A brass rod is 185 cm long and 1.60 cm in diameter. What force must be applied to each end of the rod to prevent it from contract- ing when it is cooled from 120.0°C to 10.0°C?

Answers

Answer 1

Answer:

42000N

Explanation:

First you calculate how much it would contract, and secondly you then calculate the force to stretch it by that amount.

1) linear thermal expansion coef brass 19e-6 /K

∆L = αL∆T = (19e-6)(1.85)(110) = 0.00387 meter or 3.87 mm

Second part involves linear elasticity.

for brass, young's modulus is 15e6 psi or 100 GPa

cross-sectional area of rod is π(0.008)² = 0.0002 m²

F = EA∆L/L

F = (100e9)(0.0002)(0.00387) / (1.85)

F = 42000 or 42 kN


Related Questions

A rectangular coil having N turns and measuring 15 cm by 25 cm is rotating in a uniform 1.6-T magnetic field with a frequency of 75 Hz. The rotation axis is perpendicular to the direction of the field. If the coil develops a sinusoidal emf of maximum value 56.9 V, what is the value of N?
A) 2
B) 4
C) 6
D) 8
E) 10

Answers

Answer:

A) 2

Explanation:

Given;

magnetic field of the coil, B = 1.6 T

frequency of the coil, f = 75 Hz

maximum emf developed in the coil, E = 56.9 V

area of the coil, A = 0.15 m x 0.25 m = 0.0375 m²

The maximum emf in the coil is given by;

E = NBAω

Where;

N is the number of turns

ω is the angular velocity = 2πf = 2 x 3.142 x 75 = 471.3 rad/s

N = E / BAω

N = 56.9 / (1.6 x 0.0375 x 471.3)

N = 2 turns

Therefore, the value of N is 2

A) 2

When light is either reflected or refracted, the quantity that does not change in either process is its

Answers

Answer:

Frequency

Explanation:

When waves travel from one medium to another, it is only the frequency of the wave that remains constant . when a wave is refracted at the boundary between two media, the wave will slow down and its wavelength decreases. The wave usually bends at the interface between the two media. The wavelength and speed of a wave may change at the boundary between two media but its frequency remains the same.

Hence the frequency of light is its only property that remains constant.

Suppose a 1300 kg car is traveling around a circular curve in a road at a constant
9.0 m/sec. If the curve in the road has a radius of 25 m, then what is the
magnitude of the unbalanced force that steers the car out of its natural straight-
line path?

Answers

Answer:

F = 4212 N

Explanation:

Given that,

Mass of a car, m = 1300 kg

Speed of car on the road is 9 m/s

Radius of curve, r = 25 m

We need to find the magnitude of the unbalanced force that steers the car out of its natural straight-  line path. The force is called centripetal force. It can be given by :

[tex]F=\dfrac{mv^2}{r}\\\\F=\dfrac{1300\times 9^2}{25}\\\\F=4212\ N[/tex]

So, the force has a magnitude of 4212 N

Niobium metal becomes a superconductor when cooled below 9 K. Its superconductivity is destroyed when the surface magnetic field exceeds 0.100 T. In the absence of any external magnetic field, determine the maximum current a 5.68-mm-diameter niobium wire can carry and remain superconducting.

Answers

Answer:

The current is  [tex]I = 1420 \ A[/tex]

Explanation:

From the question we are told that

   The  diameter of the wire is  [tex]d = 5.68 \ mm = 0.00568 \ m[/tex]

    The  magnetic field is  [tex]B = 0.100 \ T[/tex]

   

Generally the radius of the wire is mathematically evaluated as

       [tex]r = \frac{d}{2}[/tex]

substituting values

     [tex]r = \frac{ 0.00568}{2}[/tex]

     [tex]r = 0.00284 \ m[/tex]

Generally the magnetic field is mathematically represented as

       [tex]B = \frac{\mu_o * I}{ 2 \pi r }[/tex]

=>    [tex]I =\frac{ B * 2 \pi r }{\mu_o}[/tex]

Here [tex]\mu_o[/tex] is the permeability of free space  with value [tex]\mu_o = 4 \pi *10^{-7} N/A^2[/tex]

substituting values

=>     [tex]I =\frac{ 0.100 * 2 * 3.142 * 0.00284 }{ 4 \pi * 10^{-7}}[/tex]

=>     [tex]I = 1420 \ A[/tex]

Consult Interactive Solution 27.18 to review a model for solving this problem. A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 653 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference

Answers

Answer:

Explanation:

In the given case for destructive interference , the condition is,

path difference = (2n+1)λ /2  where n is an integer and λ is wavelength

2 μ d = (2n+1)λ /2

Putting λ = 653 nm

for minimum thickness n = 0

2 μ d = 653 / 2 nm

= 326.5 nm

For constructive interference the condition is

2 μ d = n λ₁

326.5 nm = n λ₁

λ₁ = 326.5 / n  

For n = 1

λ₁ = 326.5 nm ,

or , 326.5nm .

Longest wavelength possible is 326.5

Ocean waves with a wavelength of 120 m are coming in at a rate of 8 per minute. What is their speed?

Answers

Explanation:

We know that,

[tex]v(wave \: speed) = f(frequency) \times \alpha (wavelength)[/tex]

frequency (f) = 1 / t (sec) = 8/60 = 0.13 Hz

V ( wave speed) = 0.13 * 120 = 16 m/sec

The speed of the given wave is equal to 15.96 m/s.

What are frequency and wavelength?

The frequency of the wave can be defined as the number of oscillations of a wave in one second. The frequency has S.I. units which can be expressed as per second or hertz (Hz).

The wavelength can be described as the distance between the two adjacent points in phase. Two crests or two troughs of a wave are separated by a distance is called wavelength.

The relationship between wavelength (λ), frequency (ν), and wave speed (V):

V = νλ

Given, the frequency of the wave, ν = 8 min⁻¹ = 0.133 s⁻¹

The wavelength of the wave, λ = 120 m

The speed of the waves can calculate from the above-mentioned relationship:

V = νλ = 120 × 0.133 = 15.96 m/s

Therefore, the speed of the wave is equal to 15.96 m/s.

Learn more about wavelength and frequency, here:

brainly.com/question/18651058

#SPJ5

If the ac peak voltage across a 100-ohm resistor is 120 V, then the average power dissipated by the resistor is ________

Answers

Answer:

The average power dissipated is 72 W.

Explanation:

Given;

peak voltage of the AC circuit, V₀ = 120 V

resistance of the resistor, R = 100 -ohm

The average power dissipated by the resistor is given by;

[tex]P_{avg} = \frac{1}{2} I_oV_o= I_{rms}V_{rms} = \frac{V_{rms}^2}{R}[/tex]

where;

[tex]V_{rms}[/tex] is the root-mean-square-voltage

[tex]V_{rms} = \frac{V_o}{\sqrt{2}} \\\\V_{rms} = \frac{120}{\sqrt{2}}\\\\V_{rms} = 84.853 \ V[/tex]

The average power dissipated by the resistor is calculated as;

[tex]P_{avg} = \frac{V_{rms}^2}{R}\\\\P_{avg} = \frac{84.853^2}{100}\\\\P_{avg} = 72 \ W[/tex]

Therefore, the average power dissipated is 72 W.

Please help!
Much appreciated!​

Answers

Answer:

F = 2.7×10¯⁶ N.

Explanation:

From the question given:

F = (9×10⁹ Nm/C²) (3.2×10¯⁹ C × 9.6×10¯⁹ C) /(0.32)²

Thus we can obtain the value value of F by carrying the operation as follow:

F = (9×10⁹) (3.2×10¯⁹ × 9.6×10¯⁹) /(0.32)²

F = 2.7648×10¯⁷ / 0.1024

F = 2.7×10¯⁶ N.

Therefore, the value of F is 2.7×10¯⁶ N.

CAN SOMEONE HELP ME PLEASE ITS INTEGRATED SCIENCE AND I AM STUCK

Answers

Answer:

[tex]\huge \boxed{\mathrm{Option \ D}}[/tex]

Explanation:

Two forces are acting on the object.

Subtracting 2 N from both forces.

2 N → Object ← 5 N

- 2 N                 - 2N

0 N → Object ← 3 N

The force 3 N is pushing the object to the left side.

The mass of the object is 10 kg.

Applying formula for acceleration (Newton’s Second Law of Motion).

a = F/m

a = 3/10

a = 0.3

A polarized laser beam of intensity 285 W/m2 shines on an ideal polarizer. The angle between the polarization direction of the laser beam and the polarizing axis of the polarizer is 16.0 ∘. What is the intensity of the light that emerges from the polarizer?

Answers

Answer:

The intensity is  [tex]I_1 = 263.35 \ W/m^2[/tex]

Explanation:

From the question we are told that

    The intensity of the beam is  [tex]I = 285\ W/m^2[/tex]

    The  angle is [tex]\theta = 16^o[/tex]

The  intensity of the light that emerges from the polarizer is mathematically represented by Malus' law as

        [tex]I_1 = I * cos^2 (\theta )[/tex]

substituting values

        [tex]I_1 = 285 * [cos(16)]^2[/tex]

substituting  values

        [tex]I_1 = 285 * [cos(16)]^2[/tex]

        [tex]I_1 = 263.35 \ W/m^2[/tex]

Calcular la resistencia de una varilla de grafito de 170 cm de longitud y 60 mm2. Resistividad grafito 3,5 10-5 Ωm

Answers

Answer:

R = 0.992 Ω

Explanation:

En esta pregunta, dada la información que contiene, debemos calcular la resistencia de la varilla de grafito.

Matemáticamente,

Resistencia = (resistividad * longitud) / Área De la pregunta;

Resistividad = 3,5 * 10 ^ -5 Ωm

longitud = 170 cm = 1,7 m

Área = 60 mm ^ 2 = 60/1000000 = 6 * 10 ^ -5 m ^ 2

Conectando estos valores a la ecuación anterior, tenemos;

Resistencia = (3.5 * 10 ^ -5 * 1.7) / (6 * 10 ^ -5) =

(3.5 * 1.7) / 6 = 0.992 Ω

help... Please help!!!!!!!!!!!

Answers

Answer:

a) 6.8--5.10 thats equal 11.9

b) m=ris/run +10 equal 0.06/8 =7.5*10^-3

A charge of 15 is moving with velocity of 6.2 x17 which makes an angle of 48 degrees with respect to the magnetic field. If the force on the particle is 4838 N, find the magnitude of the magnetic field.
a. 06.0T.
b. 08.0T.
c. 07.0T.
d. 05.0 T.

Answers

Complete question:

A charge of 15C is moving with velocity of 6.2 x 10³ m/s which makes an angle of 48 degrees with respect to the magnetic field. If the force on the particle is 4838 N, find the magnitude of the magnetic field.

a. 0.06 T

b. 0.08 T

c. 0.07 T

d. 0.05 T

Answer:

The magnitude of the magnetic field is 0.07 T.

Explanation:

Given;

magnitude of the charge, q = 15C

velocity of the charge, v = 6.2 x 10³ m/s

angle between the charge and the magnetic field, θ = 48°

the force on the particle, F = 4838 N

The magnitude of the magnetic field can be calculated by applying Lorentz force formula;

F = qvBsinθ

where;

B is the magnitude of the magnetic field

B = F / vqsinθ

B = (4838) / (6.2 x 10³ x 15 x sin48)

B = 0.07 T

Therefore, the magnitude of the magnetic field is 0.07 T.

"A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if"

Answers

Answer:

A light beam incident on a diffraction grating consists of waves with two different wavelengths. The separation of the two first order lines is great if

the dispersion is great

Radar is used to determine distances to various objects by measuring the round-trip time for an echo from the object. (a) How far away (in m) is the planet Venus if the echo time is 900 s? m (b) What is the echo time (in µs) for a car 80.0 m from a Highway Patrol radar unit? µs (c) How accurately (in nanoseconds) must you be able to measure the echo time to an airplane 12.0 km away to determine its distance within 11.5 m? ns

Answers

Answer:

a) 1.35 x 10^11 m

b) 0.53 µs

c) 8 ns

Explanation:

Radar involves the use of radio wave which has speed c = 3 x 10^8 m/s

a) for 900 s,

The distance for a round trip = v x t

==>  (3 x 10^8) x 900 =  2.7 x 10^11 m

The distance of Venus is half this round trip distance = (2.7 x 10^11)/2 = 1.35 x 10^11 m

b) for a 80.0 m distance of the car from the radar source, the radar will travel a total distance of

d = 2 x 80 = 160 m

the time taken = d/c = 160/(3 x 10^8) = 5.3 x 10^-7 s = 0.53 µs

c) accuracy in distance Δd = 11.5 m

Δt = accuracy in time = Δd/c = 11.5/(3 x 10^8) = 3.8 x 10^-8 = 38 ns

A flatbed truck is supported by its four drive wheels, and is moving with an acceleration of 7.4 m/s2. For what value of the coefficient of static friction between the truck bed and a cabinet will the cabinet slip along the bed surface?

Answers

Answer:

The value is  [tex]\mu = 0.76[/tex]

Explanation:

From the question we are told that

    The  acceleration is [tex]a = 7.4 \ m /s^2[/tex]

Generally the force by which the truck bed (truck) is moving with is mathematically represented as

          [tex]F = ma[/tex]

Now for the truck cabinet to slip from the truck bed then the frictional force between the truck cabinet  is equal the force by which the the truck bed is moving with that is  

        [tex]F_f = F[/tex]

Here  [tex]F_f[/tex] is the frictional force which is mathematically represented as

         [tex]F_f = \mu * m * g[/tex]

substituting into above equation

         [tex]\mu * m * g = ma[/tex]

=>        [tex]\mu = \frac{a}{g}[/tex]

substituting values

           [tex]\mu = \frac{ 7.4 }{ 9.8}[/tex]

           [tex]\mu = 0.76[/tex]

         

Does the moon light originate from the moon only

Answers

Answer:

No

Explanation:

Moon has no light of its own. It just shines because its surface reflects light from the sun and that's what we see.

:-)

A current of 5 A is flowing in a 20 mH inductor. The energy stored in the magnetic field of this inductor is:_______

a. 1J.
b. 0.50J.
c. 0.25J.
d. 0.
e. dependent upon the resistance of the inductor.

Answers

Answer:

C. 0.25J

Explanation:

Energy stored in the magnetic field of the inductor is expressed as E = 1/2LI² where;

L is the inductance

I is the current flowing in the inductor

Given parameters

L = 20mH = 20×10^-3H

I = 5A

Required

Energy stored in the magnetic field.

E = 1/2 × 20×10^-3 × 5²

E = 1/2 × 20×10^-3 × 25

E = 10×10^-3 × 25

E = 0.01 × 25

E = 0.25Joules.

Hence the energy stored in the magnetic field of this inductor is 0.25Joules

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.
A. Which skater, if either, has the greater momentum after the push-off? Explain.
B. Which skater, if either, has the greater speed after the push-off? Explain.

Answers

Answer:

the two ice skater have the same momentum but the are in different directions.

Paula will have a greater speed than Ricardo after the push-off.

Explanation:

Given that:

Two ice skaters, Paula and Ricardo, initially at rest, push off from each other. Ricardo weighs more than Paula.

A. Which skater, if either, has the greater momentum after the push-off? Explain.

The law of conservation of can be applied here in order to determine the skater that possess a greater momentum after the push -off

The law of conservation of momentum states that the total momentum of two  or more objects acting upon one another will not change, provided there are no external forces acting on them.

So if two objects in motion collide, their total momentum before the collision will be the same as the total momentum after the collision.

Momentum is the product of mass and velocity.

SO, from the information given:

Let represent the mass of Paula with [tex]m_{Pa}[/tex] and its initial velocity with [tex]u_{Pa}[/tex]

Let represent the mass of Ricardo with [tex]m_{Ri}[/tex] and its initial velocity with [tex]u_{Ri}[/tex]

At rest ;

their velocities will be zero, i.e

[tex]u_{Pa}[/tex] = [tex]u_{Ri}[/tex] = 0

The initial momentum for this process can be represented as :

[tex]m_{Pa}[/tex][tex]u_{Pa}[/tex] +  [tex]m_{Ri}[/tex][tex]u_{Ri}[/tex] = 0

after push off from each other then their final velocity will be [tex]v_{Pa}[/tex] and [tex]v_{Ri}[/tex]

The we can say their final momentum is:

[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] +   [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex] = 0

Using the law of conservation of momentum as states earlier.

Initial momentum = final momentum = 0

[tex]m_{Pa}[/tex][tex]u_{Pa}[/tex] +  [tex]m_{Ri}[/tex][tex]u_{Ri}[/tex] =  [tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] +   [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]

Since the initial velocities are stating at rest then ; u = 0

[tex]m_{Pa}[/tex](0) + [tex]m_{Pa}[/tex](0) = [tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] +   [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]

[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] +   [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]  = 0

[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] = - [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]

Hence, we can conclude that the two ice skater have the same momentum but the are in different directions.

 B. Which skater, if either, has the greater speed after the push-off? Explain.

Given that Ricardo weighs more than Paula

So [tex]m_{Ri} > m_{Pa}[/tex] ;

Then [tex]\mathsf{\dfrac{{m_{Ri}}}{m_{Pa} }= 1}[/tex]

The magnitude of their momentum which is a product of mass and velocity can now be expressed as:

[tex]m_{Pa}[/tex][tex]v_{Pa}[/tex] =  [tex]m_{Ri}[/tex][tex]v_{Ri}[/tex]

The ratio is

[tex]\dfrac{v_{Pa}}{v_{Ri}} =\dfrac{m_{Ri}}{m_{Pa}} = 1[/tex]

[tex]v_{Pa} >v_{Ri}[/tex]

Therefore, Paula will have a greater speed than Ricardo after the push-off.

(A) Both the skaters have the same magnitude of momentum.

(B) Paula has greater speed after push-off.

Conservation of momentum:

Given that two skaters Paula and Ricardo are initially at rest.

Ricardo weighs more than Paula.

Let us assume that the mass of Ricardo is M, and the mass of Paula is m.

Let their final velocities be V and v respectively.

(A) Initially, both are at rest.

So the initial momentum of Paula and Ricardo is zero.

According to the law of conservation of momentum, the final momentum of the system must be equal to the initial momentum of the system.

Initial momentum = final momentum

0 = MV + mv

MV = -mv

So, both of them have the same magnitude of momentum, but in opposite directions.

(B) If we compare the magnitude of the momentum of Paula and Ricardo, then:

MV = mv

M/m = v/V

Now, we know that M>m

so, M/m > 1

therefore:

v/V > 1

v > V

So, Paula has greater speed.

Learn more about conservation of momentum:

https://brainly.com/question/2141713?referrer=searchResults

Select the situation for which the torque is the smallest.

a. A 200 kg piece of silver is placed at the end of a 2.5 m tree branch.
b. A 20 kg piece of marble is placed at the end of a 25 m construction crane arm.
c. A 8 kg quartz rock is placed at the end of a 62.5 m thin titanium rod.
d. The torque is the same for two cases.
e. The torque is the same for all cases.

Answers

Answer:

e. The torque is the same for all cases.

Explanation:

The formula for torque is:

τ = Fr

where,

τ = Torque

F = Force = Weight (in this case) = mg

r = perpendicular distance between force an axis of rotation

Therefore,

τ = mgr

a)

Here,

m = 200 kg

r = 2.5 m

Therefore,

τ = (200 kg)(9.8 m/s²)(2.5 m)

τ = 4900 N.m

b)

Here,

m = 20 kg

r = 25 m

Therefore,

τ = (20 kg)(9.8 m/s²)(25 m)

τ = 4900 N.m

c)

Here,

m = 8 kg

r = 62.5 m

Therefore,

τ = (8 kg)(9.8 m/s²)(62.5 m)

τ = 4900 N.m

Hence, the correct answer will be:

e. The torque is the same for all cases.

A step-down transformer is used for recharging the batteries of portable devices. The turns ratio N2/N1 for a particular transformer used in a CD player is 2:29. When used with 120-V (rms) household service, the transformer draws an rms current of 180 mA.
Find the rms output voltage of the transformer

Answers

Answer:

8.28 V

Explanation:

Using,

N2/N1 = V2/V1.................. Equation 1

Where N2/N1 = Turn ratio of the transformer, V1 = primary/input voltage, V2 = output/secondary voltage

make V2 the subject of the equation

V2 = (N2/N1)V1............ Equation 2

Given: N2/N1 = 2:29 = 2/29, V1 = 120 V

Substitute these values into equation 2

V2 = (2/29)120

V2 = 8.28 V

Hence the rms output voltage of the transformer = 8.28 V

A wave travelling along the positive x-axis side with a
frequency of 8 Hz. Find its period, velocity and the distance covered
along this axis when its wavelength and amplitude are 40 and 15 cm
respectively.​

Answers

Explanation:

The frequency is given to be f = 8 Hz.

Period is the inverse of frequency.

T = 1/f = 0.125 s

Velocity is wavelength times frequency.

v = λf = (0.40 m) (8 Hz) = 3.2 m/s

The wave travels 3.2 meters every second.

A diver shines an underwater searchlight at the surface of a pond (n = 1.33). At what angle (relative to the surface) will the light be totally reflected?

Answers

Answer:

41.2°

Explanation:

Total internal reflection is the reflection of the incident ray at the interface between two media in which one of the media has a lower refractive index than the other. It occurs when the angle of incidence in the denser medium exceeds the critical angle.

The critical angle is the angle of incidence in the denser medium when the angle of incidence in the less dense medium is 90°.

Since

n= 1/sin C

C= sin^-(1/n)

C= sin^-(1/1.33)

C= 48.8°

Hence angle of incidence= 90-48.8 = 41.2°

A car travels down the road for 535 m in 17.3 s. What is the velocity of the car in m/s and in km/h?

Answers

Answer:

30.92m/s

Explanation:

[tex]Distance = 535m\\Time = 17.3s\\\\Velocity = \frac{Distane}{Time} \\\\V = \frac{535m}{17.3s} \\\\Velocity = 30.92m/s[/tex]

[tex]Distance = 535m\\\\535m \:to \: km=0.535km\\\\Time = 17.3s\\\\17.3s = 0.004805556hours\\\\Velocity = \frac{Distance}{Time}\\\\ V= \frac{0.535}{0.004805556} \\\\ V=111.329469472\\\\=111.33km/h[/tex]

The only force acting on a 3.4 kg canister that is moving in an xy plane has a magnitude of 3.0 N. The canister initially has a velocity of 2.5 m/s in the positive x direction, and some time later has a velocity of 4.8 m/s in the positive y direction. How much work is done on the canister by the 3.0 N force during this time

Answers

Answer:

   16.79J  

Explanation:

Given data

mass of canister= 3.4 kg

force acting on canister= 3 N

initial velocity u= 2.5 m/s

final velocity v= 4.8 m/s

The work done on the canister is the change in kinetic energy on the canister

change in [tex]KE= Kfinal- Kinitial[/tex]

K.E initial

[tex]Kintial= \frac{1}{2} mv^2\\\\Kintial= \frac{1}{2}*2*2.5^2\\\\KInitial= \frac{1}{2} *2*6.25\\\\Kinitial= 6.25J[/tex]

K.E final

[tex]Kfinal= \frac{1}{2} mv^2\\\\ Kfinal= \frac{1}{2}*2*4.8^2\\\\ Kfinal= \frac{1}{2} *2*23.04\\\\ Kfinal= 23.04J[/tex]

The net work done is [tex]KE= Kfinal- Kinitial[/tex]

[tex]W net= 23.04-6.25= 16.79J[/tex]

Suppose a certain laser can provide 82 TW of power in 1.1 ns pulses at a wavelength of 0.24 μm. How much energy is contained in a single pulse?

Answers

Answer:

The energy contained in a single pulse is 90,200 J.

Explanation:

Given;

power of the laser, P = 82 TW = 82 x 10¹² W

time taken by the laser to provide the power, t = 1.1 ns = 1.1 x 10⁻⁹ s

the wavelength of the laser, λ = 0.24 μm = 0.24 x 10⁻⁶ m

The energy contained in a single pulse is calculated as;

E = Pt

where;

P is the power of each laser

t is the time to generate the power

E = (82 x 10¹²)(1.1 x 10⁻⁹)

E = 90,200 J

Therefore, the energy contained in a single pulse is 90,200 J

An electron has an initial velocity to the south but is observed to curve upward as the result of a magnetic field. This magnetic field must have a component:___________
a) north
b) upwards
c) downwards
d) east
e) west

Answers

Answer:

e) west

Explanation:

According to Lorentz left hand rule, the left hand is used to represent the motion of an electron in a magnetic field. Hold out the left hand with the fingers held out parallel to the palm, and the thumb held at right angle to the other fingers. If the thumb represents the motion of the electron though the field, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the particle.

In this case, if we point the thumb to the south (towards your body), with the palm facing up, then the fingers will point west.

An ac generator consists of a coil with 40 turns of wire, each with an area of 0.06 m2 . The coil rotates in a uniform magnetic field B = 0.4 T at a constant frequency of 55 Hz. What is the maximum induced emf?

a. 625 V
b. 110 V
c. 421 V
d. 332 V
e. 200 V

Answers

Answer:

d. 332 V

Explanation:

Given;

number of turns in the wire, N = 40 turns

area of the coil, A = 0.06 m²

magnitude of the magnetic field, B = 0.4 T

frequency of the wave, f = 55 Hz

The maximum emf induced in the coil is given by;

E = NBAω

Where;

ω is angular velocity = 2πf

E = NBA(2πf)

E = 40 x 0.4 x 0.06 x (2 x π x 55)

E = 332 V

Therefore, the maximum induced emf in the coil is 332 V.

The correct option is "D"

d. 332 V

Which scientist proposed a mathematical solution for the wave nature of light?

Answers

Answer:

Explanation:

Christian Huygens

Light Is a Wave!

Then, in 1678, Dutch physicist Christian Huygens (1629 to 1695) established the wave theory of light and announced the Huygens' principle.

What is the pathway of sound through fluids starting at the oval window through to dissipation of the sound waves at the round window

Answers

Perilymph of scala vestibule; endolymph of cochlear duct; perilymph of scala tympani
Other Questions
Llevaste un paraguas contigo? No. No ___ llev. *(A) La (B) Lo (C) Las (D) Los (E) El find a rational number that is between 5.2 and 5.5. explain why it is rational. is a polyprotic acid. Write balanced chemical equations for the sequence of reactions that carbonic acid can undergo when it's dissolved in water. Find the first four terms of the sequence given a1=18 and an+1=2+an2. A. 18, 10, 6, 5 B. 18, 10, 6, 9 C. 18, 14, 6, 9 D. 18, 10, 6, 4 Given the following diagram, find the required measures. Given: l | | m m 1 = 120 m 3 = 40 m 2 = 20 60 120 PLEASE HELP QUICK!!!!!!! Find the length of a rectangle that has one side of length 8 and area 32 Evaluate the expression for q = -2. 8q= This table shows a linear relationship.The slope of the line is ? Give this problem a try and try to solve this a) which function has the graph with the greatest slope?b) which functions have graphs with y intercepts greater than 3?c)which function has the graph with a y intercept closest to 0 At the beginning of the school year, Craig Kovar decided to prepare a cash budget for the months of September, October, November, and December. The budget must plan for enough cash on December 31 to pay the spring semester tuition, which is the same as the fall tuition. The following information relates to the budget: Cash balance, September 1 (from a summer job) $9,250 Purchase season football tickets in September 160 Additional entertainment for each month 250 Pay fall semester tuition in September 4,800 Pay rent at the beginning of each month 600 Pay for food each month 550 Pay apartment deposit on September 2 (to be returned December 15) 600 Part-time job earnings each month (net of taxes) 950Required:a. Prepare a cash budget for September, October, November, and December. b. Are the four monthly budgets that are presented prepared as static budgets or flexible budgets?c. What are the budget implications for Craig Kovar? How to write this thing in japaneese ?" I love japanese language " I reallly hate japanese.....hehehe Water flows through a pipe at a rate of 4 quarts per day. Express this rate of flow in liters per week. Round your answer to the nearest tenth. Help please anyone. Thank You Only ------ percent of the food eaten is turned into its own body. What is the volume of this rectangular prism?2 cm7/3 cm2 cm Dilate line f by a scale factor of 3 with the center of dilation at the origin to create line f'. Where are points A' and B' located after dilation, and how are lines f and f' related? 36 minus 20 minus 32 times 1/4 Complete each sentence with the appropriate word according to the subject inparentheses.1. (yo)gusta leer.2 (ella)gusta escribir.3. (t)gusta comer.4 (Ramn)gusta nadar.5. (yo)gusta cantar. CHALLENGE ACTIVITY 3.7.2: Type casting: Reading and adding values. Assign totalowls with the sum of num_owls A and num_owls_B. Sample output with inputs: 34 Number of owls: 7 1. total_owls - 2.3. num_owls A - input 4. num_owls_B - input 5.6. " Your solution goes here 7.8. print("Number of owls:', total_owls)