Answer:
Here, we have
Initial velocity, u = 0 m/s (As starts from rest)
Acceleration, a = 2 m/s².
Time taken, t= 310 min = 310 × 60 = 18600 seconds
To Find,
Final velocity, v and,
Distance covered, s
Formula to be used,
1st and 3rd equation of motion,
v = u + at and v² - u² = 2as
So, putting all the values, we get
V = u + at
v = 0 + 2 x 18600
v = 2 x 18600 → v = 37200 m/s.
Hence, the final velocity is 37200 m/s.
Now, Distance covered,
v² - u²= 2as
(37200 )² - (0)² = 2 x 2 x s
1,383,840,000 = 4s → s = 345,960,000m
Hence, the distance covered is 345,960,000 m.
The tin can with water in its bottom is heated to boil water and the steam is allowed to escape for some time. The open mouth is sealed with an air-tight cap and cooled under tap water. The tin can get crushed, why?
Explanation:
Water does expand with heat (and contract with cooling), but the amount of expansion is pretty small. So when you boil a can filled with water and seal it, the water will contract slightly as it cools. The can may kink slightly, but that will be it. Actually, most likely the only things you will be able to see is then top and bottom will be sucked in and go concave. Just like a commercial can of beans.
Now if you have a can with a little water and a big air space, things are completely different.
As the water boils, water vapour is given off. Steam. Let it boils for a minute just to make sure (nearly) all the air is expelled and the can is filled with steam.
Now when you put the lid on and cool the can, that steam condenses back to water, and goes from filling the can to a few drops of water. The can is now filled (if that is the right word) with a near vacuum, The air pressure, 15 lbs/square inch, will be pressing on every surface of the can, with nothing inside the can to resist it.
The can will crumple before your eyes.
why a person feel weightlessness in a spacecraft orbiting around a heavenly body
Answer:
The orbital velocity an aircraft orbiting around a heavenly body is found as follows;
At the orbital velocity, [tex]F_G[/tex] = [tex]F_C[/tex]
Where;
[tex]F_G[/tex] = The gravitational force = [tex]\dfrac{G \cdot M \cdot m}{R_E^2}[/tex]
[tex]F_C[/tex] = The centripetal force = [tex]\dfrac{m \cdot v_0^2}{R_E}[/tex]
Therefore
[tex]v_0 = \sqrt{\dfrac{G \cdot M}{R_E} }[/tex]
Therefore, at the orbital velocity of the spacecraft, the centripetal force attracting the person away from the central region heavenly body is equal to the gravitational force pulling the person towards the center of the heavenly body (which was felt as her or his weight), and the person feels weightless while inside the orbiting spacecraft
Explanation:
At the end of an investigation, you must__________ ____________. Your results may or may not support your hypothesis.
Answer:
could and largejsjisj and we look like they can get to
Which of the following changes would not lead to changes in the efficiency of
a heat engine?
A. Doubling the work done while keeping the heat flow into the
engine the same
B. Doubling the heat flow into the engine while halving the work done
C. Doubling both the work done and the heat flow into the engine
D. Doubling the heat flow into the engine while keeping the work
done the same
Explanation:
B. Doubling the heat flow into the engine while halving the work done
hope this helps you
have a nice day
Write any three importance of Measurement.
Stay Safe,Stay Healthy and Stay Happy
Please answer me this question fast, PLEASE
Explanation:
The three importance of measurement are as follows :-
measurement is used to compare the items when barter system takes place .measurement helps in weighing the foods , groceries etc .Measurement are important in laboratory when there experiments is being taken for different purposes .Hope it is helpful to you
✌️✌️✌️✌️✌️✌️✌️
When 24.0 V is applied to a
capacitor, it stores 3.92 x 10-4 J of
energy. What is the capacitance?
[?] x 10!? E
[tex]\boxed{\sf E=QV^2}[/tex]
[tex]\\ \sf\longmapsto Q=\dfrac{E}{V^2}[/tex]
[tex]\\ \sf\longmapsto Q=\dfrac{3.92\times 10^{-4}}{24^2}[/tex]
[tex]\\ \sf\longmapsto Q=\dfrac{3.92\times 10^{-4}}{576}[/tex]
[tex]\\ \sf\longmapsto Q=0.006\times 10^{-4}C[/tex]
[tex]\\ \sf\longmapsto Q=6\times 10^{-1}C[/tex]
[tex]\\ \sf\longmapsto Q=0.6C[/tex]
Now
[tex]\boxed{\sf Q=CV}[/tex]
[tex]\\ \sf\longmapsto C=\dfrac{Q}{V}[/tex]
[tex]\\ \sf\longmapsto C=\dfrac{0.6}{24}[/tex]
[tex]\\ \sf\longmapsto C=0.025F[/tex]
Note:-
SI unit of charge is Coulomb(C)SI unitvof Capacitance is Farad(F)when a .... cause an object to move through a ...., the .... on the object
Explanation:
velocity - the speed with a direction. Thus, inertia could be redefined as follows: Inertia: tendency of an object to resist changes in its velocity. ... Such an object will not change its state of motion (i.e., velocity) unless acted upon by an unbalanced force.
Which of the following is NOT a type of wave?
a.
deep-water wave
c.
shallow-water wave
b.
open wave
d.
storm surge
Please select the best answer from the choices provided
A
B
C
D
Answer:
I think deep-water wave is not a wave
Explanation:
but it will be better if u wait for the second answer as I am not sure
Shallow water wave is not a type of wave. Thus, the correct option is C.
What is a Wave?A wave is a disturbance in a medium which carries energy without a net movement of particles in the medium. A wave may take the form of elastic deformation, it is a variation of pressure, electric or the magnetic intensity, electric potential, or the temperature of the medium.
Shallow water waves take place in the shallow water, this means that the waves which occur at depths that is shallower than the wavelength of the wave divided by 20. This would mean that a wave with a wavelength of about 60 meters is a shallow water wave at depth range of less than 60 divided by 20, or 3 meters.
Therefore, the correct option is C.
Learn more about Wave here:
https://brainly.com/question/3639648
#SPJ2
If the wave is detected 12.5 minutes after the earthquake, estimate the distance from the detector to the site of the quake
Answer:
Remember the relation:
Speed*Time = Distance.
We can estimate that the speed at which an earthquake "moves", in the surface, is:
S = 6km/s (this is a low estimation actually)
Then if the wave is detected 12.5 minutes after the earthquake, we know that it traveled for 12.5 minutes before reaching the detector.
So we know the speed of the wave and the time it took to reach the detector, then we can use the equation:
Speed*Time = Distance.
to find the distance.
First, we should write the time in seconds
we know that:
1 min = 60 s
then:
12.5 min = 12.5*(60 s) = 750 s
Then, the wave traveled with a speed of 6 km/s for 750 seconds until it reached the detector, then the distance that it traveled is:
(6km/s)*750s = 4500 km
The distance between the detector and the site of the quake is around 4500 km.
A scientist measures the light from a distant star
at 525 nm. The constant for Wien's
displacement law is 2.9 x 10-3 m K. What is the
approximate temperature of the star in Kelvins?
A) 1500 K
B) 180,000 K
C) 1.5 K
D) 5500 K
The approximate temperature of the star as determined is D) 5500 K.
The Wien's displacement law relates the maximum wavelength of a body to its absolute temperature. Wien's displacement law states that:
λ = [tex]\frac{b}{T}[/tex]
where λ is the maximum wavelength of the body, b is the constant of proportionality and T is the absolute temperature.
Thus from the given question, λ = 525 nm (525 x [tex]10^{-9}[/tex]), and b = 2.9 x [tex]10^{-3}[/tex] mK.
So that,
525 x [tex]10^{-9}[/tex] = [tex]\frac{2.9*10^{-3} }{T}[/tex]
Make T the subject of the formula to have;
T = [tex]\frac{2.9*10^{-3} }{525*10^{-9} }[/tex]
= 5523.81
T = 5523.81 K
T ≅ 5500.00 K
The approximate temperature of the star in Kelvin is 5500 K.
For more clarifications, kindly visit: https://brainly.com/question/20038918
What is the importance of physics???
MAKE IT QUICK!!!
Answer:
Physics is the branch of science concerned with the nature and properties of matter and energy. The subject matter of physics, distinguished from that of chemistry and biology, includes mechanics, heat, light and other radiation, sound, electricity, magnetism, and the structure of atoms. And a more detailed working definition of physics may be: The science of nature, or that which pertains to natural objects, which deals with the laws and properties of matter and the forces which act upon them. Quite often, physics concentrates upon the forces having an impact upon matter, that is, gravitation, heat, light, magnetism, electricity, and others.
Physics helps us to understand how the world around us works, from can openers, light bulbs and cell phones to muscles, lungs and brains; from paints, piccolos and pirouettes to cameras, cars and cathedrals; from earthquakes, tsunamis and hurricanes to quarks, DNA and black holes. Physics helps us to organize the universe. It deals with fundamentals, and helps us to see the connections between seemly disparate phenomena.
Physics provides quantitative and analytic skills needed for analyzing data and solving problems in the sciences, engineering and medicine, as well as in economics, finance, management, law and public policy. Physics is the basis for most modern technology, and for the tools and instruments used in scientific, engineering and medical research and development. Manufacturing is dominated by physics-based technology.
To understand the fundamental principles of the universe, physics utilizes many workings from the other natural sciences. Because of this overlap, phenomena studied in physics (conservation of energy for example) are common to all material systems. The specific ways in which they apply to energy (hence, physics) are often referred to as the "laws of physics." Because each of the other natural sciences biology, chemistry, geology, material science, medicine, engineering, and others, work with systems which adhere to the laws of physics, physics is often referred to as the "fundamental science."
Answer:
Physics can be important in understanding the world and how it works. The main goal of physics is to understand how the universe behaves.
Explanation:
An astronaut on Pluto attaches a small brass ball to a 1.00-m length of string and makes a simple pendulum. She times 10 complete swings in a time of 257 seconds. From this measurement she calculates the acceleration due to gravity on Pluto. What is her result
Answer:
The acceleration due to gravity at Pluto is 0.0597 m/s^2.
Explanation:
Length, L = 1 m
10 oscillations in 257 seconds
Time period, T = 257/10 = 25.7 s
Let the acceleration due to gravity is g.
Use the formula of time period of simple pendulum
[tex]T = 2\pi\sqrt{\frac{L}{g}}\\\\25.7 = 2 \times 31.4\sqrt{\frac{1}{g}}\\\\g = 0.0597 m/s^2[/tex]
How many meters are in 10 miles?
Answer:
Explanation:
16093.4
5. A child rides a pony on a circular track with a radius of 5 m Find the distance traveled and the placement
after the child has gone halfway around the track (8) Does the distance traveled increase, decrease, or stay the
same when the child completes one circuit of the track? Does the displacement increase, decrease, or stay the
same? Explain. (C) Find the distance and displacement ter a complete circuit of the track
The answer are :
A. Distance = 15.71 m , The displacement = 10 m
B. distance traveled will increase, displacement will decrease
C. The distance = 31.42 m , Displacement = 0
Difference between Distance and DisplacementDistance is a scalar quantity, while displacement is a vector quantity. Displacement is the distance travelled in a specific direction.
Given that a child rides a pony on a circular track with a radius of 5 m, after the child has gone halfway around the track
(A)
The distance traveled will be = 2[tex]\pi[/tex]r / 2
The distance = πr
The distance = 22/7 x 5
The distance = 15.71 m
The displacement = 2r
The displacement = 2 x 5
The displacement = 10 m
(B) The distance traveled will increase as the child completes one circle of the track but the displacement will decrease because the displacement in one cycle of a circular motion is zero since it is a vector quantity.
(C) The distance after a complete circuit of the track = 2πr
The distance = 2 × 22/7 × 5
The distance = 31.42 m
The displacement after a complete circuit of the track will be zero.
That is;
Displacement = 0
Therefore, the distance traveled and the displacement after the child has gone halfway around the track are 15.7 m and 10 m respectively. While the distance and displacement after a complete circle of the track are 31.42 m and 0 respectively.
Learn more about Displacement here: https://brainly.com/question/2109763
#SPJ1
A force of 10 N is making an angle of 30° with the horizontal. Its horizontal component will be:
A. 4N
B. 5N
C. 7N
D. 8.7 N
Answer:The answer is A
Explanation:just did it on a test
(This is for other people with this Question i hope you find this when you need help) Need answer for this Help!!!
Question 7 of 20 You plan to use a slingshot to launch a ball that has a mass of 0.025 kg. You want the ball to accelerate straight toward your target at 19 m/s2. How much force do you need to apply to the ball? O A. 19.03 N OB. 0.48 N O C. 4.51 N D. 760.00 N
Answer:
0.48N
Explanation:
according to the second law of motion
force=mass×acceleration
the mass in this question is 0.025,the acceleration 19
therefore f=0.025×19
=0.48N
I hope this helps
Any particle in this platform who belongs to the planet mars or venus or maybe neptune or from uranus or maybe mercury or jupiter i guess
Answer:
Ever since the discovery of Pluto in 1930, kids grew up learning that the solar system has nine planets. That all changed in the late 1990s, when astronomers started arguing about whether Pluto was indeed a planet. In a highly controversial decision, the International Astronomical Union ultimately decided in 2006 to designate Pluto as a "dwarf planet," reducing the list of the solar system's true planets to just eight.
Maya and Kenzie are discussing oil spills and how they impact the environment. How can humans help reduce the impact of oil spills?
Answer:
Using physical and chemical clean up methods to remove the oil
Explanation:
How does 'g' vary from place to place?
Explanation:
The acceleration g varies by about 1/2 of 1 percent with position on Earth's surface, from about 9.78 metres per second per second at the Equator to approximately 9.83 metres per second per second at the poles.
A toy car with a mass of 5.5 kg is moving horizontally over flat ground at a speed of 2.1 m/s. An unknown force then directly pushes the car for a distance of 3 meters, after which the car has a speed of 7.3 m/s. You may assume that air resistance and friction are both negligible. What was the magnitude of the unknown force
Answer:
The magnitude of the unknown force is 44.8 N.
Explanation:
The force can be found with Newton's second law:
[tex] F = ma [/tex]
Where:
m: is the mass of the toy car = 5.5 kg
a: is the acceleration
F: is the force =?
We can calculate the acceleration with the following kinematic equation:
[tex] v_{f}^{2} = v_{0}^{2} + 2ad [/tex]
Where:
[tex] v_{f} [/tex]: is the final speed = 7.3 m/s
[tex] v_{0} [/tex]: is the initial speed = 2.1 m/s
d: is the distance traveled = 3 m
Hence, the acceleration is:
[tex] a = \frac{v_{f}^{2} - v_{0}^{2}}{2d} = \frac{(7.3 m/s)^{2} - (2.1 m/s)^{2}}{2*3 m} = 8.15 m/s^{2} [/tex]
Finally, the magnitude of the force is:
[tex]F = ma = 5.5 kg*8.15 m/s^{2} = 44.8 N[/tex]
Therefore, the magnitude of the unknown force is 44.8 N.
I hope it helps you!
b. The role of the moon is greater than that of the sun in the occurrence of tides. ???
Our sun is 27 million times larger than our moon. Based on its mass, the sun's gravitational attraction to the Earth is more than 177 times greater than that of the moon to the Earth. If tidal forces were based solely on comparative masses, the sun should have a tide-generating force that is 27 million times greater than that of the moon. However, the sun is 390 times further from the Earth than is the moon. Thus, its tide-generating force is reduced by 3903, or about 59 million times less than the moon. Because of these conditions, the sun’s tide-generating force is about half that of the moon.
Hydroplaning causes your front wheels to actually leave the pavement and the wheels are riding on a thin layer of water. This lack of traction with the pavement takes away your control of the vehicle. To regain control of your vehicle you should___________.
Answer: Remove your foot from the gas pedal and slow down
Explanation:
Hydroplaning also refers to aquaplaning and this refers to the scenario whereby there's a layer of water that builds between the tyres of a car and the surface of the road which then brings about a loss of traction which eventually leads to a situation whereby the car doesn't respond to control inputs.
This lack of traction with the pavement takes away your control of the vehicle and to regain control of the vehicle, one should remove your foot from the gas pedal and slow down.
In a Rutherford scattering experiment, alpha parti- cles having kinetic energy of 7.70 MeV are fired toward a gold nucleus that remains at rest during the collision. The alpha particles come as close as 29.5 fm to the gold nucleus before turning around. (a) Calculate the de Broglie wave- length for the 7.70-MeV alpha particle and compare it with the distance of closest approach, 29.5 fm. (b) Based on this comparison, why is it proper to treat the alpha particle as a particle and not as a wave in the Rutherford scattering experiment
(a) The de Broglie wavelength is approximately 5.175 × 10⁻¹⁵ meters. The wavelength is lesser than the distance of closest approach
(b) It is proper to treat the alpha particle as a particle and not as wave because the distance of closest approach is much larger than and not comparable to its wavelength for the alpha particle for the alpha particle to be treated as a wave
The given parameters are;
The kinetic energy of the alpha particles = 7.70 MeV = 1.23368 × 10⁻¹² J
The distance from the gold nucleus the alpha particles reach = 29.5 fm
(a) The de Broglie wavelength of a particle is given as follows;
[tex]\mathbf{\lambda = \dfrac{h}{p}}[/tex]
Where;
λ = The wavelength
h = Planck's constant = 6.62607004 × 10⁻³⁴ m²·kg/s
p = The momentum of the particle = Mass of an electron, m × Velocity, v
The mass of an alpha particle, m ≈ 6.645 × 10⁻²⁷ kg
Therefore;
[tex]\lambda = \dfrac{h}{m \times v}[/tex]
The kinetic energy of the alpha particle, K.E. = (1/2)·m·v²
∴ v = √(2 × K.E./m)
Therefore;
[tex]\lambda = \dfrac{h}{m \times \sqrt{2 \times \dfrac{K.E.}{m} } } = \dfrac{h}{ \sqrt{2 \times m \times K.E.} }[/tex]
Plugging in the values of the variables gives;
[tex]\lambda = \dfrac{6.62607004 \times 10 ^{-34} }{ \sqrt{2 \times 6.645 \times 10 ^{-27} \times 1.23368 \times 10^{-12} } } \approx 5.175 \times 10^{-15}[/tex]
The de Broglie wavelength of the alpha particle, λ ≈ 5.175 × 10⁻¹⁵ m
The distance of closest approach = 29.5 fm = 29.5 × 10⁻¹⁵ m
Compared to the distance of closest approach, the wavelength of the alpha particle is lesser than the distance of closest approach
(b) Given that the distance of closest approach is six times larger than the wavelength of the alpha particle, and alpha particle behaving as waves are expected to approach closer to the gold nucleus in the region of their wavelength before deflection, therefore, the larger distance of closest approach is indicative of a charged particle to charged particle interaction, and therefore, particle behavior of alpha particles.
Learn more about de Broglie wavelength, particles and wave behavior of radiation here;
https://brainly.com/question/22471405
https://brainly.com/question/17403491
https://brainly.com/question/15128575
what are the two things that get their current from generator?
Answer:
Kinetic Generating Plants
Hydro-electric plants and wind-mills also convert energy into electricity. Instead of heat energy, they use kinetic energy, or the energy of motion. Moving wind or water (sometimes referred to as "white coal") spins a turbine, which in turn spins the rotor of a generator?
The mass of a body:
(a) decreases when accelerated
(b) increases when accelerated
(c)decreases when moving with high velocity
(d)none of above
Câu 1. Con lắc lò xo treo thẳng đứng, dao động điều hòa với biên độ 2cm và tần số góc 20 rad/s. Chiều dài tự nhiên của lò xo là 30cm. Chiều dài nhỏ nhất và lớn nhất của lò xo trong quá trình dao động là bao nhiêu? Lấy g = 10m/s2.
Answer:
28 cm and 32 cm
Explanation:
1. The spring pendulum hangs vertically, oscillates harmonic with amplitude 2cm and angular frequency 20 rad/s. The natural length of
a spring is 30cm. What is the minimum and maximum length of the spring during the oscillation? Take g = 10m/s2.
As the amplitude is 2 cm and the natural length is 30 cm. So, it oscillates between 30 -2 = 28 cm to 30 + 2 = 32 cm.
So, the minimum length is 28 cm and the maximum length is 32 cm.
what will happen to the gravitational force between two bodies if the distance between them is halved keeping their masses constant ?..
I need help asap please
Answer:
I dont know answer Sorry For that thank u
An electromagnetic wave has a frequency of 6.0 x 10^18 Hz. What is the
wavelength of the wave? Use the equation 2 = and the speed of light as 3.0
x 108 m/s.
Answer:
Wavelength = 5 * 10^{-11} meters
Explanation:
Given the following data;
Frequency = 6.0 x 10^18 Hz
Speed = 3 * 10⁸ m/s
To find the wavelength of the wave;
Mathematically, the wavelength of a wave is given by the formula;
[tex] Wavelength = \frac {speed}{frequency} [/tex]
Substituting into the formula, we have;
[tex] Wavelength = \frac {3 * 10^{8}}{6.0 x 10^{18}} [/tex]
Wavelength = 5 * 10^{-11} meters
Using a fixed 20 V from the power source and three lightbulbs that have the same resistance, how would you design a circuit that would allow at least one bulb to use maximum power (have maximum brightness)?
Answer:
check photo
Explanation:
We should connect the three bulbs in parallel in order to allow at least one bulb to use maximum power.
We have a 20 V power source and three lightbulbs that have the same resistance.
We have to design a circuit that would allow at least one bulb to use maximum power.
What is the total resistance of the circuit if three resistances each of of resistance R(1), R(2) and R(3) are connected in parallel ?For parallel combination of resistances, the total resistance will be -
[tex]\frac{1}{R_{T} } =\frac{1}{R(1)} +\frac{1}{R(2)} +\frac{1}{R(3)} \\[/tex]
We know that the power dissipated by the resistance is equal to -
P = V x I = [tex]I^{2} R[/tex] = [tex]\frac{V^{2} }{R}[/tex]
Let the three bulbs be B(1), B(2) and B(3) each with resistance ' R '. In parallel combination of the bulbs, the voltage across each bulb will be same as that of power source -
V [B(1)] = V [B(2)] = V [B(3)] = 20 V
Therefore, the power used by each bulb will be -
P [B(1)] = P [B(2)] = P [B(3)] = [tex]\frac{20\times 20}{R}=\frac{400}{R}[/tex]
Whereas, in series combination the voltage drop will regularly take place after the current passes through a resistor.
Hence, we should connect the three bulbs in parallel in order to allow at least one bulb to use maximum power.
To solve more question on Power use, visit the link below -
https://brainly.com/question/22103646
#SPJ2