Answer: = a = 0.0206
b = 0.0205.
Step-by-step explanation:
From the question, given that;
Order Accurate = 328 273 242 142
Order Not Accurate = 32 54 37 20
Let us make the Total orders given be
T.O = 328+273+242+142+32+54+37+20 = 1128.
a) Let the Prob. that the first order is from restaurant D be
= Number of order from restaurant D / Total number of orders
= 162 / 1128 = 0.1436
Probability of the second order is 0.1436.
This is because, from the question we can tell that the selections are made with replacement, that means the order is the same.
So, the probability of getting 2 orders =
= 0.1436 * 0.1436 = 0.0206
NB: The probability of getting two orders from restaurant B is 0.0206.
This is because choosing the first order does not affect the second order
(independent events).
b) Assuming that the selections are made without replacement , the probability of getting both the orders from restaurant D =
Probability of getting 1st order from restaurant D = 162/1128 = 0.1436.Probability of getting 2nd order from restaurant D = 161 / 1127 = 0.1428This gives the Total Probability of getting both the orders from restaurant D, without replacement to be = 0.1436*0.1428
= 0.0205.
That is to say choosing the first order affects the second order because of the events are not independent as compared to the first question.
cheers i hope tis helps
The sum of the first 5 terms of an AP is 30 and the sum of the four term from T6 to T9 (inclusive) is 69. Find the AP
Answer: The AP = 1, ⁷/₂, 6, ¹⁷/₂, 11 ..............
Step-by-step explanation:
From the first statement,
S₅ = ⁵/₂(2a + ( n - 1 )d } = 30
5(2a + 4d )d = 60
10a + 20d = 60
reduce to lowest term to easy calculation by dividing through by 10
a + 2d = 6 -----------------------------------1
second statement
sum of the next 4 terms inclusive
T₉ = ⁹/₂(2a + 8d ) = 69
9(2a + 8d ) = 30 + 69
18a + 72d = 99 x 2
18a + 72d = 198
divide through by 18 to reduce to lowest time
a + 4d = 11 ------------------------------------------2
Now solve the two equation simultaneously to find a and d
a + 2d = 6
a + 4d = 11
-2d = -5
d = ⁵/₂.
Now substitute for d to get a
a + 2(⁵/₂) = 6
a + 5 = 6
a = 6 - 5
a = 1.
Therefore the AP = 1 , ⁷/₂ , 6 , ¹⁷/₂ , 11 , ..............
The AP if, The sum of the first 5 terms of an AP is 30 and the sum of the four terms from T6 to T9 is 69, is 1, ⁷/₂, 6, ¹⁷/₂, 11, and so on.
What is sequence?
An ordered collection of objects that allows repetitions is referred to as a sequence. It has members, just like a set does. The length of the sequence is determined by the number of items.
Given:
The sum of the first 5 terms of an AP is 30,
Write the equations as shown below,
S₅ = ⁵/₂(2a + ( n - 1 )d } = 30
5(2a + 4d )d = 60
10a + 20d = 60
reduce to lowest term to easy calculation by dividing through by 10
a + 2d = 6
T₉ = ⁹/₂(2a + 8d ) = 69 (sum of the next 4 terms inclusive)
9(2a + 8d ) = 30 + 69
18a + 72d = 99 x 2
18a + 72d = 198
a + 4d = 11
Solve the equation as shown below,
d = ⁵/₂, and a = 1.
Therefore, the AP = 1, ⁷/₂, 6, ¹⁷/₂, 11, and so on.
To know more about the sequence:
https://brainly.com/question/28615767
#SPJ5
The arc length apothem shown below is 15 feet. Part 1) State the equation that relates arc length to central angle. Part 2) Find the angle apothem in radians. Part 3) Convert your answer from Part 2 to degrees and write it to the nearest hundredth of a degree
Answer:
ans right down there
Step-by-step explanation:
Here,Part 1
if the circle has a radius r so,
15 = r theta
here, theta is in radian.
Part 2
[tex]theta = \frac{15}{6} = 2.5[/tex]
part 3
[tex]theta = \frac{2.5 \times 180}{\pi} [/tex]
or theta =
143.2394487827058021919953870352629258310136811664108038729006
the principal p is borrowed at a simple interest rate r for a period of time t. find the loan's future value g P = 700, r = 8.25, t = 3 months
Answer:
Hey there!
Simple interest formula: I=PRT
I=700(8.25)(0.25)
I=1443.75
Hope this helps :)
Answer:
Step-by-step explanation:
I = PRT
I = 700(0.0825)(1/4) = 14.44
Because the interest is usually in percentage and it's impossible to have 825% as your interest rate. So the actual interest rate has to be 0.0825.
The formula above calculated the interest, if you want the total, you will need to add 700 to that number.
[img id="5156824"][/img]Here's a small quick example of the formula that should help.
PLEASE HELP!!! The question is.. [tex]163-y=-5[/tex] ANSWER GETS BRAINLIEST
Answer:
y = 168Step-by-step explanation:[tex]163 -y =-5\\Collect\:Like\:terms\\163+5 = y\\Simplify\\168 =y\\\\y = 168[/tex]
Hello There!
Answer: [tex]163-168=-5[/tex]Explanation:[tex]163-y=-5[/tex]
To solve your equation, you can just change the -5 to 5 and move it to where y is. After that, change the minus sign to addition.
[tex]163+5=y[/tex]
Now all you have to do is sum it up.
[tex]163+5=168[/tex]
So y = to 168
So your answer is
[tex]163-168=-5[/tex]
Hope this Helps!
BRAINLEST , If y varies inversely with the square of x, and y = 26 when x = 4, find y when x = 2.
Answer:
Question 18: B. 104
Question 19: [tex] x = \frac{3}{2} [/tex]
Step-by-step Explanation:
Question 18:
Step 1: express the inverse relationship with an equation
[tex] y = \frac{k}{x^2} [/tex] ,
where k is constant
y = 26 when x = 4,
Constant, k, = [tex] y*x^2 = k [/tex]
[tex] k = 26*4^2 = 416 [/tex]
The equation would be [tex] y*x^2 = 416 [/tex]
Step 2: use the equation to find y when X = 2.
[tex] y*x^2 = 416 [/tex]
[tex] y*2^2 = 416 [/tex]
[tex] y*4 = 416 [/tex]
Divide both sides by 4
[tex] \frac{y*4}{4} = \frac{416}{4} [/tex]
[tex] y = 104 [/tex]
Question 19:
[tex] \frac{x}{3} = \frac{x + 2}{7} [/tex]
Cross multiply
[tex] x(7) = 3(x + 2) [/tex]
[tex] 7x = 3x + 6 [/tex]
Subtract 3x from both sides
[tex] 7x - 3x = 3x + 6 - 3x [/tex]
[tex] 4x = 6 [/tex]
Divide both sides by 4
[tex] \frac{4x}{4} = \frac{6}{4} [/tex]
[tex] x = \frac{3}{2} [/tex]
Answer: D.) 52
Explanation: I guessed and got it right lol
i will rate you brainliest
Answer:
D) 3/2(X-4)
Step-by-step explanation:
Invert and multiply to get:
3(x+4)/2(x²-16)
factor the bottom
3(x+4)/2(x+4)(x-4)
The (x+4)’s cancel out, and you’re left with
3/2(X-4)
[tex]\dfrac{{x+4\over2}}{{x^2-16\over3}}[/tex]
[tex]=\dfrac{3(x+4)}{2(x+4)(x-4)}=\frac{3}{2(x-4)} [/tex]
but in original fraction, denominator can't be zero so we have to exclude x=±4
do that answer is D
A researcher wishes to estimate the percentage of adults who support abolishing the penny. What size sample should be obtained if he wishes the estimate to be within 3 percentage points with 99% confidence if (a) he uses a previous estimate of 22%?
Answer:
Sample size n [tex]\simeq[/tex] 1269.15
Step-by-step explanation:
From the information given ,
At 99% of confidence interval,
the level of significance ∝ = 1 - 0.99
the level of significance ∝ = 0.01
the critical value for 99% of confidence interval is:
[tex]\mathtt{\dfrac{\alpha }{2} = \dfrac{0.01}{2}}[/tex]
= 0.005
[tex]\mathtt {z_{\alpha/2} = z_{0.005/2} }[/tex]
The value for z from the standard normal tables
= 2.58
The Margin of error E= 3% = 0.03
The formula to determine the sample size n used can be expressed as follows:
[tex]\mathtt { n = (\dfrac{z_{\alpha/2}}{E})^2 \ \hat p (1 - \hat p) }[/tex]
where;
[tex]\mathtt{\hat p }[/tex] = 22% = 0.22
Then:
[tex]\mathtt { n = (\dfrac{2.58}{0.03})^2 \ \times 0.22 \times (1 - 0.22) }[/tex]
[tex]\mathtt { n = (86)^2 \ \times 0.22 \times (0.78) }[/tex]
[tex]\mathtt { n = 7396 \ \times 0.22 \times (0.78) }[/tex]
n = 1269.1536
Sample size n [tex]\simeq[/tex] 1269.15
find the slope of the line y = 4
Answer:
Brainleist!
Step-by-step explanation:
0
there is no y=mX+b
there is no x no XXXX
that means the slope must be 0 (bc theres a y)
Sorry if my explanation is bad... let me know in comments if u need more help
Use the given data to find the minimum sample size required to estimate the population proportion. Margin of error: 0.028; confidence level: 99%; p and q unknown
Answer:
The minimum sample size is [tex]n = 2123[/tex]
Step-by-step explanation:
From the question we are told that
The margin of error is [tex]E = 0.028[/tex]
Given that the confidence level is 99% then the level of significance is evaluated as
[tex]\alpha = 100 - 99[/tex]
[tex]\alpha = 1 \%[/tex]
[tex]\alpha =0.01[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table
The value is [tex]Z_{\frac{ \alpha }{2} } = 2.58[/tex]
Now let assume that the sample proportion is [tex]\r p = 0.5[/tex]
hence [tex]\r q = 1 - \r p[/tex]
=> [tex]\r q = 0.50[/tex]
Generally the sample size is mathematically represented as
[tex]n =[ \frac{Z_{\frac{ \alpha }{2} }}{ E} ]^2 * \r p * \r q[/tex]
[tex]n =[ \frac{2.58}{ 0.028} ]^2 * 0.5 * 0.5[/tex]
[tex]n = 2123[/tex]
PLEASE HELP ASAP Madelyn drove a race car in a race. She averaged 55 mph and began the race 0.5 hours ahead of the other drivers. The variable d represents Madelyn's distance driven, in miles. The variable t represents the number of hours since the other drivers began to race. Which equation can be used to determine the distance Madelyn drove t hours into the race? d=55t−0.5 d=55(t+0.5) d=55(t−0.5) d = 55t + 0.5
Answer:
d=55(t+0.5)
Step-by-step explanation:
d=55(t+0.5)
Answer:
27.5
Step-by-step explanation:
Determine the number of degrees of freedom for the two-sample t test or CI in each of the following situations. (Round your answers down to the nearest whole number.)
(a) m = 12, n = 15, s1 = 4.0, s2 = 6.0
(b) m = 12, n = 21, s1 = 4.0, s2 = 6.0
(c) m = 12, n = 21, s1 = 3.0, s2 = 6.0
(d) m = 10, n = 24, s1 = 4.0, s2 = 6.0
Answer:
a
[tex]df = 24.32[/tex]
b
[tex]df = 30.10[/tex]
c
[tex]df = 30.7[/tex]
d
[tex]df = 25.5[/tex]
Step-by-step explanation:
Generally degree of freedom is mathematically represented as
[tex]df = \frac{ [\frac{ s^2_i }{m} + \frac{ s^2_j }{n} ]^2 }{ \frac{ [ \frac{s^2_i}{m} ]^2 }{m-1 } +\frac{ [ \frac{s^2_j}{n} ]^2 }{n-1 } }[/tex]
Considering a
a) m = 12, n = 15, s1 = 4.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 4^2 }{12} + \frac{ 6^2 }{15} ]^2 }{ \frac{ [ \frac{4^2}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{15} ]^2 }{15-1 } }[/tex]
[tex]df = 24.32[/tex]
Considering b
(b) m = 12, n = 21, s1 = 4.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 4^2 }{12} + \frac{ 6^2 }{21} ]^2 }{ \frac{ [ \frac{4^4}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{21} ]^2 }{21-1 } }[/tex]
[tex]df = 30.10[/tex]
Considering c
(c) m = 12, n = 21, s1 = 3.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 3^2 }{12} + \frac{ 6^2 }{21} ]^2 }{ \frac{ [ \frac{3^4}{12} ]^2 }{12-1 } +\frac{ [ \frac{6^2}{21} ]^2 }{21-1 } }[/tex]
[tex]df = 30.7[/tex]
Considering c
(d) m = 10, n = 24, s1 = 4.0, s2 = 6.0
[tex]df = \frac{ [\frac{ 4^2 }{10} + \frac{ 6^2 }{24} ]^2 }{ \frac{ [ \frac{4^2}{10} ]^2 }{10-1 } +\frac{ [ \frac{6^2}{24} ]^2 }{24-1 } }[/tex]
[tex]df = 25.5[/tex]
A particular salad contains 4 units of vitamin A, 5 units of vitamin B complex, and 2 mg of fat per serving. A nutritious soup contains 6 units of vitamin A, 2 units of vitamin B complex, and 3 mg of fat per serving. If a lunch consisting of these two foods is to have at least 10 units of vitamin A and at least 10 units of vitamin B complex, how many servings of each should be used to minimize the total number of milligrams of fat
Answer:
2 servings of salad and 1 serving of soup
Step-by-step explanation:
In the given scenario the aim is to minimise the fat content of the food combination.
Fat content of soup is 3mg while fat content of salad is 2 mg.
Using Soup as 0 and Salad as 2 will not give the required vitamin content
The logical step will be to keep servings of soup to the minimum.
Let's see some combinations of salad and soup. Keeping serving of soup to the minimum of 1
1. 1 serving of salad and one serving of soup will contain 10 mg of vitamin A, 7 mg of vitamin B complex, and 3 mg of fat.
This will not work because amount of vitamin B complex is not up to 10 mg
2. 2 servings of salad and 1 serving of soup. Will contain 14 mg of vitamin A, 12 mg of vitamin B, and 7 mg of fat
This is the best option as we have amount of vitamin A and vitamin B complex in adequate quantity.
Also fat is lowest in this combination because soup the food with highest fat content is at minimum amount of one serving
[PLEASE HELP] Consider this function, f(x) = 2X - 6.
Match each transformation of f (x) with its descriptions..
Answer:
Find answer below
Step-by-step explanation:
f(x)=2x-6
Domain of 2x-6: {solution:-∞<x<∞, interval notation: -∞, ∞}
Range of 2x-6: {solution:-∞<f(x)<∞, interval notation: -∞, ∞}
Parity of 2x-6: Neither even nor odd
Axis interception points of 2x-6: x intercepts : (3, 0) y intercepts (0, -6)
inverse of 2x-6: x/2+6/2
slope of 2x-6: m=2
Plotting : y=2x-6
3(x–6)=18 help plese
Answer:
x = 12
Step-by-step explanation:
3(x–6)=18
x-6 = 18:3
x-6 = 6
x = 6+6
x = 12
Answer:
x=12
Step-by-step explanation:
BOND VALUATION Asiana Fashion's bonds have 10 years remaining to maturity. Interest is paid annually; they have a $1,000 par value; the coupon interest rate is 8% and thebyield to maturity is 9%.What is the bond's current market price?
Answer:
$935.76
Step-by-step explanation:
BOND VALUATION Asiana Fashion's bonds have 10 years remaining to maturity. Interest is paid annually; they have a $1,000 par value; the coupon interest rate is 8% and thebyield to maturity is 9%.What is the bond's current market price?
Step 1
We find the Present value factor of sum
The formula =
(1 + i)^n
Where
i = maturity rate = 9% = 0.09
n = number of years = 10 years
Present Value = ( 1 + 0.09)^-10
= 0.4224
Step 2
We find the present value factor of annuity
The formula is given as:
1 - (1+i)^-n / i
i = maturity rate = 9% = 0.09
n = number of years = 10 years
= 1 - (1 + 0.09)^-10 /0.09
= 1 - 0.4224 /0.09
= 0.5775 /0.09
= 6.417
Step 3
The bond's current market price is calculated as:
= PV factor of Sum × Par Value + PV factor of annuity × coupon payment
Coupon payment is calculated as:
= Coupon interest × par value
= 8% × 1000
= 80
Hence,
= 0.4224 × 1,000 + 6.417 × 80
= 422.4 + 513.36
= 935.76
In this exercise we have to use the knowledge of finance to calculate the corrective value of the market place, in this way we find that:
[tex]\$935.76[/tex]
We find the Present value factor of sum, by the formula of:
[tex](1 + i)^n[/tex]
Where:
i = maturity rate = 9% = 0.09 n = number of years = 10 years
Substituting the values in the formula as;
[tex]Present \ Value = ( 1 + 0.09)^{-10} = 0.4224[/tex]
We find the present value factor of annuity, by the formula as:
[tex]1 - (1+i)^{-n} / i[/tex]
Where:
i = maturity rate = 9% = 0.09 n = number of years = 10 years
Substituting the values in the formula as;
[tex]= 1 - (1 + 0.09)^{-10} /0.09\\= 1 - 0.4224 /0.09\\= 0.5775 /0.09\\= 6.417[/tex]
The bond's current market price is calculated as:
[tex]= PV \ factor\ of\ Sum * Par\ Value + PV\ factor\ of\ annuity * coupon\ payment[/tex]
Coupon payment is calculated as:
[tex]= Coupon\ interest * par\ value\\= 8\% * 1000= 80[/tex]
So continue the calcule;
[tex]= 0.4224 *1,000 + 6.417 * 80\\= 422.4 + 513.36\\= 935.76[/tex]
See more about market place at brainly.com/question/24518027
Find the measure of c.
Answer:
149 degrees
Step-by-step explanation:
This shape is a cyclic, so opposite angles add up to 180 degrees.
180-31 = 149
i need help will rate you branliest
Answer:
D. the bottom one is the answer, because hyperbola is two curves that curve infinitely
If you have a piece of glass that is 12in X 12in - how many square feet is it?
Answer:
1 square foot is the answer
Answer:
1 ft^2
Step-by-step explanation:
We know 12 inches = 1 ft
12 inches by 12 inches
1 ft by 1 ft
The area is 1 * 1 = 1 ft^2
1 If a = p^1/3-p^-1/3
prove that: a^3 + 3a = p - 1/p
Hello, please consider the following.
We know that
[tex]a = p^{\frac{1}{3}}-p^{-\frac{1}{3}}\\\\=p^{\frac{1}{3}}-\dfrac{1}{p^{\frac{1}{3}}}[/tex]
And we can write that.
[tex](p-\dfrac{1}{p})^3=(p-\dfrac{1}{p})(p^2-2+\dfrac{1}{p^2})\\\\=p^3-2p+\dfrac{1}{p}-p+\dfrac{2}{p}-\dfrac{1}{p^3}\\\\=p^3-\dfrac{1}{p^3}-3(p-\dfrac{1}{p})[/tex]
It means that, by replacing p by [tex]p^{1/3}[/tex]
[tex](p^{1/3}-\dfrac{1}{p^{1/3}})^3=p-\dfrac{1}{p}-3(p^{1/3}-\dfrac{1}{p^{1/3}})\\\\\\\text{ So }\\\\a^3=p-\dfrac{1}{p}-3a\\\\<=>\boxed{ a^3+3a=p-\dfrac{1}{p} }[/tex]
Hope this helps.
Do not hesitate if you need further explanation.
Thank you
If you invest $ 30 , 700 with an annual interest rate of 8.9 % , compounded daily, how much would you have at the end of 4 years?
Answer: $43,823.37
Step-by-step explanation:
Formula to calculate the accumulated amount earned on principal (P) at rate of interest (r) compounded daily after t years :
[tex]A=P(1+\dfrac{r}{365})^{365t}[/tex]
As per given , we have
P= $ 30,700
r= 8.9 % = 0.089
t= 4 years
[tex]A=30700(1+\dfrac{0.089}{365})^{365(4)}\\\\=30700(1+0.0002438)^{365(4)}\\\\=30700(1.0002438)^{1460}\\\\=30700(1.42747138525)\\\\=43823.3715272\approx43823.37[/tex]
Hence, the amount at the end of 4 years would be $43,823.37 .
Choose the situation that represents a function.
A) The number of raisins in an oatmeal raisin cookie is a function of the diameter of the cookie.
B) The inches of rainfall is a function of the day’s average temperature.
C) The time it takes to cook a turkey is a function of the turkey’s weight.
D) The number of sit-ups a student can do in a minute is a function of the student’s age.
Answer:c
Step-by-step explanation:
Answer: The answer is C.
Hope this helps you!
Mark is buying supplies for his students. He is buying a notebook (n) and a pack of pencils for each of his 25 students. Each pack of pencils costs $1.25. If Mark's total cost is $156.25, which of the following equations can be used to find how much each notebook cost? Select TWO that apply.
Answer:
$5
Step-by-step explanation:
Note. There are no options to select.Let the notebook cost x, then Mark spent:
25x + 25*1.25 = 156.2525x + 31.25 = 156.2525x = 156.25 - 31.2525x = 125x= 125/25x= 5Notebook costs $5
Simplify 10 - [14 = (3 + 4) · 2]+3
Answer:
There is a typo near the equal sign.
There can be two different answers if we think that = sign as + or -.
First way: Making = as +
=> 10 - [14 + (3+4) x 2] +3
=> 10 - [14 + 7 x 2] + 3
=> 10 - [14 + 14] + 3
=> 10 - 28 + 3
=> 10 + 3 - 28
=> 13 - 28
=> -15
=> So, -15 is the answer if we consider "=" sign as "+" sign.
Second way: Making = as -
=> 10 - [14 - (3+4) x 2] + 3
=> 10 - [14 - 7 x 2] + 3
=> 10 - [14 - 14] + 3
=> 10 - 0 + 3
=> 10 + 3
=> 13
=> So, 13 is the answer if we consider "=" sign as "-" sign.
What are two solutions of x
Answer:
Answer is attached below :)
Rhombus J K L M is shown. The length of J K is 2 x + 4 and the length of J M is 3 x. What is the length of a side of rhombus JKLM? 4 units 8 units 12 units 16 units
Answer:
12 units
Step-by-step explanation:
Since all of the sides of a rhombus are congruent, JK = JM which means:
2x + 4 = 3x
-x = -4
x = 4 so 3x = 3 * 4 = 12
A sample of a radioactive substance decayed 11% over the course of 3 weeks. How many grams were in the sample originally if 30.26 grams of the substance were remaining after the 3 weeks?
Answer:
34 grams
Step-by-step explanation:
If the remaining sample has 30.26 grams of radioactive substance, and 11% of it decayed, that means that 30.26 grams is 89% of the original. Let the original be x.
30.26=0.89x
Multiply both by one hundred
3026=89x
Divide both by 89
34=x
x=original, so the original was 34 grams.
Convert the decimal 0.984 to a fraction.
984/100
984/1000
984/99
984/999
Answer:
[tex]\boxed{\frac{984}{1000}}[/tex]
Step-by-step explanation:
Hey there!
Well .984 is 984 over 1000 so .984 as a fraction is 984/1000.
We can check this by doing 984 / 1000 which is .984.
Hope this helps :)
The formula for the area of a square is s2, where s is the side length of the square. What is the area of a square with a side length of 6 centimeters? Do not include units in your answer.
Answer:
36
step by step
given length=6
so area of square is given by s2 i.e 6^2
=6×6
=36 (Ans)
Please answer this correctly without making mistakes
Answer:
14 mi
Step-by-step explanation:
Cedarburg is 22 13/16 miles from Allenville and 8 13/16 miles from Lakeside. You have to solve for the distance from Lakeside to Allenville.
8 13/16 + x = 22 13/16
(8 13/16 + x) - 8 13/16 = 22 13/16 - 8 13/16
x = 14
The distance from Lakeside to Allenville is 14 miles.
how to find the roots of a quadratic equation -10x^2 + 0x +250
Answer:
Step-by-step explanation:
The first thing you want to do is to factor in any quadratic equation.
So, -10(x^2-25)
Now, we see this is a special case, whenever we see a equation in this case, x^2 - b^2, we factor it to this (x+b)(x-b)
So, -10(x+5)(x-5)
x = -5 and x = 5