A 14cm diameter champagne bottle rests on its side on top of a frictionless table. Suddenly, the cork pops and the bottle slides backward for a distance of 22.0 cm in 0.44s. If the mass of the bottle is 500 times the mass of the cork, find the distance from the original position the cork will land on the table.

Answers

Answer 1

The distance the cork will land on the table is [tex]d = 30 m[/tex]. If the mass of the bottle is 500 times the mass of the cork.

First, we need the initial velocity of the bottle is:

Using [tex]d = vt[/tex]

[tex](0.22) = (v)*(0.44)\\v = 0.5\ m/s[/tex]

Then, using the conservation of momentum, we can find the velocity of the cork

[tex]mv (bottle) = mv (cork)\\(500)*(0.1) = m(v)\\v = 250\ m/s[/tex]

Now, where the cork lands.  It starts at a vertical height of 7 cm  (the radius of the bottle and will hit the table somewhere, that is what we need to find.  Where it bounces first)

Since the cork has no initial y velocity, we can find the time it would take for it to drop 7 cm.

[tex]d = v_{o}t + 0.5at^{2}\\0.07 = (0) + (0.5)*(9.8)*(t_2)\\t = 0.120 sec[/tex]

Then, using d = vt, we can find the horizontal distance it flies in that amount of time is:

[tex]d = (250)*(0.12)\\d = 30 m[/tex]

Therefore, the distance the cork will land on the table is [tex]d = 30 m[/tex].

To know more about the distance:

https://brainly.com/question/33716087

#SPJ12


Related Questions

This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Pin A, which is attached to link AB, is constrained to move in the circular slot CD. At t=0, the pin starts from rest and moves so that its speed increases at a constant rate of 1.2 in/s2 D 3.5 in. А B Determine the magnitude of its total acceleration when t= 0. The magnitude of its total acceleration is in/s2

Answers

The magnitude of the total acceleration of the pin when t=0 is 1.2 in/s^2.

To explain further, the acceleration of the pin is the sum of two components: tangential acceleration and centripetal acceleration. The tangential acceleration is responsible for increasing the speed of the pin, and its magnitude is constant at 1.2 in/s^2.

The centripetal acceleration is due to the circular motion of the pin in the slot CD and is directed towards the center of the circle.

To find the magnitude of the total acceleration at t=0, we need to first find the magnitude of the tangential acceleration and the centripetal acceleration separately. We know that the tangential acceleration is 1.2 in/s^2, and we can use the formula for centripetal acceleration, a_c = v^2/r, where v is the velocity of the pin and r is the radius of the circle. At t=0, the velocity of the pin is zero, and the radius of the circle is 3.5 inches.

Therefore, the centripetal acceleration is also zero.

Since the centripetal acceleration is zero, the magnitude of the total acceleration is equal to the magnitude of the tangential acceleration, which is 1.2 in/s^2.

For more similar questions on physics kinematics,

brainly.com/question/31152246

#SPJ11.

In which of the following cases does a car have a negative velocity and a positive acceleration? A car that is traveling in the ................. (A) -x direction at a constant 10 m/s. (B) - direction increasing in speed. (C) +x direction increasing in speed. (D) - direction decreasing in speed. (E) +x direction decreasing in speed.

Answers

In the case where the car is traveling in the -x direction and decreasing in speed, it has a negative velocity and a positive acceleration. Therefore, option D is the correct answer. In this case, the car is traveling in the - direction and decreasing in speed. Therefore, it has a negative velocity and a positive acceleration.

Let's discuss the given options one by one:

(A) In this case, the car is traveling in the -x direction at a constant speed. Therefore, it has a negative velocity and zero acceleration. This option is incorrect.

(B) In this case, the car is traveling in the - direction and increasing its speed. Therefore, it has a negative velocity and a positive acceleration. However, the given direction is not specified, and thus this option is not accurate.

(C) In this case, the car is traveling in the +x direction and increasing in speed. Therefore, it has a positive velocity and a positive acceleration. This option is incorrect.

(D) In this case, the car is traveling in the - direction and decreasing in speed. Therefore, it has a negative velocity and a positive acceleration. This option is correct.

(E) In this case, the car is traveling in the +x direction and decreasing in speed. Therefore, it has a positive velocity and a negative acceleration. This option is incorrect.

Therefore, Option D ( - direction decreasing in speed) is correct.

To know more about negative velocity and positive acceleration, refer here:

https://brainly.com/question/12015984#

#SPJ11

suppose the ring rotates once every 4.10 s . if a rider's mass is 51.0 kg , with how much force does the ring push on her at the top of the ride?

Answers

The ring rotates once every 4.10 s. If a rider's mass is 51.0 kg, how much force does the ring push on her at the top of the ride is 500 N.

The solution is explained below:

As the rider is at the top of the ride, the only force acting on him is the force of gravity, which is pointing downwards, and the force with which the ring is pushing him towards the center of the circular path. By equating both forces, we can determine the required force to maintain the rider at the top of the ride.

Hence, the answer to the question is that the force with which the ring pushes the rider at the top of the ride is equal to the force of gravity, which is given as F = mgF = (51.0 kg)(9.81 m/s^2) = 500 N

Therefore, the force with which the ring pushes on the rider at the top of the ride is 500 N.

Learn more about force at  brainly.com/question/13191643

#SPJ4

two blocks with masses 4m and 7m are on a collision course with the same initial speeds vi. the block with mass 4m is traveling to the left, and the 7m block is traveling to the right. they undergo a head-on elastic collision and each bounces back, retracing its original path. find the final speeds of the particles. (enter your answers in terms of

Answers

The final speeds of the particles expressed in terms of the initial velocity are |v1'| = |v1| = 27/8|vi| and |v2'| = |v2| = 27/14|vi|

The conservation of momentum can be applied. The total momentum of the system before the collision is:

P before = m1v1 + m2v2

where m1 and v1 are the mass and velocity of the 4m block and m2 and v2 are the mass and velocity of the 7m block. Since the two blocks have the same initial speed, the momentum before the collision is:

P before = (4m)(-vi) + (7m)(vi)
P before = 3mvi

After the collision, the two blocks bounce back, so their final velocities are:

v1' = -v1
v2' = -v2

where v1 and v2 are the velocities of the blocks after the collision. Using the conservation of momentum again, the total momentum of the system after the collision is:

Pafter = m1v1' + m2v2'
Pafter = -4mv1 - 7mv2
Pafter = -4m(-v1) - 7m(-v2)
Pafter = 4mv1 + 7mv2

Since the collision is elastic, the total kinetic energy of the system is conserved. Therefore, the kinetic energy before the collision is equal to the kinetic energy after the collision:

Kbefore = Kafter

where Kbefore is the kinetic energy of the system before the collision and Kafter is the kinetic energy of the system after the collision. The kinetic energy can be expressed as:

K = 1/2mv²

Therefore, the total kinetic energy of the system before the collision is:

Kbefore = 1/2(4m)(vi)² + 1/2(7m)(vi)²
Kbefore = 27/2m(vi)²

The total kinetic energy of the system after the collision is:

Kafter = 1/2(4m)(-v1)² + 1/2(7m)(-v2)²
Kafter = 1/2(4m)(v1)² + 1/2(7m)(v2)²

Using the conservation of kinetic energy, Kbefore = Kafter:

27/2m(vi)² = 1/2(4m)(v1)² + 1/2(7m)(v2)²

Simplifying, the final velocities can be expressed in terms of the initial velocity:

v1 = 27/8vi
v2 = 27/14vi

Therefore, the final speeds of the particles are: |v1'| = |v1| = 27/8|vi| and |v2'| = |v2| = 27/14|vi|

More on momentum: https://brainly.com/question/30733354

#SPJ11

questionwhen you heat an air-filled balloon, what happens inside with regard to the movement of air molecules?

Answers

When you heat an air-filled balloon, the movement of air molecules inside the balloon increases, causing the air to expand and the balloon to inflate.

Heating the air inside the balloon increases the temperature of the air molecules, causing them to move more rapidly and collide with each other more frequently.

This increased movement and collision between molecules causes them to spread out and fill a larger volume, which leads to the expansion of the air inside the balloon.

As the air inside the balloon expands, it exerts a greater pressure on the walls of the balloon, causing it to inflate.

For more similar questions on temperature

brainly.com/question/23905641

#SPJ11

the maximum energy of photoelectrons from aluminium is 2.3 ev for radiation of 2000 a and 0.90 ev for radiation of 3130 a. use this data to calculate plancks constant and the work function of aluminium

Answers

The maximum energy of photoelectrons from aluminium is 2.3 eV for radiation of 2000 Å and 0.90 eV for radiation of 3130 Å.

To calculate Planck's constant and the work function of aluminium, we need to use the equation:


 h = E2 - E1/ λ2 - λ1

Where h is Planck's constant, E1 and E2 are the maximum energy of photoelectrons for each wavelength, and λ1 and λ2 are the wavelengths.

Using the given data, we have:

h = (2.3 - 0.90) / (2000 - 3130)

Therefore, h = -1.4 eV / -930 Å, which simplifies to h = 0.0015 eVÅ.

The work function of aluminium is equal to the maximum energy of the photoelectrons for the longest wavelength, in this case, 0.90 eV. Therefore, the work function of aluminium is 0.90 eV.

Learn more  about photoelectrons  at brainly.com/question/16772624

#SPJ11

A car has an intial velocity of 50 km hr after 5 h, its final velocity is 70 km hr. solve for the car acceleration

Answers

Answer:

4 km/hr^2

Explanation:

We can use the formula for acceleration:

a = (v_f - v_i) / t

where:

a = acceleration

v_f = final velocity

v_i = initial velocity

t = time taken

Substituting the given values, we get:

a = (70 km/hr - 50 km/hr) / 5 hr

a = 20 km/hr / 5 hr

a = 4 km/hr^2

2.2 VECTORS IN TWO 120 N bearing 70° and 160 N bearing 40°

Answers

Answer:

Explanation:

Assuming you want to find the resultant vector of the two given vectors:

We can use the graphical method or the component method to find the resultant vector. Here, I will demonstrate the component method:

Step 1: Convert the given vectors into their component form (i.e., horizontal and vertical components).

Vector 1: 120 N bearing 70°

Horizontal component = 120 cos(70°) ≈ 38.23 N

Vertical component = 120 sin(70°) ≈ 113.41 N

Vector 2: 160 N bearing 40°

Horizontal component = 160 cos(40°) ≈ 122.15 N

Vertical component = 160 sin(40°) ≈ 103.08 N

Step 2: Add the horizontal components and vertical components separately to get the components of the resultant vector.

Horizontal component of resultant vector = 38.23 N + 122.15 N ≈ 160.38 N

Vertical component of resultant vector = 113.41 N + 103.08 N ≈ 216.49 N

Step 3: Use the Pythagorean theorem to find the magnitude of the resultant vector.

Magnitude of resultant vector = √(160.38 N)^2 + (216.49 N)^2 ≈ 268.15 N

Step 4: Find the direction of the resultant vector.

Direction of resultant vector = tan^-1(216.49 N / 160.38 N) ≈ 53.12°

Therefore, the resultant vector of the two given vectors is approximately 268.15 N at a bearing of 53.12°.

two technicians are discussing the parallel circuit laws. technician a says the total resistance of a parallel circuit is always less than that of the lowest resistance leg. technician b says the voltage is the same for each leg of a parallel circuit. who is correct?

Answers

Technician B is correct, i.e., the voltage is the same for each leg of a parallel circuit. This is because the voltage in a parallel circuit is the same across all components, but the current through each component varies.
The voltage, however, is the same for each leg of a parallel circuit. This is because the voltage in a parallel circuit is equal to the voltage across the entire circuit, regardless of the number of branches in the circuit.
According to the question statement, two technicians are discussing the parallel circuit laws. Technician A says the total resistance of a parallel circuit is always less than that of the lowest resistance leg. Technician B says the voltage is the same for each leg of a parallel circuit. We need to find out who is correct.

Parallel Circuit: A parallel circuit is an electrical circuit that consists of two or more components connected across the same two points. Each of the components has the same voltage across them, but they do not have the same current passing through them. The current is split among each component, and the total current entering the circuit equals the total current leaving the circuit. Hence, Ohm's law is valid for each component in parallel. Two rules should be followed in a parallel circuit:1. The voltage across each component in a parallel circuit is the same, but the current through each component varies.2. The reciprocal of the total resistance in a parallel circuit is equal to the sum of the reciprocals of each resistance in the circuit. So, the statement by Technician B is correct, i.e., the voltage is the same for each leg of a parallel circuit. This is because the voltage in a parallel circuit is the same across all components, but the current through each component varies. The statement by Technician A is not correct. The total resistance of a parallel circuit is less than the resistance of the smallest resistance leg. In a parallel circuit, the total resistance of the circuit is always less than the smallest resistor in the circuit. It is due to the inverse relationship between resistance and current: when resistance decreases, current increases. And since current divides in a parallel circuit, the total resistance is always less than any single resistance value. Therefore, technician A is incorrect.

For more information follow the link: https://brainly.com/question/27206933

#SPJ11

why do nuclear reactors have three separate water loops instead of just a single one that runs from the water source, through the reactor, then back to the cooling tower?

Answers

Nuclear reactors have three separate water loops instead of just a single one that runs from the water source, through the reactor, then back to the cooling tower because the water running through the reactor is highly radioactive.

What are nuclear reactors?

A nuclear reactor is a device that controls and maintains a sustained nuclear chain reaction for the purpose of generating heat or power, as well as the materials that make up a nuclear reactor.

The water running through the reactor is highly radioactive, which means that it cannot be released into the atmosphere or allowed to come into touch with humans or the environment. As a result, nuclear reactors are designed with three separate water loops.

The first loop circulates ordinary water that passes through the reactor and generates heat. The second loop, which is a separate circuit, brings this water to a steam turbine. The third loop, which is also a closed circuit, recovers the cooling water after it has passed through the turbine and transports it back to the reactor's inlet.

In summary, nuclear reactors have three separate water loops instead of a single one that runs from the water source, through the reactor, and back to the cooling tower because the water running through the reactor is highly radioactive.

Learn more about nuclear power: https://brainly.com/question/29472057

#SPJ11

A spring attached to a mass is at rest in the initial position (not shown). The spring is compressed in position A and is then released, as shown in position B. Which equation describes the conservation of energy in position A?
[tex]E=\frac{1}{2} mv^{2} \\E=mgh\\E=\frac{1}{2} kx^{2} \\E=\frac{1}{2} k2kx^{2}[/tex]

Answers

Answer:

Explanation:

The energy conservation is equal to half of the product of the spring constant and the square of displacement of the spring, so option C is correct.

if the 2 currents are same direction and forces are attractive, what is the direction of force wire 1 on wire 2

Answers

The direction of the force from wire 1 on wire 2 is attractive, as the two currents are in the same direction.

If two currents are flowing in the same direction and the forces between the wires are attractive, then the direction of the force on wire 2 due to wire 1 will be towards wire 1. This is because the magnetic field created by the current in wire 1 will induce a magnetic field in wire 2, and the interaction between these two magnetic fields will result in an attractive force between the wires.

In summary, if two currents are flowing in the same direction and the forces are attractive, the direction of the force on wire 2 due to wire 1 will be towards wire 1.

Learn more about the magnetic field:

https://brainly.com/question/26257705

#SPJ11

the car passes over the top of a vertical curve at a with a speed of 50 km/hr and then passes through the bottom of a dip at b. the radii of curvature of the road at a and b are both 70 m. find the speed of the car at b if the normal force between the road and the tires at b is twice that at a. the mass center of the car is 1.2 meter from the road.

Answers

The speed of the car at b if the normal force between the road and the tires at b is twice that at a is about 44.1 km/h.

What is Speed?

Speed of the car at A = 50 km/h

Radius of curvature at A = 70 m

Radius of curvature at B = 70 m

Normal force between the road and the tires at B = 2 × Normal force between the road and the tires at A= 2N

Mass center of the car = 1.2 m

The speed of car at B be v km/h

From the conservation of energy at the point A and B, we get:

1/2 mv² + mgh = 1/2 m(50)² + mg(70 - r)

1/2 mv² + mg(70 + r) = 1/2 m(50²)

1/2 mv² = 1/2 m50² - mg(70 + r) …… equation (1)

From the conservation of energy at point B, we get:

1/2 mv² + mg(2r + 1.2) = 1/2 m(50)² + mg(70 - r)

2× Normal force between the road and the tires at A = Normal force between the road and the tires at B

Normal force between the road and the tires at B = 2 × Normal force between the road and the tires at A

Therefore, mg - 2 × N = mv²/rmg - N = mv²/2r

2mg - 4N = mv²/rmg - 2N = mv²/2r

Subtracting, we get:

N = mg/3

Normal force between the road and the tires at A = mg/3

Normal force between the road and the tires at B = 2mg/3

Normal force between the road and the tires at B = 2(mg/3) = mg/3

From the above equations, we get the value of v. Putting the values, we get:

1/2 mv² = 1/2 m(50)² - mg(70 + r) - mg(2r + 1.2) + mg(70 - r)1/2 v² = 1/2(50)² - g(70 + r) - g(2r + 1.2) + g(70 - r)v = 44.1 km/h

Therefore, the speed of the car at B is 44.1 km/h.

Learn more about Speed here:

https://brainly.com/question/28224010

#SPJ11

Review your answer to part c. In addition, reread the portion of your physics text that discusses Newton's third law. Then consider a book on a level table: e. Which force completes the Newton's third law (or action-reaction) force pair with the normal force exerted on the book by the table?

Answers

In this case, the normal force exerted by the table on the book is the action force and the reaction force is the force that the book exerts on the table. This force is equal in magnitude to the normal force and acts in the opposite direction.

Newton's third law states that for every action, there is an equal and opposite reaction. This means that when one object exerts a force on another object, the second object exerts a force back on the first object that is equal in magnitude and opposite in direction.

Learn more about newton's third law:

https://brainly.com/question/25998091

#SPJ11

Is an object moving with a constany speed around a circular path veloctiy? why? why not?​

Answers

Answer: The motion of a body with constant speed in a circular path is said to be accelerated, because it is moving with uniform speed, but not with uniform velocity, as velocity is a vector quantity, it can be represented in magnitude as well the direction.

Explanation:

when a 2.75-kg fan, having blades 18.5 cm long, is turned off, its angular speed decreases uniformly from 10.0 rad/s to 6.30 rad/s in 5.00 s. (a) what is the magnitude of the angular acceleration of the fan?

Answers

The angular acceleration of the fan is 0.740 rad/s^2,

Angular acceleration which represents the rate at which the angular velocity changes over time. The unit used to measure angular acceleration is radians per square second (rad/s2), according to the International System of Units. The Greek alphabet symbol alpha (α) is used to denote angular acceleration.

To calculate the angular acceleration of the fan, the formula α = Δω/Δt is used. Here, α represents angular acceleration, Δω represents the change in angular speed, and Δt represents the change in time.

In this scenario, Δω is equal to 10.0 - 6.30 = 3.70 rad/s, and Δt is equal to 5.00 s. By substituting these values into the formula, we obtain α = 3.70/5.00 = 0.740 rad/s^2.

To gain more knowledge about angular acceleration, refer to brainly.com/question/21278452.

#SPJ11

A light bulb used in a slide projector draws a current of 6 amperes when operating on 120 volts.. the power consumed by th light bulb in watts is? B.)a light bulb used in a slide projector draws a cuurent of 6 amperes when operating on 120 volts. the resistance of the light bulb in ohms is?
a..05
b.20
c.720
d.none

Answers

When a light bulb used in a slide projector draws a current of 6 amperes while operating on 120 volts, the power consumed by the light bulb in watts is 720, and the resistance of the light bulb in ohms is 20. Thus, the correct option is B.

Why the resistance of a light bulb is 20 ohms?

When we know that the current drawn by a light bulb is 6 amperes and the voltage applied to it is 120 volts, we can easily calculate the resistance of the light bulb, as follows:

Resistance (R) = Voltage (V) / Current (I)

here, V = 120V and I = 6A

Therefore, the resistance of the light bulb is:

R = V/I = 120/6 = 20 Ohms

The formula used to calculate the power (P) consumed by a light bulb is:

P = V × I

Here, the voltage (V) applied to the light bulb is 120 volts and the current (I) drawn by the light bulb is 6 amperes. So, the power consumed by the light bulb is:

P = 120 × 6 = 720 watts

Hence, the power consumed by the light bulb in watts is 720, and the resistance of the light bulb is 20 ohms.

Therefore, the correct option is B.

Learn more about Resistance here:

https://brainly.com/question/30799966

#SPJ11

A 900.0kg car is traveling at 11.0m/s. What is the momentum of this car?

Answers

The momentum of the car is 9900 kg m/s.

What is momentum?

The momentum of an object is defined as the product of its mass and velocity. In this case, the momentum of the car can be calculated using the following formula:

Momentum = mass x velocity

Here, the mass of the car is 900.0 kg and its velocity is 11.0 m/s. Substituting these values into the formula, we get:

Momentum = 900.0 kg x 11.0 m/s

Momentum = 9900 kg m/s

Therefore, the momentum of the car is 9900 kg m/s.

Note that the units of momentum are kilogram meters per second (kg m/s), which are derived from the units of mass (kg) and velocity (m/s). Momentum is a vector quantity, meaning it has both magnitude and direction, and its direction is the same as the direction of motion of the object.

To know more about momentum visit :-

https://brainly.com/question/1042017

#SPJ1

: suppose a planet has a mass of 10 times that of the Earth and a radius that is 100 times that of the Earth. The acceleration of gravity on the surface of the planet, expressed in units of the Earth's acceleration of gravity, g, is 1000 g. g/1000 10 g.

Answers

The acceleration of gravity on the surface of the planet, expressed in units of the Earth's acceleration of gravity, g, is g/1000.

Given,Mass of the planet, m = 10m_Earth Radius of the planet, r = 100r_Earth Acceleration of gravity on the surface of the planet, g' = 1000 g_Earth To find, the acceleration of gravity on the surface of the planet, expressed in units of the Earth's acceleration of gravity, g.

Assuming the planet to be a perfect sphere, the acceleration due to gravity on the surface of the planet, g' is given by,g' = GM / r²where M is the mass of the planet, r is the radius of the planet and G is the gravitational constant.We know that, the acceleration of gravity on the surface of the Earth, g_Earth is given by,g_Earth = GM_Earth / r_Earth²Thus, we have the ratio of g' and g_Earth,g' / g_Earth = GM / r² × r_Earth² / GM_Earth= r_Earth / r = 1 / 100∴ g' = 1 / 100 × g_Earth = g_Earth / 1000.Hence, the acceleration of gravity on the surface of the planet, expressed in units of the Earth's acceleration of gravity, g is g/1000. Therefore, the answer is g/1000.

More on acceleration: https://brainly.com/question/15697181

#SPJ11

Calculate the translational speed of a cylinder when it reaches the foot of an incline 7.20 m high. Assume it starts from rest and rolls without slipping.
Express your answer using three significant figures and include the appropriate units. Thank you!!

Answers

The translational speed of the cylinder when it reaches the foot of the incline is approximately 9.43 m/s.

We can use conservation of energy to solve this problem. The initial energy of the cylinder is all potential energy, and the final energy is all kinetic energy. The potential energy at the bottom of the incline is zero.

The potential energy of the cylinder at the top of the incline is given by:

PE = mgh

where m is the mass of the cylinder, g is the acceleration due to gravity, and h is the height of the incline. Substituting the given values, we get:

PE = (mass of cylinder) x (acceleration due to gravity) x (height of incline) = mgh

The kinetic energy of the cylinder at the bottom of the incline is given by:

KE = (1/2)mv^2

where v is the translational speed of the cylinder at the bottom of the incline.

According to the conservation of energy, the initial potential energy is equal to the final kinetic energy, so we can set these two expressions equal to each other:

mgh = (1/2)mv^2

We can cancel the mass of the cylinder from both sides, and solve for v:

v = sqrt(2gh)

Substituting the given values, we get:

v = sqrt(2 x 9.81 m/s^2 x 7.20 m) ≈ 9.43 m/s

Therefore, the translational speed of the cylinder when it reaches the foot of the incline is approximately 9.43 m/s.

For more such questions on Cylinder

https://brainly.com/question/23935577

#SPJ11

Can anyone help me please ..I need it hurry within 6 hrs.please.
Brainliest for the first best answer.​

Answers

(i) Switch k1 is closed:

The current passing through the circuit is:  0.25 amps

R_total = R1 + R2 = 3 + 5 = 8 ohms

The current passing through the circuit is:

i = V / R_total = 2 / 8 = 0.25 amps

(ii) Switches k1 and k2 are closed:

The current passing through the circuit is: 1.07 amps

1/R_total = 1/R1 + 1/(R2 + R3) = 1/3 + 1/(5 + 0) = 8/15

R_total = 15/8 ohms

The current passing through the circuit is:

i = V / R_total = 2 / (15/8) = 1.07 amps

(iii) Switch k1 is open and k2 is closed:

The current passing through the circuit is: 1.07 amps

1/R_total = 1/R2 + 1/(R1 + R3) = 1/5 + 1/(3 + 0) = 1/5 + 1/3 = 8/15

R_total = 15/8 ohms

The current passing through the circuit is:

i = V / R_total = 2 / (15/8) = 1.07 amps

So the current passing through the circuit depends on which switches are closed, and can range from 0.25 amps to 1.07 amps.

What is current?

Crrent refers to the flow of electric charge through a conductor, such as a wire. It is measured in amperes (A) and is defined as the rate at which electric charge flows past a given point in a circuit. current is caused by the movement of charged particles, such as electrons or ions, through a conductor.

To know more about current, visit:

https://brainly.com/question/21505732

#SPJ1

Three objects interact in a system that has a total initial momentum of 236 kg-m/s directed in the southeast direction. If there is no friction (external force) acting on the two objects, what is their momentum after 12 s?

Answers

The momentum of the objects after 12 seconds of the interaction is -236 kg-m/s

Step by step Explanation:

The three objects of a system that has a total initial momentum of 236 kg-m/s directed in the southeast direction.

If there is no friction (external force) acting on the two objects, the momentum of the object is the product of the mass and velocity of the object.

The formula for momentum is P = mv,

where P is momentum, m is mass, and v is velocity.

Furthermore, the direction of momentum is similar to the direction of velocity. The given initial momentum is [tex]P_1[/tex] = 236 kg-m/s directed in the southeast direction.

According to the law of conservation of momentum, the total momentum of the system must remain constant if there is no external force. As a result, the total momentum of the system will be the same before and after the interaction.

[tex]P_1 = P_2 + P_3[/tex]

Where, [tex]P_1[/tex] = Initial momentum of the system

[tex]P_2[/tex] = Momentum of the object after the interaction

[tex]P_3[/tex] = Momentum of the object after the interaction

Let [tex]P_2[/tex]be the momentum of object 2 and [tex]P_3[/tex] be the momentum of object 3.

P_2 = m_2v_2

[tex]P_2 = m_2v_2[/tex]

[tex]P_3 = m_3v_3[/tex]

After the interaction, the momentum of the system is:

[tex]P = P_2 + P_3[/tex]

Let's find P_2 and P_3 in terms of time since the direction and mass of the objects are not given.

[tex]P_1 = P_2 + P_3[/tex]

⇒ [tex]P_2 = P_1 - P_3[/tex]

We must discover the momentum of object 3. The initial momentum is southeast. It indicates that the momentum is in the opposite direction of northwest. If we call the north and west direction negative, then the southeast direction will be positive. This indicates that the momentum is negative.

Therefore, [tex]P_1 = P_2 + P_3[/tex] ⇒ -236 =[tex]-P_3 + P_2[/tex]

We are supposed to calculate their momentum after 12 seconds after the interaction. So, the external force will act on them during this interval of time. Due to the absence of external forces, the momentum of the objects will remain constant.

Hence, the momentum of the objects after 12 seconds of the interaction will remain the same as the momentum of the objects after the interaction.Therefore,

[tex]P = P_2 + P_3 = P_1P[/tex] = -236 kg-m/s  

the momentum of the objects after 12 seconds of the interaction.

Learn more about momentum at : 'Formula for momentum' https://brainly.com/question/402617

#SPJ11

a cliff diver drops from rest to the water below. how many seconds does it take for the driver to go from 0 mi/h to 60 mi/h? (for comparison, it takes about 3.5 s to 4.0 s for a powerful car to go from 0 to 60 mi/h.)

Answers

Assuming that the only force acting on the diver is gravity and neglecting air resistance, we can use the kinematic equations of motion to determine that it takes 2.7 s for the diver to reach a speed of 60 mi/h (or 88 ft/s).

Since the diver starts from rest, we can use the kinematic equation:

[tex]$$v_f = v_i + at$$[/tex]

where [tex]$v_i$[/tex] is the initial velocity (0 mi/h), [tex]$v_f$[/tex] is the final velocity (60 mi/h or 88 ft/s), [tex]$a$[/tex] is the acceleration due to gravity [tex](32.2 ft/s$^2$)[/tex], and [tex]$t$[/tex] is the time it takes to reach the final velocity.

Converting the final velocity to feet per second, we get:

[tex]$$v_f = 60\ \text{mi/h} \times \frac{5280\ \text{ft/mi}}{3600\ \text{s/h}} = 88\ \text{ft/s}$$[/tex]

Substituting the given values, we get:

[tex]$$88\ \text{ft/s} = 0\ \text{ft/s} + (32.2\ \text{ft/s}^2)t$$[/tex]

Solving for [tex]$t$[/tex], we get:

[tex]t = \frac{88\ \text{ft/s}}{32.2\ \text{ft/s}^2}[/tex]

Therefore, it takes approximately 2.73 seconds for the diver to go from 0 mi/h to 60 mi/h.

Learn more about kinematic equations:

https://brainly.com/question/28712225

#SPJ11

amanda weighs about 600 n on earth, but would only weigh about 100 n on the moon. which best explains why amanda would weigh less on the moon than on earth? A. the mass of the moon is less than that of earth, therefore it has a weaker gravitational force. B. the circumference of the moon is smaller than earth, therefore it has less gravity. C. the pull from the gravity from earth decreases the pull of gravity from the moon. D. the lack of air pressure on the moon weakens the gravitational force of the moon.

Answers

Option A is the correct answer. The mass of the moon is less than that of earth, therefore it has a weaker gravitational force.

The correct option that explains why Amanda would weigh less on the moon than on earth is "A. the mass of the moon is less than that of the earth, therefore it has a weaker gravitational force." This is because weight is the result of the gravitational force that acts on an object, which is determined by both the mass of the object and the gravitational force acting on it. Therefore, the weight of an object varies depending on the mass and gravity.

The gravity of an object is the force that attracts it towards the center of the earth or the celestial object. The amount of gravity an object has depends on its mass and the mass of the object that it is attracting. The moon has a smaller mass than the earth, which means that it has a weaker gravitational force.

Consequently, the pull of gravity on the moon is weaker than on earth.  The weight of Amanda is less because pull of gravity on the moon is weaker than on earth. Therefore, option A is the correct answer.

Learn more about "gravity, weight and mass" at : https://brainly.com/question/2124323

#SPJ11

of the three states of matter, which one has the most kinetic energy?

Answers

Of the three states of matter (solid, liquid, and gas), gas has the most kinetic energy. This is because the particles in a gas have the highest average speed compared to the particles in solids and liquids.

In a gas, the particles are in constant motion, colliding with each other and the walls of the container. This motion generates kinetic energy, which is proportional to the speed and mass of the particles. In contrast, solids have the lowest kinetic energy because their particles are tightly packed and have limited movement. The particles in a solid vibrate around a fixed position, and only experience small oscillations. Liquids have an intermediate amount of kinetic energy. The particles in a liquid are less tightly packed than in a solid, and can move more freely, resulting in more kinetic energy. However, liquids have more intermolecular forces between the particles compared to gases, which restricts their movement and reduces their average speed. Therefore, of the three states of matter, gases have the most kinetic energy, followed by liquids and then solids.

Learn more about kinetic energy here:

https://brainly.com/question/26472013

#SPJ4

A student produces severa standing waves on string by adjusting the (requency vibration at ona end olthe string: The student measures the wavelength and frequency for each standing wave produced Which of the following procedures and calculations will allow the student I0 determine Ihe wave speed on the string? a.Graph function of 1\f The slope of the Iine equal t0 the wave speed;
b. Graph a5 a function of f The slope of the Ilne equal to he wave speed:
c. Graph A a5 function of 1\f The area under Ihe Iine I5 equal to Ihe wave speed d. Graph a5 a function of f The area under the line equal l0 Ihe wave speed

Answers

The correct option that allows the student to determine the wave speed on the string is d. Graph a5 a function of f The area under the line equal l0 Ihe wave speed.

Wave speed can be calculated by the formula: Wave speed (v) = frequency (f) × wavelength (λ) or v = fλ

According to the question, the student has measured the wavelength and frequency for each standing wave produced. Now, to determine the wave speed, the student needs to use the formula: v = fλ

To determine the wave speed from the graph of frequency and wavelength, the graph is made with frequency on the x-axis and wavelength on the y-axis. The slope of the line gives the speed of the wave. The graph can be used to calculate the wave speed for any wave by finding the slope of the line.

To know more about wave speed, refer here:

https://brainly.com/question/10715783#

SPJ11#

a particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the ori- gin, at t 5 0 and moves to the right. the amplitude of its motion is 2.00 cm, and the frequency is 1.50 hz. (a) find an expression for the position of the particle as a function of time. determine (b) the maximum speed of the particle and (c) the earliest time (t . 0) at which the particle has this speed. find (d) the maxi- mum positive acceleration of the particle and (e) the earliest time (t . 0) at which the particle has this accel- eration. (f) find the total distance traveled by the par- ticle between t 5 0 and t 5 1.00 s.

Answers

(a) The position of the particle as a function of time is given by:

x(t) = A cos(2πft)

where A is the amplitude (2.00 cm), f is the frequency (1.50 Hz), and cos is the cosine function.

Substituting the given values, we get:

x(t) = 2.00 cos(3πt)

(b) The maximum speed of the particle occurs at the equilibrium position, where the displacement is zero. At this point, the velocity is maximum and is given by:

vmax = Aω

where ω is the angular frequency and is equal to 2πf. Substituting the given values, we get:

vmax = 2.00 × 2π × 1.50 = 18.85 cm/s

(c) The earliest time at which the particle has this speed is when it passes through the equilibrium position. This happens at t = 0, so the earliest time is t = 0.

(d) The maximum positive acceleration of the particle occurs at the ends of its motion, where the displacement is maximum. At these points, the acceleration is given by:

amax = Aω^2

Substituting the given values, we get:

amax = 2.00 × (2π × 1.50)^2 = 282.74 cm/s^2

(e) The earliest time at which the particle has this acceleration is when it reaches the maximum displacement. This happens at t = 1/4T, where T is the period of the motion. The period is given by:

T = 1/f = 2/3 s

So, t = 1/4T = 1/4 × 2/3 = 0.33 s

(f) The total distance traveled by the particle between t = 0 and t = 1.00 s is equal to one complete cycle of its motion. The distance traveled in one complete cycle is equal to four times the amplitude, or:

4A = 8.00 cm

Therefore, the total distance traveled is:

8.00

the end result of a theory that is not verified is

Answers

Unproven theories ultimately cannot be regarded as scientific facts or principles and are not generally recognised by the scientific community.

A well-supported explanation of a natural occurrence in science that has passed rigorous examination and is backed by empirical data is referred to as a theory. A hypothesis, however, cannot be regarded as a scientific fact or principle if it is not backed up by empirical data or if it has not undergone extensive testing and verification. The scientific community frequently rejects unproven notions with scant empirical backing and may even label them as pseudoscientific or non-scientific. This is so that scientific theories and findings may be evaluated and verified frequently. Science does this by using evidence-based reasoning and critical thinking. Unproven theories are therefore eventually not regarded as being a part of the corpus of scientific knowledge.

learn more about theories here:

https://brainly.com/question/1759635

#SPJ4

discuss whether the values found in parts (a) and (b) seem consistent with the fact that tidal effects with earth have caused the moon to rotate with one side always facing earth.

Answers

Yes, the values found in parts (a) and (b) are consistent with the fact that tidal effects with earth have caused the moon to rotate with one side always facing earth.

This is because part (a) states that the moon rotates on its axis in the same amount of time it takes to complete one orbit around the Earth, which is a phenomenon known as tidal locking. Part (b) further indicates that the same side of the moon always faces the Earth, further supporting the notion that tidal effects have caused the moon to rotate with one side always facing Earth.

More on tides: https://brainly.com/question/14376024

#SPJ11

A 2. 00-kg object is attached to an ideal massless horizontal spring of spring constant 100. 0 N/m and is at rest on a frictionless horizontal table. The spring is aligned along the x-axis and is fixed to a peg in the table. Suddenly this mass is struck by another 2. 00-kg object traveling along the x-axis at 3. 00 m/s, and the two masses stick together. What are the amplitude and period of the oscillations that result from this collision? 0. 300 m, 1. 26 s 0. 424 m, 5. 00 s 0. 424 m, 0. 889 s 0. 300 m, 0. 889 s 0. 424 m, 1. 26 s

Answers

The correct option is A, the amplitude and period of the oscillations that result from this collision are 0.300 m in 1.26s.

The expression for Period of spring is,

[tex]T = 2\pi\sqrt{\frac{2m}{k} }[/tex]

Here, m is the mass of the spring and k is the spring constant

Substitute 2 kg

for m

and 100N/m

for k

in equation [tex]T = 2\pi\sqrt{\frac{2m}{k} }[/tex]

and solve for T .

[tex]T = 2\pi\sqrt{\frac{(2)2 kg}{100 N/m} }[/tex]

T = 1.26s

In physics, amplitude refers to the maximum displacement or distance moved by a wave from its equilibrium or mean position. It is a measure of the intensity or strength of a wave, and it is usually represented as the height of the crest or depth of the trough of the wave.

The amplitude of a wave can be measured in various units, depending on the type of wave and the context in which it is being studied. For example, the amplitude of a sound wave is measured in decibels (dB), while the amplitude of an electromagnetic wave is measured in volts per meter (V/m). Amplitude plays an important role in the behavior of waves. It determines the energy carried by the wave and affects other properties such as frequency, wavelength, and phase.

To learn more about Amplitude visit here:

brainly.com/question/8662436

#SPJ4

Complete Question: -

A 2.00-kg object is attached to an ideal massless horizontal spring of spring constant 100.0 N/m and is at rest on a frictionless horizontal table. The spring is aligned along the x-axis and is fixed to a peg in the table. Suddenly this mass is struck by another 2.00-kg object traveling along the x-axis at 3.00 m/s, and the two masses stick together. What are the amplitude and period of the oscillations that result from this collision

A) 0.300 m, 1.26 s

B) 0.300 m, 0.889 s

C) 0.424 m, 0.889 s

D) 0.424 m, 1.26 s

E) 0.424 m, 5.00 s

Other Questions
Where i = sqrt(- 1) which of the following complex numbers is equal to (6 - 5i) - (4 - 3i) + (2 - 7i) ? A (4 - 9i)/25 B 4 - i C 9i - 4 D 4 - 9i E 4 + 9i considering a pig, how does the location of the umbilical cord compare to the spine? How does the formula for cellular respiration compare with the formula for photosynthesis? the fact that imprinting is most certain to occur if the opportunity for imprinting is presented to the organism at a very specific age indicates the existence of responses.T/F when a fortune 500 business lays off workers, some displaced employees may decide to start their own businesses. they are best described as a. welfare profiteers. b. corporate entrepreneurs. c. reluctant entrepreneurs. d. corporate refugees. there are 20 rows of seats on a concert hall: 25 seats are in the 1st row, 27 seats on the 2nd row, 29 seats on the 3 rd row, and so on. if the price per ticket is $32, how much will be the total sales for a one-night concert if all seats are taken? Conduct a survey with a minimum of 20 people. Complete the designed questionnaire in 1.2. Remind participants why you are doing survey and that their information will be kept confidential. Submit 20 original completed questionnaires. standard number of bones in the appendicular skeleton of the following values, which is least important to today's college students according to the yearly values survey? given that far for this site is 5, how much should doug be willing to pay per acre of land and still meet the return threshold set by the investors of alexis development corp.? Build upon the results of problem 3-80 to determine the minimum factor of safety for fatigue based on infinite life, using the modified Goodman criterion. The shaft rotates at a constant speed, has a constant diameter of 20 mm, and is made from cold-drawn AISI 1018 steel. From problem 3-80, the critical stress element experiences o = 61 MPa and I = 30 MPa. The minimum factor of safety for fatigue is What correlates with metallic behavior Suppose the number of dropped footballs for a wide receiver, over the course of a season, are normally distributed with a mean of 16 and a standard deviation of 12. What is the z-score for a wide receiver who dropped 13 footballs over the course of a season? A. -3 B. -1.5 C. 1.5 D. 3 Howie Long has just learned he has won a $500,000 prize in the lottery. The lottery has given him two options for receiving the payments. (1) If Howie takes all the money today, the state and federal governments will deduct taxes at a rate of 46% immediately. (2) Alternatively, the lottery offers Howie a payout of 20 equal payments of $36,000 with the first payment occurring when Howie turns in the winning ticket. Howie will be taxed on each of these payments at a rate of 25% Graded AssignmentNative Americans and the Indian Removal ActTotal Score: ___ of 30 pointsBe sure to save this document to your computer like this: HST08B_01_16_TitleofGraded Assignment_YourFirstInitial_YourLastName.docRefer to the rubric at the end of this assignment for details on how you will be graded. Write Your Argument President Jacksons Indian Removal Act affected people of different cultures. Using the primary and secondary sources from this unit, construct an argument in which you agree or disagree with the following statement: President Jackson's policies concerning Native Americans affected them unfavorably.To help you plan your writing and organize your argument, refer to the three-column chart in your History Journal. Use your annotations and other History Journal notes to help you construct the argument. Be sure to cite evidence from the articles and make connections to the research you gathered in Part 1 of this project.[Type your answer here.]Submit Your AssignmentSubmit your assignment to your teacher for grading. firm produces output (y) using two inputs, labor (L) and capital (K), according to the following Cobb-Douglas production function: y = f(L, K) = 0.25 K0.75. Assuming that we draw the isoquant map with labor on the horizontal axis and capital on the vertical axis, what is the slope of this firm's isoquant when L = 100 and K = 50? Give your answer to two decimal places and remember that the sign matters when describing the slope of an isoquant. Find the value of v+8 given that 3v+1=7 which of the following plots most accurately shows the temperature distribution in the solar system at the time of planet formation?graphs: A. steadily increasing line. B. steadily decreasing line. C. straight line. D. increasing after the new deal had been in effect for two years, the u.s. economy What is Bradburys message about when we should stop and reflect about ourselves?