Answer: 8
Step-by-step explanation:
Given: A bag contains three red marbles, two green ones, one lavender one, two yellows, and two orange marbles.
Total marbles other than green = 8
Total marbles other than green and yellow = 6
Then the number of sets of seven marbles include at least one yellow one but no green ones:-
[tex]^{2}C_1\times^{6}C_6+ ^2C_2\times^6C_5\\\\= 2\times 1+1\times6\\\\=2+6=8[/tex]
Number of sets of seven marbles include at least one yellow one but no green ones = 8
What is credit?
an arrangement in which you receive money, goods, or services now in exchange for the promise of payment later
an arrangement in which you receive goods or services in exchange for other goods and services
an arrangement in which you receive money now and pay it bulk later with fees?
Find and interpret a 95% confidence interval to estimate the average number of bolts per box for all boxes in the population. Round to 3 decimal places.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The 95% confidence interval is [tex]49.85 < \mu < 54.15[/tex]
This means that there is 95% chance that the true population mean is within this interval
Step-by-step explanation:
From the question we are told that
The sample size is n = 30
The sample mean is [tex]\= x = 52[/tex]
The population standard deviation is [tex]\sigma = 6[/tex]
Given that the confidence level is 95% then the level of confidence is evaluate as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5\%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table , the values is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \frac{\sigma }{\sqrt{n} }[/tex]
substituting values
[tex]E = 1.96 * \frac{ 6 }{\sqrt{30} }[/tex]
[tex]E = 2.147[/tex]
The 95% confidence interval is mathematically represented as
[tex]\= x - E < \mu < \= x + E[/tex]
substituting values
[tex]52 - 2.147 < \mu < 52 + 2.147[/tex]
[tex]49.85 < \mu < 54.15[/tex]
Why is f (x) = (3x + 1/3)^2 + 8/9 not the vertex form of f (x)
not the vertex form of f (x) = 9x^2 +2x +1?
O The expression has a constant outside of the squared term.
O Some of the terms are fractions instead of integers.
O The expression is not the product of two binomials.
O The variable x has a coefficient.
Answer:
The Variable has a coefficient.
Step-by-step explanation:
the city of James town is 2 meters below sea level. Takoradi, a city in western region, is 7 meters below sea level . How much higher is James town than Takoradi
Answer:
James town is 5 meters higher than Takoradi .
Step-by-step explanation:
Given:
Height of James town = 2 meters below sea level
Height of Takoradi town = 7 meters below sea level
To find:
How much higher is James town that Takoradi = ?
Solution:
As we can see the standard of height is how much the town is below the sea level.
So, the height of town having lesser value will be at a higher level.
Value of Height of James town is lesser than that of Takoradi town.
Therefore, James town is at a higher level.
Difference of height = 7 meters - 2 meters = 5 meters
So, the answer is:
James town is 5 meters higher than Takoradi.
generate a continuous and differentiable function f(x) with the following properties: f(x) is decreasing at x=−5 f(x) has a local minimum at x=−3 f(x) has a local maximum at x=3
Answer:
see details in graph and below
Step-by-step explanation:
There are many ways to generate the function.
We'll generate a function whose first derivative f'(x) satisfies the required conditions, say, a quadratic.
1. f(x) has a local minimum at x = -3, and
2. a local maximum at x = 3
Therefore f'(x) has to cross the x-axis at x = -3 and x=+3.
Furthermore, f'(x) must be increasing at x=-3 and decreasing at x=+3.
f'(x) = -x^2+9
will satisfy the above conditions.
Finally f(x) must be decreasing at x= -5, which implies that f'(-5) must be negative.
Check: f'(-5) = -(-5)^2+9 = -25+9 = -16 < 0 so ok.
f(x) can then be obtained by integrating f'(x) :
f(x) = integral of -x^2+9 = -x^3/3 + 9x = 9x - x^3/3
A graph of f(x) is attached, and is found to satisfy all three conditions.
A function is differentiable at [tex]x = a[/tex], if the function is continuous at [tex]x = a[/tex]. The function that satisfy the given properties is [tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]
Given that:
The function decreases at [tex]x = -5[/tex] means that: [tex]f(-5) < 0[/tex]
The local minimum at [tex]x = -3[/tex] and local maximum at [tex]x = 3[/tex] means that:
[tex]x = -3[/tex] or [tex]x = 3[/tex]
Equate both equations to 0
[tex]x + 3 = 0[/tex] or [tex]3 - x = 0[/tex]
Multiply both equations to give y'
[tex]y' = (3 - x) \times (x + 3)[/tex]
Open bracket
[tex]y' = 3x + 9 - x^2 - 3x[/tex]
Collect like terms
[tex]y' = 3x - 3x+ 9 - x^2[/tex]
[tex]y' = 9 - x^2[/tex]
Integrate y'
[tex]y = \frac{9x^{0+1}}{0+1} - \frac{x^{2+1}}{2+1} + c[/tex]
[tex]y = \frac{9x^1}{1} - \frac{x^3}{3} + c[/tex]
[tex]y = 9x - \frac{x^3}{3} + c[/tex]
Express as a function
[tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]
[tex]f(-5) < 0[/tex] implies that:
[tex]9\times -5 - \frac{(-5)^3}{3} + c < 0[/tex]
[tex]-45 - \frac{-125}{3} + c < 0[/tex]
[tex]-45 + \frac{125}{3} + c < 0[/tex]
Take LCM
[tex]\frac{-135 + 125}{3} + c < 0[/tex]
[tex]-\frac{10}{3} + c < 0[/tex]
Collect like terms
[tex]c < \frac{10}{3}[/tex]
[tex]c <3.33[/tex]
We can then assume the value of c to be
[tex]c=3[/tex] or any other value less than 3.33
Substitute [tex]c=3[/tex] in [tex]f(x) = 9x - \frac{x^3}{3} + c[/tex]
[tex]f(x) = 9x - \frac{x^3}{3} + 3[/tex]
See attachment for the function of f(x)
Read more about continuous and differentiable function at:
https://brainly.com/question/19590547
A portion of the quadratic formula proof is shown. Fill in the missing reason.
Answer:
Find a common denominator on the right side of the equation
Step-by-step explanation:
The equation before the problem is
X² + b/a(x) + (b/2a)²= -c/a + b²/4a²
The next step in solving the above equation is to fibd tge common denominator on the right side of the equation.
X² + b/a(x) + (b/2a)²= -c/a + b²/4a²
X² + b/a(x) + (b/2a)²= -4ac/4a² + b²/4a²
X² + b/a(x) + (b/2a)²=( b²-4ac)/4a²
The right side of the equation now has a common denominator
The next step is to factorize the left side of the equation.
(X+b/2a)²= ( b²-4ac)/4a²
Squaring both sides
X+b/2a= √(b²-4ac)/√4a²
Final equation
X=( -b+√(b²-4ac))/2a
Or
X=( -b-√(b²-4ac))/2a
if the nth term is , then the (n+1)st is: Sorry if formatting is off, check the image to see the equation better!
Answer:
5
----------
( n+1)(n+2)
Step-by-step explanation:
5
----------
n ( n+1)
Replace n with n+1
5
----------
(n+1) ( n+1+1)
5
----------
( n+1)(n+2)
We replace every 'n' with n+1 and simplify
[tex]\frac{5}{(n+1)(n+1+1)} = \frac{5}{(n+1)(n+2)}[/tex]
10. (01.02)
Given the function f(x)
3x - 4
5
which of the below expressions is correct? (1 point)
5x+4
f-1(x) =
3
f-1(x)
5x - 4
3
O f-'(x)
-344
-3x – 4
5
4–3x
f-1(x) =
5
Answer:
5x+4f-1(x)=3 this is short answer
3. Solve 6 + 5 √ 2 4 9 − 2 x = 7
Answer:
please mark my answer brainliest
Step-by-step explanation:
question is unclear to give u correct answer
For
90° < 0 < 270°
, which of the primary trigonometric functions may have positive values?
Answer:
sine and tangent
will be positive.
Can someone please help me?
Negative Integers are :
Less than zeroTo the left of zero on a number line.You work for a pharmacy and monthly sales of asthma inhalers in your pharmacy follows a normal distribution with a mean of 191 inhalers per month and a standard deviation of 21 due to a storm the next shipment of inhalers did not arrive. The pharmacy only has 163 inhalers currently in stock and available to sell for the current month. What is the z score corresponding to selling 163 inhalers?
Answer: -1.33 .
Step-by-step explanation:
Formula to find the Z-score :
[tex]Z=\dfrac{\text{Expected value - Mean}}{\text{Standard deviation}}[/tex]
Given: Mean = 191 and Standard deviation = 21
Then , the z-score corresponding to the expected value of 163 will be :
[tex]Z=\dfrac{163-191}{21}\\\\=\dfrac{-28}{21}\approx-1.33[/tex]
Hence, the z score corresponding to selling 163 inhalers is -1.33 .
(08.01 MC)
The volume of a pyramid that fits exactly inside a cube is 9 cubic feet. What is the volume of the cube? (5 points)
Select one:
a. 3 cubic feet
b. 6 cubic feet
c. 18 cubic feet
d. 27 cubic feet
Answer:
d. 27 cubic feet
Step-by-step explanation:
volume of cube = s^3 = B * s
volume of pyramid = (1/3) * B * h
The volume of a pyramid is 1/3 of the area of the base multiplied by the height. The volume of a cube is the area of the base multiplied by the height. Since the volume of a pyramid has the fraction 1/3 and the volume of the cube does not, then the volume of a cube is 3 times greater than the volume of a pyramid that fits inside and has the same base area.
volume of pyramid = 9 cu ft
volume of cube = 3 * 9 cu ft = 27 cu ft
Answer: d. 27 cubic feet
Answer:
27 ft^3 (Answer d)
Step-by-step explanation:
Here the volume of the pyramid is (1/3) the volume of the cube:
Letting s represent the length of one side of the base,
(1/3)(s)^2(s) = 9 ft^3, equivalent to s^3 = 27.
Solving for s, we get s = 3 ft.
Thus, the volume of the cube is V = s^3 = (3 ft)^3 = 27 ft^3 (Answer d)
Which is an infinite arithmetic sequence? a{10, 30, 90, 270, …} b{100, 200, 300, 400} c{150, 300, 450, 600, …} d{1, 2, 4, 8}
Answer:
C
Step-by-step explanation:
An arithmetic sequence has a common difference d between consecutive terms.
Sequence a
30 - 10 = 20
90 - 30 = 60
270 - 90 = 180
This sequence is not arithmetic
Sequence b
200 - 100 = 100
300 - 200 = 100
400 - 300 = 100
This sequence is arithmetic but is finite, that is last term is 400
Sequence c
300 - 150 = 150
450 - 300 = 150
600 - 450 = 150
This sequence is arithmetic and infinite, indicated by ........ within set
Sequence d
2 - 1 = 1
4 - 2 = 2
8 - 4 = 4
This sequence is not arithmetic
Thus the infinite arithmetic sequence is sequence c
Lori wants to buy a radio for 60 dollars.
She can pay $60 now, or she can pay $12
a month for 6 months. How much more will
she pay for the radio if she makes monthly
payments?
Answer:
Lori will pay $12 more if she makes monthly payments
Step-by-step explanation:
to find how much she will pay for 6 months, we have to multiply 12 by 6 to get $72
subtracting the amount she would pay as a down payment
$72 - $60 is $12
Lori will pay $12 more if she makes monthly payments
Lori buys a $586 certificate of deposit (CD) that earns 6.6% interest that compounds monthly. How much will the CD be worth in 13 years? Express your answer rounded correctly to the nearest cent. Do not include units on your answer.
Answer:
$1344.9Step-by-step explanation:
This problem can be solved using the compound interest formula
[tex]A= P(1+r)^t[/tex]
Given data
A, final amount =?
P, principal = $586
rate, r= 6.6% = 0.066
Time, t= 13 years
Substituting our values into the expression we have
[tex]A= 586(1+0.066)^1^3\\\ A= 586*(1.066)^13\\\ A= 586*2.295\\\ A= 1344.87[/tex]
To the nearest cent the in 13 years the CD will be worth $1344.9
Find the value of x.
A. 22
B. 7.3
C. 3.6
D. 5.5
Answer:
x= 5.5
Step-by-step explanation:
(segment piece) x (segment piece) = (segment piece) x (segment piece)
x*4 = 11*2
4x = 22
Divide each side by 4
4x/4 = 22/4
x =5.5
Which expression is equivalent to 2(5)^4
Answer:
2·5·5·5·5
Step-by-step explanation:
2(5)^4 is equivalent to 2·5·5·5·5; 2 is used as a multiplicand just once, but 5 is used four times.
Nan lives 13 miles from the airport. Felipe lives 6 miles from the airport.
How many more miles does Nan live from the airport than Felipe?
Answer:
7
Step-by-step explanation:
it's simply 13 - 6
7 it the answer, that was easy
A researcher would like to test the claim that the mean lung capacity of middle-aged smokers is less than the mean lung capacity of senior citizen nonsmokers. Independent random samples of 34 middle-aged smokers and 34 senior citizen nonsmokers will be used in a hypothesis test of this claim, and it is believed that the standard deviations of the lung capacities in the populations of middle-aged smokers and senior citizen nonsmokers are the same. Which test statistic formula should be used for this test
Answer:
The respiratory system extends from the nose and upper airway to the alveolar surface of the lungs, where gas exchange occurs. Inhaled tobacco smoke moves from the mouth through the upper airway, ultimately reaching the alveoli. As the smoke moves more deeply into the respiratory tract, more soluble gases are adsorbed and particles are deposited in the airways and alveoli. The substantial doses of carcinogens and toxins delivered to these sites place smokers at risk for malignant and nonmalignant diseases involving all components of the respiratory tract including the mouth.
Officer Jacobi drove 180 miles in his patrol car during part of May. The distance represents 40% of May. How many miles did he drive all of May? a) 710 miles b) 420 miles c) 720 miles d) 450 miles Need Help on How to work this problem out, what formula would I use?
Answer:
D: 450 miles
Step-by-step explanation:
So we know that Officer Jacobi drove 180 miles, which represents 40% of the total distance driven. In other words, 40% of the total distance traveled is 180. Thus (let D be the total distance traveled):
[tex]0.4D=180[/tex]
This equation is basically saying that 40% (0.4) of the total distance driven is 180 miles. To solve for the total distance D, we can divide both sides by 0.4. Thus:
[tex]0.4D=180\\D=450[/tex]
So the answer is D or 450 miles.
Note that there isn't a specific formula you would use. These types of problems require you to write out an equation yourself.
A report states that the mean yearly salary offer for students graduating with a degree in accounting is $48,722. Suppose that a random sample of 50 accounting graduates at a large university who received job offers resulted in a mean offer of $49,870 and a standard deviation of $3900. Do the sample data provide strong support for the claim that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722? Test the relevant hypotheses using α = 0.05. State your conclusion.A. Reject H0. We do not have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.B. Do not reject H0. We do not have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.C. Reject H0. We have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.D. Do not reject H0. We have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.
Answer:
Option C - Reject H0. We have convincing evidence that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722.
Step-by-step explanation:
First of all let's define the hypothesis;
Null hypothesis;H0; μ = $48,722
Alternative hypothesis;Ha; μ > $48,722
Now, let's find the test statistic for the z-score. Formula is;
z = (x' - μ)/(σ/√n)
We are given;
x' = 48,722
μ = 49,870
σ = 3900
n = 50
Thus;
z = (49870- 48722)/(3900/√50)
z = 2.08
So from online p-value calculator as attached, using z = 2.08 and α = 0.05 ,we have p = 0.037526
This p-value of 0.037526 is less than the significance value of 0.05,thus, we reject the claim that that the mean salary offer for accounting graduates of this university is higher than the national average of $48,722
Mark has a collection of 80 coins. There are only nickels and dimes in the collection. The total value of the coins is $5.00. How many dimes does Mark have?
Answer:
number of nickel = 60
number of dimes = 20
Step-by-step explanation:
1 nickel = 5 cents
1 dimes = 10 cents
$1 = 100 cents
we will use these value to solve the questions
_______________________________
Total no of coins = 80
let the number of nickels be x
let the number of dimes be y
thus,
x+y = 80
y = 80-x equation 2
value of x nickels = 5x
value of y dimes = 10y
Total value of x nickels and y dimes = 5x+10y
The total value of the coins is $5.00
total value of the coins in cents = 5*100 = 500
thus
5x+10y = 500
using y = 80-x from equation 2
5x + 10(80 - x) = 500
5x + 800 - 10x = 500
-5x = 500 - 800 = -300
x = -300/-5 = 60
Thus,
number of nickel = 60
number of dimes = 80-60 = 20
Evaluate S_5 for 600 + 300 + 150 + … and select the correct answer below. A. 1,162.5 B. 581.25 C. 37.5 D. 18,600
Answer:
A. 1,162.5
Step-by-step explanation:
Write the next two terms and add them up:
S5 = 600 +300 +150 +75 +37.5 = 1162.5 . . . . matches choice A
================================================
Explanation:
{600, 300, 150, ...} is a geometric sequence starting at a = 600 and has common ratio r = 1/2 = 0.5, this means we cut each term in half to get the next term. We could do this to generate five terms and then add them up. Or we could use the formula below with n = 5
Sn = a*(1-r^n)/(1-r)
S5 = 600*(1-0.5^5)/(1-0.5)
S5 = 1,162.5
-----------
Check:
first five terms = {600, 300, 150, 75, 37.5}
S5 = sum of the first five terms
S5 = 600+300+150+75+37.5
S5 = 1,162.5
Because n = 5 is relatively small, we can quickly confirm the answer. With larger values of n, a spreadsheet is the better option.
The graph of y = −4x2 + 13x + 12 is shown below. What are the zeros of the function (as exact values), the y-intercept, and the maximum or minimum value of the function?
Answer:
zeros: -3/4, 4y-intercept: 12maximum: 22 9/16Step-by-step explanation:
The graph tells you the zeros of the function are x=-3/4 and x=4.
The y-intercept is the constant in the function: 12.
The maximum is 22.5625 at x = 1.625.
What number is the opposite of -3?
Explain your reasoning
The function s(t) = 4t – 21 is a result of the composition (q ∘ p)(t). If q(t) = 4t³ – 1, what is p(t)?
Answer:
Step-by-step explanation:
Hello, please consider the following.
[tex]q(t) = 4t^3-1\\\\(qop)(t)=q(p(t))=4\left( p(t) \right) ^3-1=4t-21\\\\p(t)^3=\dfrac{4t-21+1}{4}=\dfrac{4(t-5)}{4}=t-5\\\\p(t)=\sqrt[3]{t-5}[/tex]
Cheers.
Taking into account the definition of composite function, the function p(t) is [tex]\sqrt[3]{t-5}[/tex].
What is composite functionThe composite function is one that is obtained through an operation called composition of functions, which consists of evaluating the same value of the independent variable (x) in two or more functions successively.
In other words, a composite function is generally a function that is written inside another function. The composition of a function is done by substituting a function into another function.
Solving a composite function means finding the composition of two functions.
Function p(t)The expression of the composite function (q∘p)(t) is read "p composite with q". This means that you should do the following compound function: q[p(t)].
The function s(t) = 4t – 21 is a result of the composition (q ∘ p)(t). And q(t)=4t³ – 1. Then:
s(t)= q[p(t)]
4t -21= 4[p(t)]³ – 1
Solving:
4t -21 +1= 4[p(t)]³
4t -20 = 4[p(t)]³
(4t -20)÷ 4 = [p(t)]³
4t÷4 -20÷ 4 = [p(t)]³
t -5 = [p(t)]³
[tex]\sqrt[3]{t-5}=p(t)[/tex]
Finally, the function p(t) is [tex]\sqrt[3]{t-5}[/tex].
Learn more about composite function:
https://brainly.com/question/10687170
https://brainly.com/question/12396459
https://brainly.com/question/17227038
#SPJ2
True or False. The statistician should use Printout C to perform a t-test on the GROUP variable in the regression model. g
Answer:
False
Step-by-step explanation:
Regression model is a set of statistical process which estimates the relationship between two variables. The one variable is dependent variable and the other is independent variable. The statistician should not use printout C to perform a t-test in regression model.
Factor this trinomial completely. -6x^2 +26x+20
Answer:
Step-by-step explanation:
-6x²+26x+20
=-2(3x²-13x-10)
=-2(3x²-15x+2x-10)
=-2[3x(x-5)+2(x-5)]
=-2(x-5)(3x+2)
The manager of the video department at a department store plans to purchase a large number of DVDs of a recent movie. One supplier is selling boxes of 20 DVD movies for $240, and a second supplier is selling boxes of 14 DVD movies for $170. Only complete boxes of DVD movies can be purchased. Complete part a) and b) below. a)
a) If the manager can purchase boxes of DVD movies from either or both suppliers, determine the maximum number of DVD movies that can be purchased for $415. Indicate how many boxes of 20 and how many boxes of 14 will be purchased.
— box(es) of 20 and — box(es) of 14
b) How much will the DVD movies cost?
They will cost $—
Answer:
1 box of 20 and 1 box of 14
They will cost $410
Step-by-step explanation:
1. Find how many boxes of 20 DVD movies can be bought
415 - 240 = 175
1 box of 20 DVD movies can be sold
2. Find how many boxes of 14 DVD movies can be bought from $175
175 - 170 = 5
1 box of 14 DVD movies can be bought
3. Find the cost
240 + 170 = 410