Answer:
Electric field is zero at point 4.73 m
Explanation:
Given:
Charge place = 50 cm = 0.50 m
change q1 = 5 µC
change q2 = 4 µC
Computation:
electric field zero calculated by:
[tex]E1 =k\frac{q1}{r^2} \\\\E2 =k\frac{q2}{R^2} \\\\[/tex]
Where electric field is zero,
First distance = x
Second distance = (x-0.50)
So,
E1 = E2
[tex]k\frac{q1}{r^2}=k\frac{q2}{R^2} \\\\[/tex]
[tex]\frac{5}{x^2}=\frac{4}{(x-50)^2} \\\\[/tex]
x = 0.263 or x = 4.73
So,
Electric field is zero at point 4.73 m
A 28.0 kg child plays on a swing having support ropes that are 2.30 m long. A friend pulls her back until the ropes are 45.0 ∘ from the vertical and releases her from rest.
A: What is the potential energy for the child just as she is released, compared with the potential energy at the bottom of the swing?
B: How fast will she be moving at the bottom of the swing?
C: How much work does the tension in the ropes do as the child swings from the initial position to the bottom?
Answer
A)184.9J
B)=3.63m/s
C) Zero
Explanation:
A)potential energy of the child at the initial position, measured relative the her potential energy at the bottom of the motion, is
U=Mgh
Where m=28kg
g= 9.8m/s
h= difference in height between the initial position and the bottom position
We are told that the rope is L = 2.30 m long and inclined at 45.0° from the vertical
h=L-Lcos(x)= L(1-cosx)=2.30(1-cos45)
=0.674m
Her Potential Energy will now
= 28× 9.8×0.674
=184.9J
B)we can see that at the bottom of the motion, all the initial potential energy of the child has been converted into kinetic energy:
E= 0.5mv^2
where
m = 28.0 kg is the mass of the child
v is the speed of the child at the bottom position
Solving the equation for v, we find
V=√2k/m
V=√(2×184.9/28
=3.63m/s
C)we can find work done by the tension in the rope is given using expresion below
W= Tdcosx
where W= work done
T is the tension
d = displacement of the child
x= angle between the directions of T and d
In this situation, we have that the tension in the rope, T, is always perpendicular to the displacement of the child, d. x= 90∘ and cos90∘=0 hence, the work done is zero.
What is the separation in meters between two slits for which 594 nm orange light has its first maximum at an angle of 32.8°?
Answer:
1.1micro meter
Explanation:
Given that
Constructive interference is
ma = alpha x sin theta
Alpha = 1 x 594 x10^ -9/ sin 32.8°
= 1.1 x 10^ -6m
Explanation:
Two coherent sources of radio waves, A and B, are 5.00 meters apart. Each source emits waves with wavelength 6.00 meters. Consider points along the line connecting the two sources.Required:a. At what distance from source A is there constructive interference between points A and B?b. At what distances from source A is there destructive interference between points A and B?
Answer:
a
[tex]z= 2.5 \ m[/tex]
b
[tex]z = (1 \ m , 4 \ m )[/tex]
Explanation:
From the question we are told that
Their distance apart is [tex]d = 5.00 \ m[/tex]
The wavelength of each source wave [tex]\lambda = 6.0 \ m[/tex]
Let the distance from source A where the construct interference occurred be z
Generally the path difference for constructive interference is
[tex]z - (d-z) = m \lambda[/tex]
Now given that we are considering just the straight line (i.e points along the line connecting the two sources ) then the order of the maxima m = 0
so
[tex]z - (5-z) = 0[/tex]
=> [tex]2 z - 5 = 0[/tex]
=> [tex]z= 2.5 \ m[/tex]
Generally the path difference for destructive interference is
[tex]|z-(d-z)| = (2m + 1)\frac{\lambda}{2}[/tex]
=> [tex]|2z - d |= (0 + 1)\frac{\lambda}{2}[/tex]
=> [tex]|2z - d| =\frac{\lambda}{2}[/tex]
substituting values
[tex]|2z - 5| =\frac{6}{2}[/tex]
=> [tex]z = \frac{5 \pm 3}{2}[/tex]
So
[tex]z = \frac{5 + 3}{2}[/tex]
[tex]z = 4\ m[/tex]
and
[tex]z = \frac{ 5 -3 }{2}[/tex]
=> [tex]z = 1 \ m[/tex]
=> [tex]z = (1 \ m , 4 \ m )[/tex]
Kasek rides his bicycle down a 6.0° hill (incline is
6° with the horizontal) at a steady speed of 4.0
m/s. Assuming a total mass of 75 kg (bicycle and
Kasek), what must be Kasek's power output to
climb the same hill at the same speed?
Answer:
P = 2923.89 W
Explanation:
Power is
P = F v
for which we must calculate the force, let's use Newton's second law, let's set a coordinate system with a flat parallel axis and the other axis (y) perpendicular to the plane
X Axis
F - Wₓ = 0
F = Wₓ
Y Axis
N - [tex]W_{y}[/tex] = 0
let's use trigonometry for the components of the weight
sin 6 = Wₓ / W
cos 6 = W_{y} / W
Wₓ = W sin 6
W_{y} = W cos 6
F = mg cos 6
F = 75 9.8 cos 6
F = 730.97 N
let's calculate the power
P = F v
P = 730.97 4.0
P = 2923.89 W
Suppose you drop paperclips into an open cart rolling along a straight horizontal track with negligible friction. As a result of the accumulating paper clips, explain whether the momentum and kinetic energy increase, decrease, or stay the same.
Answer:
Stay the same
Explanation:
Since, friction is negligible:
Initial Momentum = Final Momentum
Initial KE = Final KE
m1 * v1 = m2 * v2
When m increases v decreases.
The momentum and kinetic energy remain the same if you drop paper clips into an open cart rolling along a straight horizontal track with negligible friction.
What is friction?Between two surfaces that are sliding or attempting to slide over one another, there is a force called friction. For instance, friction makes it challenging to push a book down the floor. Friction always moves an object in a direction that is counter to the direction that it is traveling or attempting to move.
Given:
The paperclips into an open cart rolling along a straight horizontal track with negligible friction,
Calculate the momentum, Since friction is negligible,
Initial Momentum = Final Momentum
Initial Kinetic Energy = Final Kinetic Energy
m₁ × v₁ = m₁ × v₂
When m increases, v decreases,
Thus, momentum will remain the same.
To know more about friction:
https://brainly.com/question/28356847
#SPJ5
When the magnet falls toward the copper block, the changing flux in the copper creates eddy currents that oppose the change in flux. The resulting braking force between the magnet and the copper block always opposes the motion of the magnet, slowing it as it falls. The braking force on the magnet is nearly equal to its weight, so it falls very slowly. The rate of the fall produces a rate of flux change sufficient to produce a current that provides the braking force. If the magnet is pushed, forcefully, toward the block, the rate of change of flux is much higher than this. When the magnet is moving much more quickly than it will fall unaided, what is the direction of the net force on the magnet?
Answer:
The net force is directed downwards.
Explanation:
Since the magnet is falling much more faster than it would unaided, then there is a net force that is accelerating the magnet downwards. We know that acceleration is due to a force acting on a mass, and in this case, the magnet is the mass. Also, the acceleration is always in the direction of the force producing it, which means that the net force on the magnet is vertically downwards.
An electron is accelerated from rest through a potential difference. After acceleration the electron has a de Broglie wavelength of 880 nm. What is the potential difference though which this electron was accelerated
Answer:
3x10⁴v
Explanation:
Using
Wavelength= h/ √(2m.Ke)
880nm = 6.6E-34/√ 2.9.1E-31 x me
Ke= 6.6E-34/880nm x 18.2E -31.
5.6E-27/18.2E-31
= 3 x 10⁴ Volts
You have three resistors: R1 = 1.00 Ω, R2 = 2.00 Ω, and R3 = 4.00 Ω in parallel. Find the equivalent resistance for the combination
Answer:
4 / 7
Explanation:
1/total resistance = 1/1 + 1/2 + 1/4
= 1¾
total resistance = 1 ÷ 1¾
= 4/7
How many turns of wire are needed in a circular coil 13 cmcm in diameter to produce an induced emf of 5.6 VV
Answer:
Number of turns of wire(N) = 3,036 turns (Approx)
Explanation:
Given:
Diameter = 13 Cm
emf = 5.6 v
Note:
The given question is incomplete, unknown information is as follow.
Magnetic field increases = 0.25 T in 1.8 (Second)
Find:
Number of turns of wire(N)
Computation:
radius (r) = 13 / 2 = 6.5 cm = 0.065 m
Area = πr²
Area = (22/7)(0.065)(0.065)
Area = 0.013278 m²
So,
emf = (N)(A)(dB / dt)
5.6 = (N)(0.013278)(0.25 / 1.8)
5.6 = (N)(0.013278)(0.1389)
N = 3,036.35899
Number of turns of wire(N) = 3,036 turns (Approx)
Proposed Exercises: Strength and Acceleration in Circular Movement In the situation illustrated below, a 7kg sphere is connected to a rope so that it can rotate in a vertical plane around an O axis perpendicular to the plane of the figure. When the sphere is in position A, it has a speed of 3m/s. Determine for this position the modulus of tension on the string and the rate at which the tangential velocity is increased.
Answer:
81 N
7.1 m/s²
Explanation:
Draw a free body diagram of the sphere. There are two forces:
Weight force mg pulling straight down,
and tension force T pulling up along the rope.
Sum of forces in the centripetal direction:
∑F = ma
T − mg sin 45° = m v² / r
T = m (g sin 45° + v² / r)
T = (7 kg) (10 m/s² sin 45° + (3 m/s)² / 2 m)
T = 81 N
Sum of forces in the tangential direction:
mg cos 45° = ma
a = g cos 45°
a = (10 m/s²) cos 45°
a = 7.1 m/s²
A train on one track moves in the same direction as a second train on the adjacent track. The first train, which is ahead of the second train and moves with a speed of 36.4 m/s , blows a horn whose frequency is 123 Hz .what is its speed?
Answer:
51. 7m/s
Explanation:
Take speed of sound in air = 340 m/s
fp = fs (V + Vp)/(V + Vs)
128 = 123 (340 + Vp)/(340 + 36.4)
Vp = 51.7m/s
Explanation:
A long solenoid consists of 1700 turns and has a length of 0.75 m.The current in the wire is 0.48 A. What is the magnitude of the magnetic field inside the solenoid
Answer:
1.37 ×10^-3 T
Explanation:
From;
B= μnI
μ = 4π x 10-7 N/A2
n= number of turns /length of wire = 1700/0.75 = 2266.67
I= 0.48 A
Hence;
B= 4π x 10^-7 × 2266.67 ×0.48
B= 1.37 ×10^-3 T
An undiscovered planet, many light-years from Earth, has one moon, which has a nearly circular periodic orbit. If the distance from the center of the moon to the surface of the planet is 2.165×105 km and the planet has a radius of 4175 km and a mass of 6.70×1022 kg , how long (in days) does it take the moon to make one revolution around the planet? The gravitational constant is 6.67×10−11N·m2/kg2 .
Answer:
364days
Explanation:
Pls see attached file
Explanation:
The moon will take 112.7 days to make one revolution around the planet.
What is Kepler's third law?The period of the satellite around any planet only depends upon the distance between the planet's center and satellite and also depends upon the planet's mass.
Given, the distance from the moon's center to the planet's surface,
h = 2.165 × 10⁵ km,
The radius of the planet, r = 4175 km
The mass of the planet = 6.70 × 10²² kg
The total distance between the moon's center to the planet's center:
a = r +h = 2.165 × 10⁵ + 4175
a = 216500 + 4175
a = 220675
a = 2.26750 × 10⁸ m
The period of the planet can be calculated as:
[tex]T =2\pi \sqrt{\frac{a^3}{Gm} }[/tex]
[tex]T =2\3\times 3.14 \sqrt{\frac{(2.20675 \times 10^8)^3}{(6.67\times 10^{-11}).(6.70\times 10^{22})} }[/tex]
T = 9738253.26 s
T = 112.7 days
Learn more about Kepler's law, here:
https://brainly.com/question/1608361
#SPJ5
An organ pipe open at both ends is 1.5 m long. A second organ pipe that is closed at one end and open at the other is 0.75 m long. The speed of sound in the room is 330 m/s. Which of the following sets of frequencies consists of frequencies which can be produced by both pipes?
a. 110Hz,220Hz, 330 Hz
b. 220Hz 440Hz 66 Hz
c. 110Hz, 330Hz, 550Hz
d. 330 Hz, 550Hz, 440Hz
e. 660Hz, 1100Hz, 220Hz
Answer:
A. 110Hz,220Hz, 330 Hz
Explanation:
for organ open at open both ends;
the length of the organ for the fundamental frequency, L = A---->N + N----->A
A---->N = λ /4 and N----->A = λ /4
L = λ /4 + λ /4 = λ /2
[tex]L = \frac{\lambda}{2} \\\\\lambda = 2L[/tex]
λ = 2 x 1.5m = 3.0 m
Wave equation is given by;
V = Fλ
Where;
V is the speed of sound
F is the frequency of the wave
F = V/ λ
F₀ = V / 2L
Where;
F₀ is the fundamental frequency
F₀ = 330 / 2(1.5)
F₀ = 330 / 3
F₀ = 110 Hz
the length of the organ for the first overtone, L = A---->N + N----->A + A----->N + N----->A
L = 4λ /4
L = λ
λ = 1.5 m
F₁ = 330 / 1.5
F₁ = 220 Hz
Thus, F₁ = 2F₀
For open organ at one end
the length of the organ for the fundamental frequency, L = N------A
L = λ /4
λ = 4L
F₀ = V/4L
F₀ = 330 / (4 x 0.75)
F₀ = 110 Hz
the length of the organ for the first overtone, L = N-----N + N-----A
L = λ/2 + λ / 4
L = 3λ /4
F₁ = 3F₀
F₁ = 3 x 110
F₁ = 330 Hz
Thus the fundamental frequency for both organs is 110 Hz,
The first overtone for the organ open at both ends is 220 Hz
The first overtone for the organ open at one end is 330 Hz
The correct option is "A. 110Hz,220Hz, 330 Hz"
The correct option is option (A)
the frequencies produced by the pipes are (A) 110Hz,220Hz, 330 Hz
Frequencies and overtones:(I) For an organ pipe open at open both ends the frequency of different modes is given by:
F = nv/2L
where
F is the frequency
L is the length of the organ pipe
v is the speed of the wave
and, n is the mode of frequency
the fundamental frequency corresponds to n = 1, given by:
F₀ = v/2L
F₀ = 330 / 2(1.5)
F₀ = 330 / 3
F₀ = 110 Hz
The first overtone corresponds to n = 2, the second overtone corresponds to n = 3, and so on...
F₁ =2v/2L
F₁ = 330 / 1.5
F₁ = 220 Hz
Thus, F₁ = 2F₀
The difference between successive overtones is F₀
(II) For an organ pipe open at one end the frequency of different modes is given by:
F = nv/4L
where
F is the frequency
L is the length of the organ pipe
v is the speed of the wave
and, n is the mode of frequency
the fundamental frequency corresponds to n = 1, given by:
F₀ = V/4L
F₀ = 330 / (4 x 0.75)
F₀ = 110 Hz
For an organ pipe open at one end, only those overtones are present which correspond to odd n, that is n = 3,5,...so:
F₁ = 3F₀
F₁ = 3 x 110
F₁ = 330 Hz
Learn more about overtones:
https://brainly.com/question/1515875?referrer=searchResults
As you finish listening to your favorite compact disc (CD), the CD in the player slows down to a stop. Assume that the CD spins down with a constant angular acceleration. If the CD rotates clockwise (let's take clockwise rotation as positive) at 500 rpm (revolutions per minute) while the last song is playing, and then spins down to zero angular speed in 2.60 s with constant angular acceleration, the angular acceleration of the CD, as it spins to a stop at -20.1 rad/s 2. How many revolutions does the CD make as it spins to a stop?
Answer:
10.8rev
Explanation:
Using
Wf²-wf = 2 alpha x theta
0²- 56.36x56.36/ 2(-20.13) x theta
Theta = 68.09 rad
But 68.09/2π
>= 10.8 revolutions
Explanation:
A ball travels with velocity given by [21] [ 2 1 ], with wind blowing in the direction given by [3−4] [ 3 −4 ] with respect to some co-ordinate axes. What is the size of the velocity of the ball in the direction of the wind?
Answer:
2/5 m/s
Explanation:
There are two vectors v and w . Let θ be angle b/w the two vector.
[tex]cos\theta =\frac{\overleftarrow{v}\cdot \overleftarrow{w}}{\left | v \right |\left | w \right |}\\=\frac{6-4}{\sqrt(2^2+1^2)\sqrt(3^2+4^2)} =\frac{2}{5\sqrt(5)}[/tex]
velocity of the ball in direction of the the wind
[tex]\left | vcos\theta \right |\\\left | v \right |cos\theta\\\sqrt(2^2+1^2)\frac{2}{5\sqrt(5)} = \frac{2}{5}[/tex]
The size of the velocity of the ball in the direction of the wind is 2/5 ms.
Calculation of the size of velocity:Since there are two vectors v and w
Also, here we assume θ be angle b/w the two vector.
So
Cos θ = 6-4 / √(2^2 + 1^2) √(3^2 + 4^2)
= 2/5√5
Now the velocity of the ball should be
= √(2^2 + 1^2) 2 ÷ 5√(5)
= 2 /5
hence, The size of the velocity of the ball in the direction of the wind is 2/5 ms.
Learn more about velocity here: https://brainly.com/question/1303810
A velocity selector in a mass spectrometer uses a 0.100-T magnetic field. (a) What electric field strength is needed to select a speed of 4.00 . 106 m/s
Answer:
The electric field strength needed is 4 x 10⁵ N/C
Explanation:
Given;
magnitude of magnetic field, B = 0.1 T
velocity of the charge, v = 4 x 10⁶ m/s
The velocity of the charge when there is a balance in the magnetic and electric force is given by;
[tex]v = \frac{E}{B}[/tex]
where;
v is the velocity of the charge
E is the electric field strength
B is the magnetic field strength
The electric field strength needed is calculated as;
E = vB
E = 4 x 10⁶ x 0.1
E = 4 x 10⁵ N/C
Therefore, the electric field strength needed is 4 x 10⁵ N/C
Simple harmonic oscillations can be modeled by the projection of circular motion at constant angular velocity onto the diameter of a circle. When this is done, the analog along the diameter of the acceleration of the particle executing simple harmonic motion is
Answer:
the analog along the diameter of the acceleration of the particle executing simple harmonic motion is the projection along the diameter of the centripetal acceleration of the particle in the circle
48. A patient presents with a thrombosis in
the popliteal vein. This thrombosis most likely
causes reduction of blood flow in which of the
following veins?
Answer:
the interation blood veins
Explanation:
You add 500 mL of water at 10°C to 100 mL of water at 70°C. What is the
most likely final temperature of the mixture?
O A. 80°C
OB. 10-C
OC. 20°C
O D. 60°C
Answer:
Option (c) : 20°C
Explanation:
[tex]t(final) = \frac{w1 \times t1 + w2 \times t2}{w1 + w2} [/tex]
T(final) = 500* 10 + 100*70/600 = 20°C
Consider two parallel plate capacitors. The plates on Capacitor B have half the area as the plates on Capacitor A, and the plates in Capacitor B are separated by twice the separation of the plates of Capacitor A. If Capacitor A has a capacitance of CA-17.8nF, what is the capacitance of Capacitor? .
Answer:
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Explanation:
The capacitance of a parallel plate capacitor is given by the following formula:
C = ε₀A/d
where,
C = Capacitance
ε₀ = Permeability of free space
A = Area of plates
d = Distance between plates
FOR CAPACITOR A:
C = CA = 17.8 nF = 17.8 x 10⁻⁹ F
A = A₁
d = d₁
Therefore,
CA = ε₀A₁/d₁ = 17.8 x 10⁻⁹ F ----------------- equation 1
FOR CAPACITOR B:
C = CB = ?
A = A₁/2
d = 2 d₁
Therefore,
CB = ε₀(A₁/2)/2d₁
CB = (1/4)(ε₀A₁/d₁)
using equation 1:
CB = (1/4)(17.8 X 10⁻⁹ F)
CB = 4.45 x 10⁻⁹ F = 4.45 nF
Which unbalanced force accounts for the direction of the net force of the rocket?
a. Air resistance
b. Friction
c. Gravity
d. Thrust of rocket engine
It depends on what stage of the mission you're talking about.
==> While it's sitting on the pad before launch, the forces on the rocket are balanced, so there's no net force on it.
==> When the engines ignite, their thrust (d) is greater than the force of gravity. So the net force on the rocket is upward, and the spacecraft accelerates upward.
==> After the engines shut down, the net force acting on the rocket is due to Gravity (c).
. . . If the rocket has enough vertical speed, it escapes the Earth completely, and just keeps going.
. . . If it has enough horizontal speed, it enters Earth orbit.
. . . If it doesn't have enough vertical or horizontal speed, it falls back to Earth.
A rocket will preserve to speed up so long as there's a resultant pressure upwards resulting from the thrust of the rocket engine.
What unbalanced force bills for the course of the internet pressure of the rocket?A rocket launches whilst the pressure of thrust pushing it upwards is greater than the burden force because of gravity downwards. This unbalanced pressure reasons a rocket to accelerate upwards. A rocket will maintain to hurry up so long as there's a resultant force upwards resulting from the thrust of the rocket engine.
What's the net pressure of unbalanced?
If the forces on an item are balanced, the net pressure is zero. If the forces are unbalanced forces, the results do not cancel each difference. Any time the forces acting on an object are unbalanced, the net pressure is not 0, and the movement of the item modifications.
Learn more about the thrust of the rocket engine. here: https://brainly.com/question/10716695
#SPJ2
At what temperature (degrees Fahrenheit) is the Fahrenheit scale reading equal to:_____
(a) 3 times that of the Celsius and
(b) 1/5 times that of the Celsius
Answer:
C = 26.67° and F = 80°C = -20° and F = -4°Explanation:
Find:
3 times that of the Celsius and 1/5 times that of the CelsiusComputation:
F = (9/5)C + 32
3 times that of the Celsius
If C = x
So F = 3x
So,
3x = (9/5)x + 32
15x = 9x +160
6x = 160
x = 26.67
So, C = 26.67° and F = 80°
1/5 times that of the Celsius
If C = x
So F = x/5
So,
x/5 = (9/5)x + 32
x = 9x + 160
x = -20
So, C = -20° and F = -4°
A beam of light from a laser illuminates a glass how long will a short pulse of light beam take to travel the length of the glass.
Answer:
The time of short pulse of light beam is [tex]2.37\times10^{-9}\ sec[/tex]
Explanation:
Given that,
A beam of light from a laser illuminates a glass.
Suppose, the length of piece is [tex]L=25.21\times10^{-2}\ m[/tex]
Index of refraction is 2.83.
We need to calculate the speed of light pulse in glass
Using formula of speed
[tex]v=\dfrac{c}{\mu}[/tex]
Put the value into the formula
[tex]v=\dfrac{3\times10^{8}}{2.83}[/tex]
[tex]v=1.06\times10^{8}\ m/s[/tex]
We need to calculate the time of short pulse of light beam
Using formula of velocity
[tex]v=\dfrac{d}{t}[/tex]
[tex]t=\dfrac{d}{v}[/tex]
Put the value into the formula
[tex]t=\dfrac{25.21\times10^{-2}}{1.06\times10^{8}}[/tex]
[tex]t=2.37\times10^{-9}\ sec[/tex]
Hence, The time of short pulse of light beam is [tex]2.37\times10^{-9}\ sec[/tex]
A 17.0 g bullet traveling horizontally at 785 m/s passes through a tank containing 13.5 kg of water and emerges with a speed of 534 m/s.
What is the maximum temperature increase that the water could have as a result of this event? (in degrees)
Answer:
The maximum temperature increase is [tex]\Delta T = 0.0497 \ ^oC[/tex]
Explanation:
From the question we are told that
The mass of the bullet is [tex]m = 17.0 \ g =0.017 \ kg[/tex]
The speed is [tex]v_1 = 785 \ m/s[/tex]
The mass of the water is [tex]m_w = 13.5 \ kg[/tex]
The velocity it emerged with is [tex]v_2 = 534 \ m/s[/tex]
Generally due to the fact that energy can nether be created nor destroyed but transferred from one form to another then
the change in kinetic energy of the bullet = the heat gained by the water
So
The change in kinetic energy of the water is
[tex]\Delta KE = \frac{1}{2} m (v_1^2 - v_2 ^2 )[/tex]
substituting values
[tex]\Delta KE =0.5 * 0.017 * (( 785)^2 - (534) ^2 )[/tex]
[tex]\Delta KE = 2814.1 \ J[/tex]
Now the heat gained by the water is
[tex]Q = m_w* c_w * \Delta T[/tex]
Here [tex]c_w[/tex] is the specific heat of water which has a value [tex]c_w = 4190 J/kg \cdot K[/tex]
So since [tex]\Delta KE = Q[/tex]
we have that
[tex]2814.1 = 13.5 * 4190 * \Delta T[/tex]
[tex]\Delta T = 0.0497 \ ^oC[/tex]
A pool ball moving 1.83 m/s strikes an identical ball at rest. Afterward, the first ball moves 1.15 m/s at a 23.3 degrees angle. What is the y-component of the velocity of the second ball?
Answer:
v_{1fy} = - 0.4549 m / s
Explanation:
This is an exercise of conservation of the momentum, for this we must define a system formed by the two balls, so that the forces during the collision have internal and the momentum is conserved
initial. Before the crash
p₀ = m v₁₀
final. After the crash
[tex]p_{f}[/tex] = m [tex]v_{1f}[/tex] + m v_{2f}
Recall that velocities are a vector so it has x and y components
p₀ = p_{f}
we write this equation for each axis
X axis
m v₁₀ = m v_{1fx} + m v_{2fx}
Y Axis
0 = -m v_{1fy} + m v_{2fy}
the exercise tells us the initial velocity v₁₀ = 1.83 m / s, the final velocity v_{2f} = 1.15, let's use trigonometry to find its components
sin 23.3 = v_{2fy} / v_{2f}
cos 23.3 = v_{2fx} / v_{2f}
v_{2fy} = v_{2f} sin 23.3
v_{2fx} = v_{2f} cos 23.3
we substitute in the momentum conservation equation
m v₁₀ = m v_{1f} cos θ + m v_{2f} cos 23.3
0 = - m v_{1f} sin θ + m v_{2f} sin 23.3
1.83 = v_{1f} cos θ + 1.15 cos 23.3
0 = - v_{1f} sin θ + 1.15 sin 23.3
1.83 = v_{1f} cos θ + 1.0562
0 = - v_{1f} sin θ + 0.4549
v_{1f} sin θ = 0.4549
v_{1f} cos θ = -0.7738
we divide these two equations
tan θ = - 0.5878
θ = tan-1 (-0.5878)
θ = -30.45º
we substitute in one of the two and find the final velocity of the incident ball
v_{1f} cos (-30.45) = - 0.7738
v_{1f} = -0.7738 / cos 30.45
v_{1f} = -0.8976 m / s
the component and this speed is
v_{1fy} = v1f sin θ
v_{1fy} = 0.8976 sin (30.45)
v_{1fy} = - 0.4549 m / s
The frequency of light emitted from hydrogen present in the Andromeda galaxy has been found to be 0.10% higher than that from hydrogen measured on Earth.
Is this galaxy approaching or receding from the Earth, and at what speed?
Answer:
3x10^5m/s
Explanation:
See attached file
Explanation:
The speed of the light emitted from the earth is approaching the galaxy at [tex]3\times 10^5\;\rm m/s[/tex].
Doppler's Effect
According to the Doppler effect, the difference between the frequency at which light wave leave a source and reaches an observer is caused by the relative motion of the observer and the wave source.
Given that the difference in the frequency is 0.10 %. The speed of light emitted from the galaxy can be calculated by the Doppler effect.
[tex]\dfrac {\Delta f}{f} = \dfrac {v}{c}[/tex]
Where f is the frequency of the light, v is the speed of light emitted from the galaxy and c is the speed of light emitted from the earth.
[tex]\dfrac {0.10 f}{100 f} = \dfrac {v}{3\times 10^8}[/tex]
[tex]v = 3\times 10^5\;\rm m/s[/tex]
Hence we can conclude that the speed of the light emitted from the earth is approaching the galaxy at [tex]3\times 10^5\;\rm m/s[/tex].
To know more about the doppler effect, follow the link given below.
https://brainly.com/question/1330077.
A city of Punjab has a 15 percent chance of wet weather on any given day. What is the probability that it will take a week for it three wet weather on 3 separate days?
Answer: 0.0617
Explanation:
Given: The probability of wet weather on any given day in a city of Punjab : p=15%=0.15
Let X be a binomial variable that represents the number of days having wet weather.
Binomial probability formula : [tex]P(X=x)=^nC_xp^x(1-p)^x[/tex], where n= total outcomes, p = probability of success in each outcomes.
Here, n= 7 ( 1 week = 7 days)
The probability that it will take a week for it three wet weather on 3 separate days:
[tex]P(X=3)^=\ ^7C_3(0.15)^3(1-0.15)^{7-3}\\\\=\dfrac{7!}{3!(7-3)!}(0.15)^3(0.85)^4\\\\=\dfrac{7\times6\times5}{3\times2}\times 0.003375\times0.52200625\approx0.0617[/tex]
Hence, the required probability =0.0617
If a sample emits 2000 counts per second when the detector is 1 meter from the sample, how many counts per second would be observed when the detector is 3 meters from the sample?
Using the sample in above question how many counts per second would be observed when the detector is 10 meters away from the sample?
Answer:
At 3 meter distance, the per-second count is 222.22 and at a 10 meter distance, the per-second count is 20.
Explanation:
The number of particles (N) counts are inversely proportional to the distance between the source and the detector.
By using the below formula we can find the number of counts.
[tex]N2 = \frac{(D1)^2}{(D2)^2} \times N1 \\N1 = 2000 \\D 1 = 1 \ meter \\D2 = 3 \\[/tex]
The number of count per second, when the distance is 3 meters.
[tex]= \frac{1}{3^2} \times 2000 \\= 222.22[/tex]
Number of count per second when the distance is 10 meters.
[tex]= \frac{1}{10^2} \times 2000 \\= 20[/tex]
A radar installation operates at 9000 MHz with an antenna (dish) that is 15 meters across. Determine the maximum distance (in kilometers) for which this system can distinguish two aircraft 100 meters apart.
Answer:
R = 36.885 km
Explanation:
In order to distinguish the two planes we must use the Rayleigh criterion that establishes two distinguishable objects if in their diffraction the central maximum of one coincides with the first minimum of the other
The diffraction equation for slits is
a sin θ = m λ
the first minimum occurs for m = 1
sin θ = λ a
as the diffraction experiments the angles are very small, we approximate
sin θ = θ
θ = λ / a
This expression is for a slit, in the case of circular objects, when solving the system in polar coordinates, a numerical constant appears, leaving the expression of the form
θ = 1.22 λ / a
In this problem they give us the frequency, let's find the wavelength with the relation
c = λ f
λ = c / f
θ = 1.22 c/ f a
since they ask us for the distance between the planes, we can use the definition of radians
θ = s / R
if we assume that the distance is large, we can approximate the arc to the horizontal distance
s = x
we substitute
x / R = 1.22 c / fa
R = x f a / 1.22c
Let's reduce the magnitudes to the SI system
f = 9000 MHz = 9 109 Hz
a = 15 m
x = 100 m
let's calculate
R = 100 10⁹ 15 / (1.22 3 108)
R = 3.6885 10⁴ m
let's reduce to km
R = 3.6885 10¹ km
R = 36.885 km