Answer in picture
….
If the mean of a given dataset is
42 and the standard deviation is
4, where will a majority of the
data lie?
Answer:
A majority of the data will lie between 38 and 46.
Step-by-step explanation:
It can be said that a majority of the data of a distribution lies within 1 standard deviation of the mean.
In this question:
Mean of 42, standard deviation of 4.
42 - 4 = 38
42 + 4 = 46
A majority of the data will lie between 38 and 46.
Which ratio is equal to 27 : 81?
Answer:
1:3
Step-by-step explanation:
27 : 81
Divide each side by 27
27/27 : 81/27
1:3
2. About how much is 123.1 do you weigh in pounds? Estimate if you don't know☺ Find an online converter and find out how many kilograms that is.
Answer:
123.1 pounds is vary long, and I don't want to repeat, so 55.8372207 repeat.
Step-by-step explanation:
If you have any questions regarding my answer, tell me them in the comments, and I will come answer them for you. Have a good day.
Find the length of the arc.
A. 539π/12 km
B. 9π/3 km
C. 9π/2 km
D. 18π km
Answer:
b because it is I found out cus I took test
The length of the arc 9π/2 km.
The answer is option C.9π/2 km.
What is the arc of the circle?
The arc period of a circle can be calculated with the radius and relevant perspective using the arc period method.
⇒angle= arc/radius
⇒ 135°=arc/6km
⇒ arc =135°*6km
⇒arc=135°*π/180° * 6km
⇒arc = 9π/2 km
Learn more about circle here:-https://brainly.com/question/24375372
#SPJ2
if U>T, R>Q, S>T and T>R, which of the following is TRUE?
1. S>Q
2. U > S
3.U > R
A. 1 only
B. 2 only
C. 1 and 2
D. 2 and 3
Answer:
C. 1 and 2
Step-by-step explantation:
First, i would order them as U>T, T>R, R>Q, S>T
we can rewrite them as
U>T>R>Q,
now adding S, we get U>S>T>R>Q,
so U>S
We can also rewrite all of them as inequalities:
U-T>0
T-R>0
R-Q>0
S-T>0
Add R-Q and T-R
(R-Q)+(T-R)>0
-Q+T>0
T>Q, but because S>T we can say S>Q
8.9 x 10^3 in standard notation
Answer:
that is n standard notation mah frand
8.9 × 10^3 being scientific notation of " 8900 "
[tex]\huge\text{Hey there!}[/tex]
[tex]\large\textsf{8.9}\times\large\textsf{10}^\mathsf{3}\\\\\mathsf{10^3}\\\mathsf{= 10\times10\times10}\\\mathsf{= 100\times10}\\\mathsf{= \bf 1,000}\\\\\large\textsf{8.9}\times\large\textsf{1,000}\\\\\large\textsf{= \bf 8,900}\\\\\\\boxed{\boxed{\huge\text{Answer: \boxed{\underline{\underline{\bf 8,900}}}}}}\huge\checkmark[/tex]
[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]
~[tex]\boxed{\huge\text{}\boxed{\frak{Amphitrite1040:)}}}[/tex]
Find an equation of the plane orthogonal to the line
(x,y,z)=(0,9,6)+t(7,−7,−6)
which passes through the point (9, 6, 0).
Give your answer in the form ax+by+cz=d (with a=7).
The given line is orthogonal to the plane you want to find, so the tangent vector of this line can be used as the normal vector for the plane.
The tangent vector for the line is
d/dt (⟨0, 9, 6⟩ + ⟨7, -7, -6⟩t ) = ⟨7, -7, -6⟩
Then the plane that passes through the origin with this as its normal vector has equation
⟨x, y, z⟩ • ⟨7, -7, -6⟩ = 0
We want the plane to pass through the point (9, 6, 0), so we just translate every vector pointing to the plane itself by adding ⟨9, 6, 0⟩,
(⟨x, y, z⟩ - ⟨9, 6, 0⟩) • ⟨7, -7, -6⟩ = 0
Simplifying this expression and writing it standard form gives
⟨x - 9, y - 6, z⟩ • ⟨7, -7, -6⟩ = 0
7 (x - 9) - 7 (y - 6) - 6z = 0
7x - 63 - 7y + 42 - 6z = 0
7x - 7y - 6z = 21
so that
a = 7, b = -7, c = -6, and d = 21
An equation of the plane orthogonal to the line 7x - 7y - 6z = 21.
The given line is orthogonal to the plane you want to find,
So the tangent vector of this line can be used as
The normal vector for the plane.
The tangent vector for the line is,
What is the tangent vector?A tangent vector is a vector that is tangent to a curve or surface at a given point.
d/dt (⟨0, 9, 6⟩ + ⟨7, -7, -6⟩t ) = ⟨7, -7, -6⟩
Then the plane that passes through the origin with this as its normal vector has the equation
⟨x, y, z⟩ • ⟨7, -7, -6⟩ = 0
We want the plane to pass through the point (9, 6, 0), so we just
translate every vector pointing to the plane itself by adding ⟨9, 6, 0⟩,
(⟨x, y, z⟩ - ⟨9, 6, 0⟩) • ⟨7, -7, -6⟩ = 0
Simplifying this expression and writing it in standard form gives
⟨x - 9, y - 6, z⟩ • ⟨7, -7, -6⟩ = 0
7 (x - 9) - 7 (y - 6) - 6z = 0
7x - 63 - 7y + 42 - 6z = 0
7x - 7y - 6z = 21
So that, a = 7, b = -7, c = -6, and d = 21.
To learn more about the equation of plane visit:
https://brainly.com/question/1603217
The length of a rectangle is twice its width. If the area of the rectangle is 72in², find its perimeter
Let breadth be x
Length=2x[tex]\\ \sf\longmapsto Area=Length\times Breadth[/tex]
[tex]\\ \sf\longmapsto 72=2x(x)[/tex]
[tex]\\ \sf\longmapsto 2x^2=72[/tex]
[tex]\\ \sf\longmapsto x^2=\dfrac{72}{2}[/tex]
[tex]\\ \sf\longmapsto x^2=36[/tex]
[tex]\\ \sf\longmapsto x=\sqrt{36}[/tex]
[tex]\\ \sf\longmapsto x=6[/tex]
Length=6×2=12inBreadth=6in[tex]\\ \sf\longmapsto Perimeter=2(L+B)[/tex]
[tex]\\ \sf\longmapsto Perimeter=2(12+6)[/tex]
[tex]\\ \sf\longmapsto Perimeter=2(18)[/tex]
[tex]\\ \sf\longmapsto Perimeter=36in[/tex]
Find 0.2B
B=[50 10
25 15]
Multiplying a matrix by a scalar results in every entry in a matrix get multiplied by that scalar, as defined,
[tex]a\begin{bmatrix}b&c\\d&e\\\end{bmatrix}=\begin{bmatrix}ab&ac\\ad&ae\\\end{bmatrix}[/tex]
So in our case, ([tex]0.2=\frac{1}{5}[/tex]
[tex]\frac{1}{5}\begin{bmatrix}50&10\\25&15\\\end{bmatrix}=\begin{bmatrix}\frac{50}{5}&\frac{10}{5}\\\frac{25}{5}&\frac{15}{5}\\\end{bmatrix}=\boxed{\begin{bmatrix}10&2\\5&3\\\end{bmatrix}}[/tex]
Hope this helps :)
Find the slope of the line that goes through the
(2,6) and (-1, -6)
Solve for x: 10/3 = x/(−5/2)
9514 1404 393
Answer:
x = -25/3
Step-by-step explanation:
Multiply by the inverse of the coefficient of x. Reduce the fraction.
(-5/2)(10/3) = (-5/2)(x/(-5/2))
-50/6 = x = -25/3
Answer:
-25/3
Step-by-step explanation:
the other person is also correct. khan said so
Reason Can you subtract a positive integer from a positive integer
and get a negive result? Explain your answer.
Answer:
No
Step-by-step explanation:
No matter the situation, when you multiply a negative by a negativeyou get a positive and a positive by a positive you get a positive. but if its two different like a negative and a positive then its NEGITIVE.
let's say you have 23 and you're multiplying by 2.
It's always increasing so it doesnt ever reach the negitive numbers.
find the missing side of the triangle
Answer:
x = 34
Step-by-step explanation:
Pytago:
x[tex]30^{2} + 16^{2} = x^2\\x = \sqrt{30^2 + 16^2} \\x = 34[/tex]
Find the sum of ∑4/k=1 (-4k)
Answer:
Hello,
Answer C: -40
Step-by-step explanation:
[tex]\displaystyle \sum_{k=1}^4\ (-4k)\\\\=-4*\sum_{k=1}^4\ k\\\\=-4*4*\dfrac{1+4}{2} \\\\=-4*5*2\\\\=-40\\[/tex]
please solve the question
Answer:
[tex]g(-1) = -1[/tex]
[tex]g(0.75) = 0[/tex]
[tex]g(1)= 1[/tex]
Step-by-step explanation:
Given
See attachment
Solving (a): g(-1)
We make use of:
[tex]g(x) = -1[/tex]
Because: [tex]-1 \le x < 0[/tex] is true for x =-1
Hence:
[tex]g(-1) = -1[/tex]
Solving (b): g(0.75)
We make use of:
[tex]g(x) = 0[/tex]
Because: [tex]0 \le x < 1[/tex] is true for x =0.75
Hence:
[tex]g(0.75) = 0[/tex]
Solving (b): g(1)
We make use of:
[tex]g(x) = 1[/tex]
Because: [tex]1 \le x < 2[/tex] is true for x =1
Hence:
[tex]g(1)= 1[/tex]
Graph y=|x|+5, how does it compare to parent graph y=|x|
9514 1404 393
Answer:
it is shifted 5 units upward
Step-by-step explanation:
The y-coordinate is a measure of the distance above the x-axis. When 5 is added to a y-coordinate, the point is shifted 5 units upward.
The function y = |x| +5 adds 5 units to the y-value of every point of the graph of y = |x|. The graph of y=|x|+5 is shifted 5 units upward from the parent graph.
Write the standard form of the equation of the circle with center (8,−1) that passes through the point (6,7)
Answer:
(x - 8)^2 + (y + 1)^2 = 68
Step-by-step explanation:
The standard form of the equation of the circle with center (8,−1) is :
(x - 8)^2 + (y + 1)^2 = R^2
If the circle passes through the point (6,7) that means that the point (6,7) is a solution of the equation and we can replace (x,y) with (6,7) to find R.
Paul can install a 300-square-foot hardwood floor in 18 hours. Matt can install the same floor in 22 hours. How long would it take Paul and Matt to install the floor working together?
4 hours
9.9 hours
13.2 hours
30 hours
Answer:
9.9 hours
Step-by-step explanation:
The formula to determine the time together is
1/a+1/b = 1/c where a and b are the times alone and c is the time together
1/18 + 1/22 = 1/c
The least common multiply of the denominators is 198c
198c(1/18 + 1/22 = 1/c)
11c+ 9c = 198
20c = 198
Divide by 20
20c/20 =198/20
c =9.9
Answer:
B - 9.9 hrs
Step-by-step explanation:
took the test.
11 divided by 9876
Thank youuuu
Answer:
770,7272727272727
Step-by-step explanation:
Answer:
8478 divided by 11= 770.7272727
Seven and one-half foot-pounds of work is required to compress a spring 2 inches from its natural length. Find the work required to compress the spring an additional 3 inch.
Answer:
Apply Hooke's Law to the integral application for work: W = int_a^b F dx , we get:
W = int_a^b kx dx
W = k * int_a^b x dx
Apply Power rule for integration: int x^n(dx) = x^(n+1)/(n+1)
W = k * x^(1+1)/(1+1)|_a^b
W = k * x^2/2|_a^b
From the given work: seven and one-half foot-pounds (7.5 ft-lbs) , note that the units has "ft" instead of inches. To be consistent, apply the conversion factor: 12 inches = 1 foot then:
2 inches = 1/6 ft
1/2 or 0.5 inches =1/24 ft
To solve for k, we consider the initial condition of applying 7.5 ft-lbs to compress a spring 2 inches or 1/6 ft from its natural length. Compressing 1/6 ft of it natural length implies the boundary values: a=0 to b=1/6 ft.
Applying W = k * x^2/2|_a^b , we get:
7.5= k * x^2/2|_0^(1/6)
Apply definite integral formula: F(x)|_a^b = F(b)-F(a) .
7.5 =k [(1/6)^2/2-(0)^2/2]
7.5 = k * [(1/36)/2 -0]
7.5= k *[1/72]
k =7.5*72
k =540
To solve for the work needed to compress the spring with additional 1/24 ft, we plug-in: k =540 , a=1/6 , and b = 5/24 on W = k * x^2/2|_a^b .
Note that compressing "additional one-half inches" from its 2 inches compression is the same as to compress a spring 2.5 inches or 5/24 ft from its natural length.
W= 540 * x^2/2|_((1/6))^((5/24))
W = 540 [ (5/24)^2/2-(1/6)^2/2 ]
W =540 [25/1152- 1/72 ]
W =540[1/128]
W=135/32 or 4.21875 ft-lbs
Step-by-step explanation:
State if the scenario involves a permutation or a combination. Then find the number of possibilities.
A team of 15 basketball players needs to choose two players to refill the water cooler.
Permutation/Combination:
Answer:
Answer:
Permutation ; 210 ways
Step-by-step explanation:
Permutation and combination methods refers to mathematical solution to finding the number of ways of making selection for a group of objects.
Usually, selection process whereby the order of selection does not matter are being treated using permutation, while those which takes the order of selection into cognizance are calculated using combination.
Here, selecting 2 players from 15 ; since order does not matter, we use permutation ;
Recall :
nPr = n! ÷ (n - r)!
Hence,
15P2 = 15! ÷ (15 - 2)!
15P2 = 15! ÷ 13!
15P2 = (15 * 14) = 210 ways
1.) Three numbers form a geometric sequence whose common ratio is 0.5. If the first is reduced to 10 more than one quarter its value, the second decreased by 10, and the third increased by 10 more than twice its value, the resulting three numbers form an arithmetic sequence. Determine the original three numbers.
Let x be the first number in the sequence, so the first three numbers are
{x, 0.5x, 0.5²x}
Then
{x/4 + 10, 0.5x - 10, 2(0.5²x) + 10}
is arithmetic, so there is some constant c such that
0.5x - 10 = x/4 + 10 + c ==> x/2 - 10 = x/4 + 10 + c
2(0.5²x) + 10 = 0.5x - 10 + c ==> x/2 + 10 = x/2 - 10 + c
Solve the second equation for c :
x/2 + 10 = x/2 - 10 + c
c = 20
Substitute this into the first equation and solve for x :
x/2 - 10 = x/4 + 10 + 20
x/4 = 40
x = 160
Then the terms are
{160, 80, 40}
Solve for X and show your work and explain please
Answer: x = 45
Step-by-step explanation:
Given
(2/3)x + 4 = (4/5)x - 2
Add 2 on both sides
(2/3)x + 4 + 2 = (4/5)x - 2 + 2
(2/3)x + 6 = (4/5)x
Subtract (2/3)x on both sides
(2/3)x + 6 - (2/3)x = (4/5)x - (2/3)x
6 = (12/15)x - (10/15)x
6 = (2/15)x
Divide 2/15 on both sides
6 / (2/15) = (2/15)x / (2/15)
[tex]\boxed{x=45}[/tex]
Hope this helps!! :)
Please let me know if you have any questions
Answer:
x = 45
Step-by-step explanation:
2/3 x + 4 = 4/5x - 2 Add 2 to both sides
2/3 x + 4 + 2 = 4/5x Combine
2/3x + 6 = 4/5x Subtract 2/3 x from both sides.
6 = 4/5x - 2/3 x Multiply both sides by 15
6*15 = 4/5 x * 15 - 2/3x * 15
6*15 = 12x - 10x Combine the left and right
90 = 2x Divide by 2
x = 45
Let's see if it works.
LHS = 2/3 * 45 + 4
LHS = 2*15 + 4
LHS = 30 + 4
LHS = 34
RHS
Right hand side = 4/5 * 45 - 2
RHS = 36 - 2
RHS = 34 which is the same as the LHS
Round 573.073 to the greatest place
Answer:
574
Step-by-step explanation:
To round a two-digit number to the nearest ten, simply increase it or decrease it to the nearest number that ends in 0: When a number ends in 1, 2, 3, or 4, bring it down; in other words, keep the tens digit the same and turn the ones digit into a 0
Hope this helps <3
which of the following illustrates commutative property of addition? 17+4=4+17
9514 1404 393
Answer:
17 +4 = 4 +17
Step-by-step explanation:
The only expression shown here illustrates that property.
In a class of 70 pupils, 36 like tasty time , 34 like ice-
cream, 6 like both tasty time }
draw a Venn diagram to show the data.
find how
many
like neither tasty time nor ice-cream
Step-by-step explanation:
I think this might be the correct answer
The number of pupils that like neither tasty-time nor ice cream is 6 if in a class of 70 pupils, 36 like tasty time, 34 like ice cream, 6 like both tasty times.
What is the Venn diagram?It is defined as the diagram that shows a logical relation between sets.
The Venn diagram consists of circles to show the logical relation.
We have:
In a class of 70 pupils, 36 like tasty time, 34 like ice cream, 6 like both tasty time.
Total = 70 pupils
Number of like tasty time = 36
Number of like ice cream = 34
Number of like both = 6
Let x be the total number of pupils that like neither tasty-time nor ice cream
The number of pupils that like ice cream only = 34 - 6 = 28
The number of pupils that like tasty-time only = 36 - 6 = 30
From the Venn diagram:
28 + 30 + 6 + x = 70
x = 70 - 64
x = 6
Thus, the number of pupils that like neither tasty-time nor ice cream is 6 if in a class of 70 pupils, 36 like tasty time, 34 like ice cream, 6 like both tasty times.
Learn more about the Venn diagram here:
brainly.com/question/1024798
#SPJ2
Select all sets in which the number - 15 is an element.
A. natural numbers
B. real numbers
C. irrational numbers
D. rational numbers
E. whole numbers
F. integers
-15 is an element of-
B. real numbers
D. rational numbers
F. integers
What is a number?A number is a mathematical object used to count, measure, and label. The original examples are natural number 1,2,3,4 and so forth.
Given number is 15.
A. natural numbers
The natural numbers are the set of all the whole numbers excluding zero. They are positive whole number.
Here, -15 is a negative number,
Hence, -15 is an not element of natural number.
B. real numbers
Real numbers are those numbers that has no imaginary part. It also include both rational and irrational number.
Since -15 has no imaginary part
Hence, -15 is an element of real number.
C. irrational numbers
An irrational number is real number that cannot be expressed as a ratio of two integers.
Here -15 can be expressed as ratio of two integers,
Hence,-15 is not an element of irrational number.
D. rational numbers
A rational number is real number that can be expressed as a ratio of two integers.
Here -15 can be expressed as ratio of two integers,
Hence, -15 is an element of rational number.
E. whole numbers
Whole numbers are positive numbers, including zero, without any decimal or fractional parts. Negative numbers are not considered "whole numbers."
Since,Negative numbers are not considered whole numbers
Hence, -15 is not an element of whole number.
F. integers
An integer is a whole number (not a fractional number) that can be positive, negative, or zero. Examples of integers are: -5, 1, 5, 8, 97, and 3,043
Hence, -15 is an element of integers.
Hence, we conclude that,
-15 is an element of-
B. real numbers
D. rational numbers
F. integers
More about classification of number :
https://brainly.com/question/14213693
#SPJ2
if 25 liters of milk can make 8 tin of cheese how many liters of milk would b needed to make 11 tin of cheese?
Answer:
Step-by-step explanation:
34.375 Liters of milk make 11 tins of cheese. Assuming that milk is available in whole liters only, 35 Liters of milk are needed.
Find the length represented by x for each pair of similar triangles.
18cm, 9cm, and x
30cm, 15cm, and 25cm
Answer:
15 cm
Step-by-step explanation:
Since the traingles are similar, we can find the ratio between the side lengths, and it will be the same for each side.
We can use the side length 9 and 15 to find this ratio. 15/9=5/3. So, the ratio of a side length of the larger triangle to the smaller one is 5/3, so our equation becomes 5/3 = 25/x. Use any method you like to find that x=15.
Hope this helped,
~cloud
Identify the transformed function that represents f(x) = ln x stretched vertically by a factor of 17, reflected across the x-axis, and shifted by 19 units left.
A. g(x) = −17ln (x + 19)
B. g(x) = 17ln (x − 19)
C. g(x) = 17ln (x + 19)
D. g(x) = −17ln (x − 19)
Answer:
b
Step-by-step explanation:
ANSWER. EXPLANATION. The given logarithmic function is. The transformation,. stretches the graph of y=f(x) vertically by a factor of c units ...
4 votes
ANSWER[tex]y = - 3 ln(x - 7) [/tex]EXPLANATIONThe given logarithmic function is [tex]f(x) = ln(x) [/tex]The transformation, [tex]y = - cf(x - k)[/tex]stretches