Answer: P=250n-2750
Step-by-step explanation:
The profit function of the boathouse is given as follows p = 250n- 2750.
What is the profit function?The profit function is a mathematical function that reflects a company's or business's profit as a function of the number of products or services produced and sold.
The revenue generated by the boathouse with n boats is given by the monthly fee per boat multiplied by the number of boats, which is $900n.
The total cost to operate the boathouse with n boats is the fixed cost of $2750 plus the variable cost of $650 per boat, which is $2750 + $650n.
Therefore, the profit function of the boathouse is given by the revenue minus the cost:
p = 900n - (2750 + 650n)
Simplifying this expression, we get:
p = 250n - 2750
Thus, the answer is (c) p = 250n - 2750.
Learn more about the profit function here:
https://brainly.com/question/29106570
#SPJ5
You roll a six-sided number cube (die). What is the BEST answer for the probability that the number rolled is between 1 and 6, inclusive?
A) certain
B) unlikely
C) impossible
D) very likely
Answer: It is A certain.
Step-by-step explanation:
Because all the numbers on a six-sided cube is between 1 and 6 so it is certain or 100/100 that the number will land on a number between 1 and 6.
The picture shows a cement bag of weight Fg hanging from a rope which itself is supported by two other ropes attached to a ceiling. The latter two ropes make an angle θ1 and θ2 with the ceiling. Determine the tension in each rope. Use the angle addition identity to simplify your result: sin(α ± β) = sin α cos β ± cos α sin β
Answer:
[tex]T_1= \dfrac{F_gcos \theta_2}{sin (\theta_1+\theta_2)}[/tex]
Step-by-step explanation:
From the free body diagram attached below; we will see that
T₃ = Fg ------ (1)
Thus; as the system is in equilibrium, the net force in the x and y direction shows to be zero
Then;
[tex]\sum F_x= 0 \to T_2 Cos \theta _2 - T_1 cos \theta _1[/tex]
[tex]T_2 Cos \theta _2 = T_1 cos \theta _1 \ \ \ \ \ - - - (2)[/tex]
Also;
[tex]\sum F_y =0 \to T_2sin \theta_2+T_1sin \theta_1 - T_3 = 0[/tex]
[tex]T_3 = T_2sin \theta_2+T_1sin \theta_1[/tex] ---- (3)
From equation (2):
[tex]T_2 = \dfrac{T_1cos \theta_1}{cos \theta_2}[/tex]
Replacing the above value for T₂ into equation 3; we have
[tex]T_3 = \dfrac{T_1cos \theta_1}{cos \theta_2}sin \theta_2+T_1sin \theta_1[/tex]
[tex]T_3 cos \theta_2 = {T_1cos \theta_1}{}sin \theta_2+T_1sin \theta_1 cos \theta_2[/tex]
[tex]T_3 cos \theta_2 = T_1(cos \theta_1 sin \theta_2+sin \theta_1 cos \theta_2)[/tex] ---- (4)
Using trigonometric identity Sin (A+B) = SIn A cos B + Cos A sin B
So ; equation 4 can now be:
[tex]T_3 cos \theta_2 = T_1sin(\theta _1 + \theta_2)[/tex] --- (5)
replacing equation (1) into equation (5) ; we have:
[tex]F_g}cos \theta_2 =T_1 sin (\theta_1+\theta_2)[/tex]
Hence; the tension in the string is:
[tex]T_1= \dfrac{F_gcos \theta_2}{sin (\theta_1+\theta_2)}[/tex]
The scores on one portion of a standardized test are approximately Normally distributed, N(572, 51). a. Use the 68-95-99.7 rule to estimate the range of scores that includes the middle 95% of these test scores. b. Use technology to estimate the range of scores that includes the middle 90% of these test scores.
Answer:
a) The range of scores that includes the middle 95% of these test scores is between 470 and 674.
b) The range of scores that includes the middle 90% of these test scores is between 488.1 and 655.9.
Step-by-step explanation:
68-95-99.7 rule:
The Empirical Rule states that, for a normally distributed random variable:
68% of the measures are within 1 standard deviation of the mean.
95% of the measures are within 2 standard deviation of the mean.
99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Z-score:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question:
Mean [tex]\mu = 572[/tex], standard deviation [tex]\sigma = 51[/tex]
a. Use the 68-95-99.7 rule to estimate the range of scores that includes the middle 95% of these test scores.
By the 68-95-99.7 rule, within 2 standard deviations of the mean.
572 - 2*51 = 470
572 + 2*51 = 674
The range of scores that includes the middle 95% of these test scores is between 470 and 674.
b. Use technology to estimate the range of scores that includes the middle 90% of these test scores.
Using the z-score formula.
Between these following percentiles:
50 - (90/2) = 5th percentile
50 + (90/2) = 95th percentile.
5th percentile.
X when Z has a pvalue of 0.05. So when X when Z = -1.645.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]-1.645 = \frac{X - 572}{51}[/tex]
[tex]X - 572 = -1.645*51[/tex]
[tex]X = 488.1[/tex]
95th percentile.
X when Z has a pvalue of 0.95. So when X when Z = 1.645.
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]1.645 = \frac{X - 572}{51}[/tex]
[tex]X - 572 = 1.645*51[/tex]
[tex]X = 655.9[/tex]
The range of scores that includes the middle 90% of these test scores is between 488.1 and 655.9.
On circle OOO below, the measure of \stackrel{\LARGE{\frown}}{FJ} FJ ⌢ F, J, start superscript, \frown, end superscript is 84^\circ84 ∘ 84, degrees. The measure of \stackrel{\LARGE{\frown}}{GH} GH ⌢ G, H, start superscript, \frown, end superscript is 76^\circ76 ∘ 76, degrees. What is the measure of \angle HKJ∠HKJangle, H, K, J?
Answer:
100°
Step-by-step explanation:
The angle between chords is the average of the intersected arc angles.
∠FKJ = ½ (84° + 76°)
∠FKJ = 80°
∠HKJ is supplementary to ∠FKJ.
∠HKJ = 180° − 80°
∠HKJ = 100°
A bedroom wall is to be painted around a window as shown below.
A rectangle with length 11 feet and width 10 feet. A smaller rectangle with length 3 feet and width 2 feet is cut out of the larger rectangle.
What is the area of the wall that will be painted?
A.6 feet squared
B.104 feet squared
C.110 feet squared
D.116 feet squared
Answer:B.104 feet squared
Step-by-step explanation:
First find the area of the rectangle 11×10=110 then find the area of the window 3×2=6 then subtract 110-6=104
Answer:
B
Step-by-step explanation:
Identify two Pythagorean triples using the known triple 9, 40 , 41. *
Your answer
Step-by-step explanation:
[tex] {a}^{2} + {b}^{2} = {c}^{2} \\ {9}^{2} + {40}^{2} = {41}^{2} \\ 81 + 1600 = 1681 \\ 1681 = 1681[/tex]
how many square feet of of outdoor carpet will we need for this hole?
Answer:
To convert the feet to square feet we have to multiply the length by the width. In which, we should get the answer as well.
Our length is 2ft, since it's a rectangle the other side is 2ft as well.
The width is 3ft, and the other half is 3ft.
So, basically to get the area of the hole, it'd be 3*2=
Which, it's 6sq ft.
Step-by-step explanation:The actual answer is 36. If I am wrong i am sorry ;3
the atlantic ocean is 2.78×10^4 feet deep at it's lowest point. If a scuba diver dives 1/50 of the total depth of the ocean, enter how many feets he dove down?
Answer:
556 feet
Step-by-step explanation:
What you have to do to get the answer is find out what 10^4 is, and then multiply that by 2.78. After that, you just need to divide it by 50.
10^4 = 10,000
2.78 × 10,000 = 27,800
27,800 ÷ 50 = 556
Answer:
556
Step-by-step explanation:
Jessica bought the ingredients to make chicken soup, and wanted to make a double batch, which would be 18 cups of soup. A quick Google search told her that this was 259.9 cubic inches. She hoped the soup pot below would be big enough. The soup pot is 9 inches tall with a radius of 3.5 inches. What is the volume of the soup pot? Answer choices are rounded to the nearest tenth cubic inch. 169.6 cubic inches 890.6 cubic inches 197.9 cubic inches 346.4 cubic inches
Answer: 346.4 in^3
Step-by-step explanation:
The pot can be thinked as a cylinder:
The volume of a cylinder is equal to:
V = (pi*r^2)*h
where h is the height, r is the radius and pi = 3.1416
Here we have that: r = 3.5in, h = 9in.
Then the volume is:
V = 3.1416*(3.5in)^2*9in = 346.4in^3
Ramesh examined the pattern in the table. Powers of 7 Value 7 Superscript 4 2,401 7 Superscript 3 343 7 Superscript 2 49 7 Superscript 1 7 7 Superscript 0 1 7 Superscript negative 1 StartFraction 1 Over 7 EndFraction Ramesh says that based on the pattern 7 Superscript negative 5 = negative 16,807. Which statement explains whether Ramesh is correct? Ramesh is correct because 7 Superscript negative 5 is equivalent to Negative 7 times (negative 7) times (negative 7) times (negative 7) times (negative 7), which has the same value as Negative 16,807. Ramesh is correct because as the exponents decrease, the previous value is divided by 7, so 7 Superscript negative 5 = 1 divided by 7 divided by 7 divided by 7 divided by 7 divided by 7 = negative 16,807. Ramesh is not correct because 7 Superscript negative 5 is equivalent to StartFraction 1 Over 7 Superscript 5 EndFraction, which has the same value as StartFraction 1 Over 7 Superscript 4 EndFraction divided by 7 = StartFraction 1 Over 7 cubed EndFraction = StartFraction 1 Over 343 EndFraction. Ramesh is not correct because as the exponents decrease, the previous value is divided by 7, so 7 Superscript negative 5 = 1 divided by 7 divided by 7 divided by 7 divided by 7 divided by 7 = StartFraction 1 Over 16,807 EndFraction. NEED HELP NOW PLEASE I HAVE ONLY SEEN WRONG ANSWERS
Answer:
D
Step-by-step explanation:
Answer:
D.- Ramesh is not correct because as the exponents decrease, the previous value is divided by 7, so 7^-5 = 1 ÷ 7 ÷ 7 ÷ 7 ÷ 7 ÷ 7 = 1/16,807.
if a cube measures 5.3 cm on each side and has a mass of 280 grams how much is its volume
Answer:
8.1 g/cm
Step-by-step explanation:
A polynomial function has a root of -5 with multiplicity 3, a root of 1 with multiplicity 2, and a root of 3 with multiplicity 7. If the
function has a negative leading coefficient and is of even degree, which statement about the graph is true?
The graph of the function is positive on (-0, 5).
The graph of the function is negative on (-5, 3)
The graph of the function is positive on (-0, 1).
The graph of the function is negative on (3,co)
Mark this and return
Save and Exit
Sabem
Answer:
The graph of the function is negative on (3, ∞)
Step-by-step explanation:
The function starts negative at the left side of the graph, crosses the x-axis at x = -5, touches the x-axis at x = 1, again crosses into negative values at x = 3.
The function is positive on the open intervals (-5, 1) and (1, 3). It is negative on the open intervals (-∞, -5) and (3, ∞). The latter description matches the last answer choice:
the graph of the function is negative on (3, ∞).
The Senate in a certain state is comprised of 58 Republicans, 39 Democrats, and 3 Independents. How many committees can be formed if each committee must have 3 Republicans and 2 Democrats?
YuAnswer:
Step-by-step explanation:
I really don't know the answer sorry
Which number line correctly shows 0.8 + 0.3?
Answer:
the second answer
Step-by-step explanation:
cause 0+0.8 is 0.8 and 0.8+0.3 is 1.1
Answer:
A
Step-by-step explanation:
What is the solution to the equation StartFraction m Over m + 4 EndFraction + StartFraction 4 Over 4 minus m EndFraction = StartFraction m squared Over m squared minus 16 EndFraction?
Answer: m = -2.
The given equation is: [tex]\frac{m}{m+4}+\frac{4}{4-m}=\frac{m^{2}}{m^{2}-16}[/tex].
The LCM of the denominators = [tex]m^{2}-16=(m+4)(m-4)[/tex].
We multiply both sides by LCM.
[tex]\left(m+4\right)\left(m-4\right)\left(\frac{m}{m+4}+\frac{4}{4-m}\right)=\left(m+4\right)\left(m-4\right)\cdot\frac{m^{2}}{m^{2}-16}[/tex]
[tex]m\left(m-4\right)-4\left(m+4\right)=m^{2}[/tex]
[tex]m^{2}-4m-4m-16=m^{2}[/tex]
[tex]8m=-16\\m=-2[/tex]
Learn more: https://brainly.com/question/13769924
Answer:
M=-2 B
Step-by-step explanation:
trust me i took the quiz
................................................
Answer:
V =108 ft^3
Step-by-step explanation:
The volume is found by
V = Bh where B is the area of the base
B = the area of the trapezoid
B = 1/2 (b1+b2)*h of the trapezoid
B = 1/2(4+6)*4 = 1/2(10)*4 = 20
Now we can find the volume
V = 20* 9
V =108 ft^3
Lola has h hats. Polly has triple as many hats as Lola. Darla has eight less hats than Polly.
a. Write an expression for how many hats each person has in terms of h.
Answer:
number of Lola hats = h
number of Polly hats = 3h
number of Darla hats = 3h - 8
Step-by-step explanation:
Lola has h number of hats . Polly has triple as many as Lola . Then Darla has eight number of hat less than Polly. The expression for how many hat each person has in terms of h can be express below.
Let
number of Lola hats = h
number of Polly hats = 3h (recall Polly has triple as many as Lola)
number of Darla hats = 3h - 8(Note Darla has 8 number less of hats than Polly who already have 3h number of hats)
The simplest way to explain this is that Lola has h number of hats. This means she has h number of hats .Polly has triple of Lola hats, this implies that 3 times h of Lola hats is Polly hats. Then finally Darla hats is 8 less than Polly hats. This simply means if you subtract 8 from Polly's hats you have gotten Darla's hats.
Please help worth 20 points!!
Answer:I would think u would
Step-by-step explanation:42,500×26
Answer:
1634.62$
Step-by-step explanation:
P=S/n
P=42500/26=1634.62
The box plots show the weights, in pounds, of the dogs in two different animal shelters.
Weights of Dogs in Shelter A
2 box plots. The number line goes from 6 to 30. For the weights of dogs in shelter A, the whiskers range from 8 to 30, and the box ranges from 17 to 28. A line divides the box at 21. For shelter B, the whiskers range from 10 to 18, and the box ranges from 16 to 20. A line divides the box at 18.
Weights of Dogs in Shelter B
One-half of the dogs in each shelter are between which weights?
between 8 and 30 pounds in shelter A; between 10 and 28 pounds in shelter B
between 8 and 17 pounds in shelter A; between 10 and 16 pounds in shelter B
between 21 and 30 pounds in shelter A; between 18 and 28 pounds in shelter B
between 28 and 30 pounds in shelter A; between 20 and 28 pounds in shelter B
Answer:
the 2nd one
i am pretty sure
Step-by-step explanation:
Plz help ..............!!!!!
Answer:
1.8
is the median
Answer: 1.8
Step-by-step explanation: 1.8 is the median
The object below is a cubical lunch box having each edge as 10 cm.
Find its surface area.
A
600 cm2
B
360 cm2
C
300 cm2
D
36 cm2
Answer:
B
Step-by-step explanation:
The total surface area of a cubical lunch box having each edge as 10 cm is 600 square centimeter. Therefore, option A is the correct answer.
What is surface area of a cube?The surface area of the cube all six faces of the cube are made up of squares of the same dimensions then the total surface area of the cube will be the surface area of one face added six times to itself. The formula to find the surface area of a cube is 6a², where a is edge.
Given that, the cubical lunch box having each edge as 10 cm.
Here, surface area = 6×10²
= 600 square centimeter
Therefore, option A is the correct answer.
Learn more about the surface area of a cube here:
brainly.com/question/23273671.
#SPJ2
Suppose the round-trip airfare between Philadelphia and Los Angeles a month before the departure date follows the normal probability distribution with a mean of $387.20 and a standard deviation of $68.50. What is the probability that a randomly selected airfare between these two cities will be between $325 and $425?
Answer:
52.74% probability that a randomly selected airfare between these two cities will be between $325 and $425
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:
[tex]\mu = 387.20, \sigma = 68.50[/tex]
What is the probability that a randomly selected airfare between these two cities will be between $325 and $425?
This is the pvalue of Z when X = 425 subtracted by the pvalue of Z when X = 325. So
X = 425
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{425 - 387.20}{68.50}[/tex]
[tex]Z = 0.55[/tex]
[tex]Z = 0.55[/tex] has a pvalue of 0.7088
X = 325
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{325 - 387.20}{68.50}[/tex]
[tex]Z = -0.91[/tex]
[tex]Z = -0.91[/tex] has a pvalue of 0.1814
0.7088 - 0.1814 = 0.5274
52.74% probability that a randomly selected airfare between these two cities will be between $325 and $425
plzz help its timed ill give brainliest
whats the answer for 45 meters every 5 seconds = meters per second
Answer:
9 meters every second
Step-by-step explanation:
45/5=9
5/5=1
9:1
Solve.
A European swallow flies about 12 meters in 1 second.
How many kilometers could it fly in 15 minutes?
It could fly |
Answer:
It could fly 10,8 kilometers.
Step-by-step explanation:
The European swallow fly speed is 12 meters per second.
We have to calculate how many kilometers it could fly in 15 minutes.
This can be calculated using the equivalent factors for each of the units:
- 1 km is equivalent to 1,000 meters.
- 1 minute is equivalent to 60 seconds.
We know that the distance travelled by the fly is the product of the speed and the time, so we have:
[tex]D=v\cdot t\\\\\\D=12\,\dfrac{m}{s}\cdot15\, min\\\\\\D=12\,\dfrac{m}{s}\cdot(\dfrac{1\,km}{1,000\,m})\cdot15\, min\cdot (\dfrac{60\,s}{1\,min})\\\\\\D=\dfrac{12\cdot 15\cdot 60}{1,000}\,km=\dfrac{10,800}{1,000}\,km\\\\\\D=10,8 \,km[/tex]
You have 9 pets:
4 fish,
1 cat,
2 dogs
and 2 birds. What is the probability a pet chosen at random is a dog or a four legged pet?
Answer:
1/3
Step-by-step explanation:
4 fish, 1 cat,2 dogs,and 2 birds = 9
dogs or 4 legged = cats and dogs = 1+2 = 3
P(dog or 4 legged) = number of dogs or 4 legged / total
=3/9
=1/3
Answer:
⅓
Step-by-step explanation:
Total pets:
4+1+2+2 = 9
Dog or four legged pets: 2 + 1 = 3
Probability: 3/9 = 1/3
Johanna wrote the system of equations.
4x-3y=1, 5x+4y=9
If the second equation is multiplied by 4, what should the first equation be multiplied by to eliminate the x-variable by addition?
Answer:
-5
Step-by-step explanation:
If the second equation is multiplied by 4, the coefficient of the x-variable will be 5·4 = 20. To eliminate the x-variable by addition, the first equation needs to be multiplied by a value that will result in an x-coefficient of -20. If that value is k, then we have ...
4k = -20
k = -20/4 = -5
The first equation should be multiplied by -5 to eliminate the x-variable by addition.
_____
Comment on general case
In general, if you have ...
ax +by = c
dx +ey = f
to eliminate the x-variable by addition, you can multiply the second equation by "a" and the first equation by "-d". In the problem above, those numbers are 4 and -5.
Answer:
-5
Step-by-step explanation:
how do I simplify this
Answer:Use Distributive property
Find an equation for the nth term of the arithmetic sequence.
a16 = 21, a17 = -1
Answer:nth term=a1 - 27n + 27
Step-by-step explanation:
first term =a1
common difference=d=-1-21
d=-27
Using the formula
Tn=a1 + d x (n-1)
nth term=a1 + (-27)(n-1)
nth term=a1 - 27n + 27
Please help if you can
Answer:
4
Step-by-step explanation:
We just have to find the corresponding d(t) value when t=2. From the graph, we can see that when t = 2, d(2) = 4. Hope this helps!