Celsius temperature scale, water freezes at 0 °C and boils at about 100 °C. One Celsius degree is an interval of 1 K, and zero degrees Celsius is 273.15 K. An interval of one Celsius degree corresponds to an interval of 1.8 Fahrenheit degrees on the Fahrenheit temperature scale.
The kelvin is also the fundamental unit of the Kelvin scale, an absolute temperature scale named for the British physicist William Thomson (known as Lord Kelvin). An absolute temperature scale has as its zero point absolute zero (−273.15° on the Celsius temperature scale and −459.67° on the Fahrenheit temperature scale), the theoretical temperature at which the molecules of a substance have the lowest energy; hence, all values on such a scale are nonnegative.
Martha, Lee, Nancy, Paul, and Armando have all been invited to a dinner party. They arrive randomly, and each person arrives at a different time.
a. In how many ways can they arrive?
b. In how many ways can Martha arrive first and Armando last?
c. Find the probability that Martha will arrive first and Armando last.
Show your work
Answer:
a) 120
b) 6
c) 1/20
Step-by-step explanation:
a) 5! = 120
b) (5 - 2)! = 6
c) 6/120 = 1/20
Use the power series method to solve the given initial-value problem. (Format your final answer as an elementary function.)
(x − 1)y'' − xy' + y = 0, y(0) = −7, y'(0) = 3
You're looking for a solution of the form
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n[/tex]
Differentiating twice yields
[tex]\displaystyle y' = \sum_{n=0}^\infty n a_n x^{n-1} = \sum_{n=0}^\infty (n+1) a_{n+1} x^n[/tex]
[tex]\displaystyle y'' = \sum_{n=0}^\infty n(n-1) a_n x^{n-2} = \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n[/tex]
Substitute these series into the DE:
[tex]\displaystyle (x-1) \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n - x \sum_{n=0}^\infty (n+1) a_{n+1} x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^{n+1} - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=0}^\infty (n+1) a_{n+1} x^{n+1} + \sum_{n=0}^\infty a_n x^n = 0[/tex]
[tex]\displaystyle \sum_{n=1}^\infty n(n+1) a_{n+1} x^n - \sum_{n=0}^\infty (n+1)(n+2) a_{n+2} x^n \\\\ \ldots \ldots \ldots - \sum_{n=1}^\infty n a_n x^n + \sum_{n=0}^\infty a_n x^n = 0[/tex]
Two of these series start with a linear term, while the other two start with a constant. Remove the constant terms of the latter two series, then condense the remaining series into one:
[tex]\displaystyle a_0-2a_2 + \sum_{n=1}^\infty \bigg(n(n+1)a_{n+1}-(n+1)(n+2)a_{n+2}-na_n+a_n\bigg) x^n = 0[/tex]
which indicates that the coefficients in the series solution are governed by the recurrence,
[tex]\begin{cases}y(0)=a_0 = -7\\y'(0)=a_1 = 3\\(n+1)(n+2)a_{n+2}-n(n+1)a_{n+1}+(n-1)a_n=0&\text{for }n\ge0\end{cases}[/tex]
Use the recurrence to get the first few coefficients:
[tex]\{a_n\}_{n\ge0} = \left\{-7,3,-\dfrac72,-\dfrac76,-\dfrac7{24},-\dfrac7{120},\ldots\right\}[/tex]
You might recognize that each coefficient in the n-th position of the list (starting at n = 0) involving a factor of -7 has a denominator resembling a factorial. Indeed,
-7 = -7/0!
-7/2 = -7/2!
-7/6 = -7/3!
and so on, with only the coefficient in the n = 1 position being the odd one out. So we have
[tex]\displaystyle y = \sum_{n=0}^\infty a_n x^n \\\\ y = -\frac7{0!} + 3x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots[/tex]
which looks a lot like the power series expansion for -7eˣ.
Fortunately, we can rewrite the linear term as
3x = 10x - 7x = 10x - 7/1! x
and in doing so, we can condense this solution to
[tex]\displaystyle y = 10x -\frac7{0!} - \frac7{1!}x - \frac7{2!}x^2 - \frac7{3!}x^3 - \frac7{4!}x^4 + \cdots \\\\ \boxed{y = 10x - 7e^x}[/tex]
Just to confirm this solution is valid: we have
y = 10x - 7eˣ ==> y (0) = 0 - 7 = -7
y' = 10 - 7eˣ ==> y' (0) = 10 - 7 = 3
y'' = -7eˣ
and substituting into the DE gives
-7eˣ (x - 1) - x (10 - 7eˣ ) + (10x - 7eˣ ) = 0
as required.
The diameters of ball bearings are distributed normally. The mean diameter is 7373 millimeters and the variance is 44. Find the probability that the diameter of a selected bearing is less than 7676 millimeters. Round your answer to four decimal places.
Answer:
0.9332
Step-by-step explanation:
We are given that
Mean diameter, [tex]\mu=73[/tex]
Variance, [tex]\sigma^2=4[/tex]
We have to find the probability that the diameter of a selected bearing is less than 76.
Standard deviation, [tex]\sigma=\sqrt{variance}=\sqrt{4}=2[/tex]
[tex]P(x<76)=P(\frac{x-\mu}{\sigma}<\frac{76-73}{2})[/tex]
[tex]P(x<76)=P(Z<\frac{3}{2})[/tex]
Where [tex]Z=\frac{x-\mu}{\sigma}[/tex]
[tex]P(x<76)=P(Z<1.5)[/tex]
[tex]P(x<76)=0.9332[/tex]
Hence, the probability that the diameter of a selected bearing is less than 76=0.9332
I need help with ged
Answer:
General Educational Development (GED) tests
What do subject do you need help?
Step-by-step explanation:
The GED® exam is made up of 4 subjects, broken into separate exams: Mathematical Reasoning, Reasoning Through Language Arts, Social Studies, and Science.
Scientists have increased their ability to make observations beyond their own senses through the invention of specialized equipment such as Xray telescopes.
Which best explains how such technology has affected society?
Technology has replaced humans' need for independent observation and thought.
Technology has replaced humans' need for independent observation and thought.
Technology has replaced the need for the experimentation in the scientific process.
Technology has replaced the need for the experimentation in the scientific process.
Human knowledge of the universe is limited by ineffective technology.
Human knowledge of the universe is limited by ineffective technology.
Human knowledge of the universe beyond Earth has increased.
Answer:
D
Step-by-step explanation:
A is rather a strange choice. The tools are used as extensions of our senses. That's all that technology has done. We still need to observe things for ourselves if we are to learn. I actually really do not know what this statement means. My answer reflects what I think is true. Our need to observe and think is not hindered.
B is never going to be true. We still have to test things out, even with the best tools that we have.
C: The exact opposite is true. Our knowledge of the universe has expanded beyond our belief with the better tools of technology that we have.
D: This is the opposite of C and is the answer.
Solve the system of equations.
6x−y=−14
2x−3y=6
whats the answer please C:
Answer:
Step-by-step explanation:
Determine whether each relation is a function. Give the domain and range for each relation.
{(3, 4), (3, 5), (4, 4), (4, 5)}
Answer:
Not a function
Domain: {3,4}
Range: {4,5}
Step-by-step explanation:
A function is a relation where each input has its own output. In other words if the x value has multiple corresponding y values then the relation is not a function
For the relation given {(3, 4), (3, 5), (4, 4), (4, 5)} the x value 3 and 4 have more than one corresponding y value therefore the relation shown is not a function
Now let's find the domain and range.
Domain is the set of x values in a relation.
The x values of the given relation are 3 and 4 so the domain is {3,4}
The range is the set of y values in a relation
The y value of the given relation include 4 and 5
So the range would be {4,5}
Notes:
The values of x and y should be written from least to greatest when writing them out as domain and range.
They should be written inside of brackets
Do not repeat numbers when writing the domain and range
A capark has 34 rows and each row can acommodate 40 cars. If there are 976 cars parked, how many cars can still be parked?
Answer:
384 cars
Step-by-step explanation:
To find the total number of spaces in the carpark, we must multiply the number of rows by how many cars they can accommodate:
34 ⋅ 40 = 1360
As you can see, we have 1360 total spaces. Since there are 976 cars parked, and we want to find out how many spaces are left, we have to subtract the amount of cars parked from the total spaces.
1360 - 976 = 384
Therefore, our answer is 384, specifically, 384 cars.
Answer:
384 cars.
Step-by-step explanation:
40 * 34 - 976
= 1360 - 976
= 384.
which one of these points lies on the line described by the equation below y - 5 = 6 ( x - 7 )
Answer:
the answer would be (7,5)
HURRY plSSSSSSSSSSSSSSSSSSSSSS
What is the measure of the unknown angle?
Image of a straight angle divided into two angles. One angle is eighty degrees and the other is unknown.
Answer:
The unknown is 100
Step-by-step explanation:
A straight line is 180 degrees
We have two angles x, and 80
x+80 = 180
x = 180-80
x= 100
e lifetimes of lightbulbs of a particular type are normally distributed with a mean of290 hours and astandard deviation of6 hours. What percentage of the bulbs have lifetimes that lie within 1 standarddeviation to either side of the mean
Answer:
Step-by-step explanation:
[tex]p(\overline{X}-\sigma \leq X \leq \overline{X}+\sigma)\\\\=p(\dfrac{\overline{X}-\sigma -\overline{X} }{\sigma} \leq Z \leq \dfrac{\overline{X}+\sigma -\overline{X} }{\sigma} )\\\\=p ( -1 \leq Z \leq 1)\\\\=2*(\ p (Z \leq 1)-0.5)\\\\=2*(0.8413-0.5)\\\\=0.6826\\\\\approx{68\%}[/tex]
If 5000 is divided by 10 and 10 again what answer will be reached
Hey there!
First, divide 5,000 by 10. You will get 500.
Now, 500 ÷ 10, and you will get your answer, 50.
Hope this helps! Have a great day!
NO LINKS OR ANSWERING QUESTIONS YOU DON'T KNOW!!!
Chapter 11 part 2:
What are three different properties of logarithmic functions when encountering the operations of addition, subtraction, and multiplication? Provide an example of each.
The three main log rules you'll encounter are
log(A*B) = log(A) + log(B)log(A/B) = log(A) - log(B)log(A^B) = B*log(A)The first rule allows us to go from a log of some product, to a sum of two logs. In short, we go from product to sum. The second rule allows us to go from a quotient to a difference. Lastly, the third rule allows to go from an exponential to a product.
Here are examples of each rule being used (in the exact order they were given earlier).
log(2*3) = log(2) + log(3)log(5/8) = log(5) - log(8)log(7^4) = 4*log(7)----------------
Here's a slightly more complicated example where the log rules are used.
log(x^2y/z)
log(x^2y) - log(z)
log(x^2) + log(y) - log(z)
2*log(x) + log(y) - log(z)
Hopefully you can see which rules are being used for any given step. If not, then let me know and I'll go into more detail.
a man spends RS 608 a month. If he earns Rs 640, what percentage of his invome does he save??.
Please explanation
Answer:
5%
Step-by-step explanation:
given,
Earns= Rs 640
spends= Rs 608
saves= (Rs 640 - Rs 608)
=Rs 32
therefore, 32/640x100
answer = 5%
Answer From Gauth Math
Answer:
5%
Step-by-step explanation:
save=640-608=32
(32/640)*100%
5%
find the range of values of a for which 11- 2a>1 is ____
Answer:
a<5
Step-by-step explanation:
11-2a>1
-2a>1-11
-2a>-10
a<5
a) Everyone on the team talks until the entire team agrees on one decision. O b) Everyone on the team discusses options and then votes. O c) The team passes the decision-making responsibility to an outside person. O di The team leader makes a decision without input from the other members.
Answer:
a) Everyone on the team talks until the entire team agrees on one decision.
Step-by-step explanation:
Option B consists of voting and not everyone would like the outcome. Option C is making an outsider the decision maker, which can't be helpful since he / she won't have as strong opinions as the team itself. Option D is just plain wrong as it defeats the purpose of team work and deciding as one team. So, I believe option A makes the most sense
John and mike got paid $40.00 for washing
car. John work one hour, mike worked 1.5 hrs.
How much do they get paid for time worked?
The Online Exam from Applied Statistics consists of 6 questions. Statistics show that there is a 75% chance that the student will answer to any one of Exam problems correctly. If the number of attempts for each question is unlimited, find the following probabilities
a. The student will correctly answer the first question after the 4th attempt.
b. The student will correctly answer three questions after 10 total attempts.
c. What is the average number and SD of attempts up to when the student answers all the questions correctly?
Solution :
a). The probability that the student will [tex]\text{correctly answer}[/tex] the 1st question after the 4th attempt.
P (correct in the 4th attempt)
= [tex]$(1-0.75)^3 \times 0.75$[/tex]
= 0.01171875
b). The probability that the student will [tex]\text{correctly answer}[/tex] 3 questions after 10 total attempts.
P( X = 3) for X = B in (n = 10, p = 0.75)
= [tex]$C(10,30) \times 0.75^3 \times 0.25^7$[/tex]
= 0.0031
c). The mean and the standard deviation for the number of attempts up to when the students gets all the questions correct is :
There are = 6 success, p = 0.75.
Therefore, this is a case of a negative binomial distribution.
[tex]$E(X)=\frac{k}{p}$[/tex]
[tex]$=\frac{6}{0.75}$[/tex]
= 8
So, [tex]$\sigma = \frac{\sqrt{k(1-p)}}{p}$[/tex]
[tex]$\sigma = \frac{\sqrt{6(1-0.75)}}{0.75}$[/tex]
= 1.6330
Write the equation of the line that passes through the points (- 5, 1) and (2, 0) . Put your answer in fully reduced slope intercept form, unless it is a vertical or horizontal line
Pls help me with this one:(
Answer:
y=-1/7x + 12/7
Step-by-step explanation:
Start by finding the slope
m=(1-0)/(-5-2)
m=-1/7
next plug the slope and the point (-5,1) into point slope formula
y-y1=m(x-x1)
y1=1
x1= -5
m=-1/7
y- 1 = -1/7(x - -5)
y-1=-1/7(x+5)
Distribute -1/7 first
y- 1=-1/7x + 5/7
Add 1 on both sides, but since its a fraction add 7/7
y=-1/7x + (5/7+7/7)
y=-1/7x+12/7
Answer:
Step-by-step explanation:
(-5,1) (2,0)
m=(y-y)/(x-x)
m = (0-1)/2- -5)
m = -1/7
(2,0)
y-0= -1/7 (x-2)
y = -1/7x + 2/7
If two numbers differ by 9 the same of their squares is 653. What are the numbers?
Answer:
Two numbers differ by 9 and the sum of their square is 653. What are the numbers?
Well,that's a mathematical question from algebra and it's quite difficult to answer such questions by writing through the circumstances offered by apps like quora.
However,I have tried to answer your question in an understandable way.Hope you may not find it difficult to analyze.
Let the numbers be x and (9+x)
Therefore,according to given,
x^2 + (9+x)^2 =653
=>x^2 + (9)^2 + x^2 + 2×(9)×(x)=653 (Applying the formula of (a+b)^2)
=>x^2 + 81 + x^2 + 18x =653
=>2x^2 + 18x + (81-653)=0
=>2x^2 + 18x - 572=0
=>2x^2 + (44x - 26x) - 572=0
=>2x^2 + 44x - 26x - 572=0
=>2x(x + 22) - 26(x + 22)=0
=>(x + 22)(2x - 26)=0
But since the number can't be negative
Therefore, x=13
Hence,the required numbers are 13 and 22.
Step-by-step explanation:
in first hope you like it
Air-USA has a policy of booking as many as 22 people on an airplane that can only seat 20 people. (Past studies have revealed that only 82% of the booked passengers actually show up for the flight.) a) Find the probability that if Air-USA books 22 people, not enough seats will be available. Round your answer to 4 decimal places. P ( X > 20 )
Answer:
The answer is "0.07404893".
Step-by-step explanation:
Applying the binomial distribution:
[tex]n = 22\\\\p= 82\%=0.82\\\\q = 1-0.82 = 0.18\\\\[/tex]
Calculating the probability for not enough seats:
[tex]=P(X>20)\\\\= P(21) + P(22)\\\\[/tex]
[tex]= \binom{22}{21} (0.82)^{21}(0.18)^1+ \binom{22}{22} (0.82)^{22}(0.18)[/tex]
[tex]=0 .06134598+ 0.01270295\\\\=0.07404893[/tex]
i need help with this question asapppppp
9514 1404 393
Answer:
$11,680.58
Step-by-step explanation:
Usually, I would say copy the example, using 70,000 instead of 55,000. However, the example you show has a couple of errors in it. You need to do what it says, not follow what it did.
__
The first 48,535 is taxed at 15%, so the tax is 0.15×48535 = 7280.25.
The next (70,000 -48,535) = 21,465 is taxed at 20.5%, so the tax is ...
0.205×21,465 = 4400.325 ≈ 4400.33
The the total tax due on $70,000 is ...
$7280.25 +4400.33 = $11,680.58 . . . . tax due on $70,000
_____
Additional comments
The example shown has a couple of errors. The tax on the excess amount is figured at 2.05%, not 20.5%, and the 132.53 value from that is shown as 132.23.
__
Any tax table like this one can be reduced to a set of simpler formulas. Here are the formulas for the brackets shown in your tax table.
≤ 48535 -- income × 0.15
≤ 97069 -- income × 0.205 -2669.425
≤ 150,473 -- income × 0.26 -8008.22
≤ 214,368 -- income × 0.29 -12,522.41
> 214,368 -- income × 0.33 -21,097.13
In this case, the second row of this simpler table would give the tax on $70,000 as ...
tax = 70,000 × 0.205 -2669.425
tax = 14350 -2669.425 = 11680.575 ≈ 11,680.58 . . . same as above
If side A is 10 inches long, and side B is 24 inches, find the length of the unknown side.
Step-by-step explanation:
Right Triangles and the Pythagorean Theorem. The Pythagorean Theorem, a2+b2=c2, a 2 + b 2 = c 2 , can be used to find the length of any side of a right triangle.
An electrician charges a fee of $40 plus $25 per hour. Let y be the cost in dollars of using the electrician for x hours. Choose the correct equation.
y = 40x - 25
y = 25x + 40
y = 25x - 40
y = 40x + 25
Answer:
y = 25x + 40
Step-by-step explanation:
The electrician charges $25 per hour.
The number of hours is x.
Therefore after x hours the electrician will charge $25x. (multiply the charge by the number of hours $25 * x)
Therefore fee(y) charged by the electrician = $40 + $25x
Hence y = 25x + 40
Identify the slope and y intercept of the line with equation 2y = 5x + 4
Answer:
Slope is 5/2
y-intercept is 2
Step-by-step explanation:
Turn the equation into slope intercept form [ y = mx + b ].
2y = 5x + 4
~Divide everything by 2
y = 5/2x + 2
Remember that in slope intercept form, m = slope and b = y-intercept.
Best of Luck!
Answer:
slope: 2.5
y-intercept: 2
Step-by-step explanation:
First isolate the y variable which changes the equation to y=2.5x+2
The equation of a line is mx + b where m is the slope and b and the
y-intercept. Leading us to conclude that 2.5 is the slope and 2 is the y-intercept.
The length of a rectangle is 10 yd less than three times the width, and the area of the rectangle is 77 yd^2. Find the dimensions of the rectangle.
Answer:
W=7 and L=11
Step-by-step explanation:
We have two unknowns so we must create two equations.
First the problem states that length of a rectangle is 10 yd less than three times the width so: L= 3w-10
Next we are given the area so: L X W = 77
Then solve for the variable algebraically. It is just a system of equations.
3W^2 - 10W - 77 = 0
(3W + 11)(W - 7) = 0
W = -11/3 and/or W=7
Discard the negative solution as the width of the rectangle cannot be less then 0.
So W=7
Plug that into the first equation.
3(7)-10= 11 so L=11
Help me please and thank you
Answer:
Option C is correct
Step-by-step explanation:
[tex]log( {10}^{3} )[/tex]
Use logarithm rules to move 3 out of the exponent.[tex]3 \: log \: (10)[/tex]
Logarithm base 10 of 10 is 1.[tex]3×1[/tex]
Multiply 3 by 1.[tex]3[/tex]
Hope it is helpful....