A 1.25-kg ball begins rolling from rest with constant angular acceleration down a hill. If it takes 3.60 s for it to make the first complete revolution, how long will it take to make the next complete revolution?

Answers

Answer 1

Answer:

The time taken is  [tex]\Delta t = 1.5 \ s[/tex]

Explanation:

From the question we are told that

   The mass of the ball is  [tex]m = 1.25 \ kg[/tex]

    The time taken to make the first complete revolution is  t= 3.60 s

    The displacement of the first complete revolution is  [tex]\theta = 1 rev = 2 \pi \ radian[/tex]

Generally the displacement for one  complete revolution is mathematically represented as

       [tex]\theta = w_i t + \frac{1}{2} * \alpha * t^2[/tex]

Now given that the stone started from rest [tex]w_i = 0 \ rad / s[/tex]

     [tex]2 \pi =0 + 0.5* \alpha *(3.60)^2[/tex]

     [tex]\alpha = 0.9698 \ s[/tex]

Now the displacement for two  complete revolution is

         [tex]\theta_2 = 2 * 2\pi[/tex]

         [tex]\theta_2 = 4\pi[/tex]

Generally the displacement for two complete revolution is mathematically represented as  

     [tex]4 \pi = 0 + 0.5 * 0.9698 * t^2[/tex]

=>   [tex]t^2 = 25.9187[/tex]

=>   [tex]t= 5.1 \ s[/tex]

So

 The  time taken to complete the next oscillation is mathematically evaluated as

     [tex]\Delta t = t_2 - t[/tex]

substituting values

      [tex]\Delta t = 5.1 - 3.60[/tex]

     [tex]\Delta t = 1.5 \ s[/tex]

           

 

Answer 2

The time for the ball to complete the next revolution is 1.5 s.

The given parameters;

mass of the ball, m = 1.25 kgtime of motion, t = 3.6 sone complete revolution, θ = 2π

The constant angular acceleration of the ball is calculated as follows;

[tex]\theta = \omega t \ + \ \frac{1}{2} \alpha t^2\\\\2\pi = 0 \ + \ 0.5(3.6)^2 \alpha\\\\2\pi = 6.48 \alpha \\\\\alpha = \frac{2 \pi }{6.48} \\\\\alpha = 0.97 \ rad/s^2[/tex]

The time to complete the next revolution is calculated as follows;

[tex]4\pi = 0 + \frac{1}{2} (0.97)t^2\\\\8\pi = 0.97t^2\\\\t^2 = \frac{8\pi }{0.97} \\\\t^2 = 25.91\\\\t = \sqrt{ 25.91} \\\\t = 5.1 \ s[/tex]

[tex]\Delta t = 5.1 \ s \ - \ 3.6 \ s \\\\\Delta t = 1.5 \ s[/tex]

Thus, the time for the ball to complete the next revolution is 1.5 s.

Learn more here:https://brainly.com/question/20738528


Related Questions

A small omnidirectional stereo speaker produces waves in all directions that have an intensity of 8.00 at a distance of 4.00 from the speaker.

At what rate does this speaker produce energy?

What is the intensity of this sound 9.50 from the speaker?

What is the total amount of energy received each second by the walls (including windows and doors) of the room in which this speaker is located?

Answers

Answer:

A. We have that radius r = 4.00m intensity I = 8.00 W/m^

total power = power/ Area ( 4πr2)= 8.00 w/m^2( 4π ( 4.00 m)2=1607.68 W

b) I = total power/ 4πr2= 8.00 W/m2 ( 4.00 m/ 9.5 m)2= 1.418 W/m2

c) E = total power x time= 1607 . 68 W x 1s= 1607.68 J

Without actually calculating any logarithms, determine which of the following intervals the sound intensity level of a sound with intensity 3.66×10^−4W/m^2 falls within?

a. 30 and 40
b. 40 and 50
c. 50 and 60
d. 60 and 70
e. 70 and 80
f. 80 and 90
g. 90 and 100

Answers

Answer:

f. 80 and 90

Explanation:

1 x 10⁻¹² W/m² sound intensity falls within 0 sound level

1 x 10⁻¹¹ W/m² sound intensity falls within 10 sound level

1 x 10⁻¹⁰ W/m² sound intensity falls within 20 sound level

1 x 10⁻⁹ W/m² sound intensity falls within 30 sound level

1 x 10⁻⁸ W/m² sound intensity falls within 40 sound level

1 x 10⁻⁷ W/m² sound intensity falls within 50 sound level

1 x 10⁻⁶ W/m² sound intensity falls within 60 sound level

1 x 10⁻⁵ W/m² sound intensity falls within 70 sound level

1 x 10⁻⁴ W/m² sound intensity falls within 80 sound level

1 x 10⁻³ W/m² sound intensity falls within 90 sound level

Given sound intensity (3.66 x 10⁻⁴ W/m²) falls with 1 x 10⁻⁴ W/m² of intensity which is within 80 and 90 sound level.

f. 80 and 90

All household circuits are wired in parallel. A 1140-W toaster, a 270-W blender, and a 80-W lamp are plugged into the same outlet. (The three devices are in parallel when plugged into the same outlet.) Assume that this is the standard household 120-V circuit with a 15-A fuse.
a. What current is drawn by each device?
b. To see if this combination will blow the 15-A fuse, find the total current used when all three appliances are on.

Answers

Answer:

total current = 12.417 A

so it will not fuse as current is less than 15 A

Explanation:

given data

toaster = 1140-W

blender = 270-W

lamp = 80-W

voltage = 120 V

solution

we know that current is express as

current = power ÷ voltage   ......................1

here voltage is same in all three device

so

current by toaster is

I = [tex]\frac{1140}{120}[/tex]

I = 9.5 A

and

current by blender

I = [tex]\frac{270}{120}[/tex]

I = 2.25 A

and

current by lamp is

I = [tex]\frac{80}{120}[/tex]

I = 0.667 A

so here device in parallel so

total current is = 9.5 A + 2.25 A + 0.667 A

total current = 12.417 A

so it will not fuse as current is less than 15 A

A toroidal solenoid has 590 turns, cross-sectional area 6.20 cm^2 , and mean radius 5.00 cm .Part A. Calcualte the coil's self-inductance.Part B. If the current decreases uniformly from 5.00 A to 2.00 A in 3.00 ms, calculate the self-induced emf in the coil.Part C. The current is directed from terminal a of the coil to terminal b. Is the direction of the induced emf froma to b or from b to a?

Answers

Complete Question

A toroidal solenoid has 590 turns, cross-sectional area 6.20 cm^2 , and mean radius 5.00 cm .

Part A. Calculate  the coil's self-inductance.

Part B. If the current decreases uniformly from 5.00 A to 2.00 A in 3.00 ms, calculate the self-induced emf in the coil.

Part C. The current is directed from terminal a of the coil to terminal b. Is the direction of the induced emf from a to b or from b to a?

Answer:

Part A  

       [tex]L = 0.000863 \ H[/tex]

Part B  

       [tex]\epsilon = 0.863 \ V[/tex]

Part C

    From terminal a to terminal b

Explanation:

From the question we are told that

      The  number of turns is  [tex]N = 590 \ turns[/tex]

      The cross-sectional area is  [tex]A = 6.20 cm^2 = 6.20 *10^{-4} \ m[/tex]

      The  radius is [tex]r = 5.0 \ cm = 0.05 \ m[/tex]

       

Generally the coils self -inductance is mathematically represented as

              [tex]L = \frac{ \mu_o N^2 A }{2 \pi * r }[/tex]

Where [tex]\mu_o[/tex] is the permeability of  free space with value [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

substituting values

             [tex]L = \frac{ 4\pi * 10^{-7} * 590^2 6.20 *10^{-4} }{2 \pi * 0.05 }[/tex]

             [tex]L = \frac{ 2 * 10^{-7} * 590^2 6.20 *10^{-4} }{ 0.05 }[/tex]

             [tex]L = 0.000863 \ H[/tex]

Considering the Part B

      Initial current is [tex]I_1 = 5.00 \ A[/tex]

      Current at time t is [tex]I_t = 3.0 \ A[/tex]

       The  time taken is  [tex]\Delta t = 3.00 ms = 0.003 \ s[/tex]

The self-induced emf is mathematically evaluated as

          [tex]\epsilon = L * \frac{\Delta I}{ \Delta t }[/tex]          

=>         [tex]\epsilon = L * \frac{ I_1 - I_t }{ \Delta t }[/tex]

substituting values

             [tex]\epsilon = 0.000863 * \frac{ 5- 2 }{ 0.003 }[/tex]  

             [tex]\epsilon = 0.863 \ V[/tex]

The direction of the induced emf is  from a to b because according to Lenz's law the induced emf moves in the same direction as the current

This question involves the concepts of the self-inductance, induced emf, and Lenz's Law

A. The coil's self-inductance is "0.863 mH".

B. The self-induced emf in the coil is "0.58 volts".

C. The direction of the induced emf is "from b to a".

A.

The self-inductance of the coil is given by the following formula:

[tex]L=\frac{\mu_oN^2A}{2\pi r}[/tex]

where,

L = self-inductance = ?

[tex]\mu_o[/tex] = permeability of free space = 4π x 10⁻⁷ N/A²

N = No. of turns = 590

A = Cross-sectional area = 6.2 cm² = 6.2 x 10⁻⁴ m²

r = radius = 5 cm = 0.05 m

Therefore,

[tex]L=\frac{(4\pi\ x\ 10^{-7}\ N/A^2)(590)^2(6.2\ x\ 10^{-4}\ m^2)}{2\pi(0.05\ m)}[/tex]

L = 0.863 x 10⁻³ H = 0.863 mH

B.

The self-induced emf is given by the following formula:

[tex]E=L\frac{\Delta I}{\Delta t}\\\\[/tex]

where,

E = self-induced emf = ?

ΔI = change in current = 2 A

Δt = change in time = 3 ms = 0.003 s

Therefore,

[tex]E=(0.000863\ H)\frac{2\ A}{0.003\ s}[/tex]

E = 0.58 volts

C.

According to Lenz's Law, the direction of the induced emf always opposes the change in flux that causes it. Hence, the direction of the induced emf will be from b to a.

Learn more about Lenz's Law here:

https://brainly.com/question/12876458?referrer=searchResults

A string of holiday lights has 15 bulbs with equal resistances. If one of the bulbs
is removed, the other bulbs still glow. But when the entire string of bulbs is
connected to a 120-V outlet, the current through the bulbs is 5.0 A. What is the
resistance of each bulb?

Answers

Answer:

Resistance of each bulb = 360 ohms

Explanation:

Let each bulb have a resistance r .

Since, even after removing one of the bulbs, the circuit is closed and the other bulbs glow. Therfore, the bulbs are connected in Parallel connection.

[tex] \frac{1}{r(equivalent)} = \frac{1}{r1} + \frac{1}{r2} + + + + \frac{1}{r15} [/tex]

[tex] \frac{1}{r(equivalent)} = \frac{15}{r} [/tex]

R(equivalent) = r/15

Now, As per Ohms Law :

V = I * R(equivalent)

120 V = 5 A * r/15

r = 360 ohms

(a) Determine the capacitance of a Teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.


pF

(b) Determine the maximum potential difference that can be applied to a Teflon-filled parallel-plate capacitor having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.
kV

Answers

Explanation:

(a) Given that,

Area of a parallel plate capacitor, [tex]A=1.8\ cm^2=1.8\times 10^{-4}\ m^2[/tex]

The separation between the plates of a capacitor, [tex]d=0.01\ mm = 10^{-5}\ m[/tex]

The dielectric constant of, k = 2.1

When a dielectric constant is inserted between parallel plate capacitor, the capacitance is given by :

[tex]C=\dfrac{k\epsilon_o A}{d}[/tex]

Putting all the values we get :

[tex]C=\dfrac{2.1\times 8.85\times 10^{-12}\times 1.8\times 10^{-4}}{0.01\times 10^{-3}}\\\\C=3.345\times 10^{-10}\ F\\\\C=334.5\ pF[/tex]

(b) We know that the Teflon has dielectric strength of 60 MV/m, [tex]E=60\times 10^6\ V/m[/tex]

The voltage difference between the plates at this critical voltage is given by :

[tex]V=Ed\\\\V=60\times 10^6\times 0.01\times 10^{-3} \\\\V=600\ V[/tex]

or

V = 0.6 kV

We have that the Capacitance and potential difference is mathematically given as

[tex]Vmax=\frac{Q}{334.68pF}[/tex]C=334.68pF



Capacitance &potential difference

Question Parameters:

having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm

having a plate area of 1.80 cm2 and a plate separation of 0.010 0 mm.

a)

Generally the equation for the Capacitance  is mathematically given as

[tex]C=\frac{ke_0A}{d}\\\\Therefore\\\\C=\frac{2.1*1.80e-4*8.85e12}{0.01e-3}\\\\[/tex]

C=334.68pF

b)

Generally the equation for the Capacitance  is mathematically given as

[tex]Vmax=\frac{Q}{C}[/tex]

Where

Q is the charge on the plates, and hence not given

Therefore, maximum potential difference is

[tex]Vmax=\frac{Q}{334.68pF}[/tex]

For more information on potential difference visit

https://brainly.com/question/14883923

An electric heater draws 13 amperes of current when connected to 120 volts. If the price of electricity is $0.10/kWh, what would be the approximate cost of running the heater for 8 hours?
(A) $0.19
(B) $0.29
(C) $0.75
(D) $1.25
(E) $1.55

Answers

Answer:

C $0.75 my friend I wish it is right answer

What happens to the deflection of the galvanometer needle (due to moving the magnet) when you increase the number of loops

Answers

Answer:

If the magnet is moved, the galvanometer needle will deflect, showing that current is flowing through the coil which will increase total induced electromotive force

Explanation:

galvanometer is an instrument that can detect and measure small current in an electrical circuit.

If the magnet is moved, the galvanometer needle will deflect, showing that current is flowing through the coil. If it is move in a way into the coil,the needle deflect in that way and if it move in another way, it will deflect in the other way.

The total induced emf is equal to the emf induced in each loop by the changing magnetic flux, then multiplied by the number of loops and an increase in the number of loops will cause increase in the total induced emf.


A load of 1 kW takes a current of 5 A from a 230 V supply. Calculate the power factor.

Answers

Answer:

Power factor = 0.87 (Approx)

Explanation:

Given:

Load = 1 Kw = 1000 watt

Current (I) = 5 A

Supply (V) = 230 V

Find:

Power factor.

Computation:

Power factor = watts / (V)(I)

Power factor = 1,000 / (230)(5)

Power factor = 1,000 / (1,150)

Power factor = 0.8695

Power factor = 0.87 (Approx)

A 70 kg man floats in freshwater with 3.2% of his volume above water when his lungs are empty, and 4.85% of his volume above water when his lungs are full.

Required:
a. Calculate the volume of air he inhales - called his lung capacity - in liters.
b. Does this lung volume seem reasonable?

Answers

Answer:

Explanation:

A) Vair = 1.3 L

B) Volume is not reasonable

Explanation:

A)

Assume

m to be total mass of the man

mp be the mass of the man that pulled out of the water

m1 be the mass above the water with the empty lung

m2 be the mass above the water with full lung

wp be the weight that the buoyant force opposes as a result of the air.

Va be the volume of air inside man's lungs

Fb be the buoyant force due to the air in the lung

given;

m = 78.5 kg

m1 = 3.2% × 78.5 = 2.5 kg

m2 = 4.85% × 78.5 = 3.8kg

But, mp = m2- m1

mp = 3.8 - 2.5

mp = 1.3kg

So using

Archimedes principle, the relation for formula for buoyant force as;

Fb = (m_displaced water)g = (ρ_water × V_air × g)

Where ρ_water is density of water = 1000 kg/m³

Thus;

Fb = wp = 1.3× 9.81

Fb = 12.7N

But

Fb = (ρ_water × V_air × g)

So

Vair = Fb/(ρ_water × × g)

Vair = 12.7/(1000 × 9.81)

V_air = 1.3 × 10^(-3) m³

convert to litres

1 m³ = 1000 L

Thus;

V_air = 1.3× 10^(-3) × 1000

V_air = 1.3 L

But since the average lung capacity of an adult human being is about 6-7litres of air.

Thus, the calculated lung volume is not reasonable

Explanation:

What is the thinnest soap film (excluding the case of zero thickness) that appears black when illuminated with light with a wavelength of 580 nm

Answers

Answer:

Explanation:

In case of soap film , light gets reflected from denser medium , hence interference takes place between two waves , one reflected from upper and second from lower surface . For destructive interference the condition is

2μt = nλ where μ is refractive index of water , t is thickness , λ is wavelength of light and n is an integer .

2 x 1.34 x t = 1  x 580

t = 216.42 nm .

Thickness must be 216.42 nm .

If one could transport a simple pendulum of constant length from the Earth's surface to the Moon's, where acceleration due to gravity is one-sixth (1/6) that on the Earth, by what factor would be the pendulum frequency be changed

Answers

Answer:

The frequency will change by a factor of 0.4

Explanation:

T = 2(pi)*sqrt(L/g)

Since g(moon) = (1/6)g(earth), the period would change by sqrt[1/(1/6)] = sqrt(6) ~ 2.5 times longer on the moon. Since the period & frequency are inverses, the frequency would be 1/2.5 or 0.4 times shorter on the moon.

an electron travels at 0.3037 times the speed of light through a magnetic field and feels a force of 1.2498 pN. What is the magnetic field in teslas

Answers

Answer:

Explanation:

Charge on an electron (q) = 1.6 * 10 ^ -19 C

Velocity of electron (v) = 0.3037 * 300,000,000 = 91,110,000 m/sec

We know that, Force exerted on moving particle moving through a magnetic field :

[tex]F= q * v * B ( q,v\ and\ B\ are\ mutually\ perpendicular)[/tex]

1.2498 * 10 ^ -12 = 1.6 * 10^ -19 * 91110000 * B

B =  0.08573 T

Specific heat is a measurement of the amount of heat energy input required for one gram of a substance to increase its temperature by one degree Celsius. Solid lithium has a specific heat of 3.5 J/g·°C. This means that one gram of lithium requires 3.5 J of heat to increase 1°C. Plot the temperature of 1g of lithium after 3.5, 7, and 10.5 J of thermal energy are added.

Answers

Answer:

ΔT = 1ºC , 2ºCand 3ºC

Explanation:

In this exercise they indicate the specific heat of lithium

let's calculate the temperature increase as a function of the heat introduced

          Q = m [tex]c_{e}[/tex] ΔT

          ΔT = Q / m c_{e}

calculate

 for Q = 3.5 J

         ΔT = 3.5 / (1 3.5)

         ΔT = 1ºC

For Q = 7.0 J

         ΔT = 7 / (1 3.5)

         ΔT = 2ºC

for Q = 10.5 J

         ΔD = 10.5 / (1 3.5)

         ΔT = 3ºC

we see that this is a straight line, see attached

A ball is thrown upward from a height of 432 feet above the​ ground, with an initial velocity of 96 feet per second. From physics it is known that the velocity at time t is v (t )equals 96 minus 32 t feet per second. ​a) Find​ s(t), the function giving the height of the ball at time t. ​b) How long will the ball take to reach the​ ground? ​c) How high will the ball​ go?

Answers

Answer;

A)S(t)=96t-16t² +432

B)it will take 9 seconds for the ball to reach the ground.

C)864feet

Explanation:

We were given an initial height of 432 feet.

And v(t)= 96-32t

A) we are to Find​ s(t), the function giving the height of the ball at time t

The position, or heigth, is the integrative of the velocity. So

S(t)= ∫(96-32)dt

S(t)=96t-16t² +K

S(t)=96t-16t² +432

In which the constant of integration K is the initial height, so K= 432

b) we need to know how long will the ball take to reach the​ ground

This is t when S(t)= 0

S(t)=96t-16t² +432

-16t² +96t +432=0

This is quadratic equation, if you solve using factorization method we have

t= -3 or t= 9

Therefore, , t is the instant of time and it must be a positive value.

So it will take 9 seconds for the ball to reach the ground.

C)V=s/t

Velocity= distance/ time

=96=s/9sec

S=96×9

=864feet

By applying the integrations,

(a) [tex]S = 96t-16t^2+432[/tex]

(b) Time will be "t = 9".

(c) Height will be "576"

Given:

Height,

423 feet

Initial velocity,

96 feet/sec

According to the question,

(a)

Integrate v:

[tex]S = 96t-16t^2+C[/tex]

Initial Condition,

→ [tex]S = 96t-16t^2+432[/tex]

(b)

Hits the ground when,

S = 0

→ [tex]0=96t-16t^2+432[/tex]

→ [tex]t =9[/tex]

(c)

Maximum height when,

v = 0

→ [tex]0 = 96-32 t[/tex]

→ [tex]t = 3[/tex]

Now,

→ [tex]S = 96\times 3-16\times 3^2+432[/tex]

      [tex]= 576[/tex]

Thus the answer above is correct.

Learn more:

https://brainly.com/question/16105731

hi guys!!! i have no more points, can someone nice guess all of these for me? :)
1.What happens to the ocean water before the precipitation part of the water cycle
2.During which stage of the water cycle does water from the ocean form clouds?
3.what is a runoff??
4.Which statement about oceans is incorrect? A.Evaporation occurs when water is warmed by the sun. B.Most evaporation and precipitation occur over the ocean. C.97 percent of Earth's water is fresh water from the ocean. D.Water leaves the ocean by the process of evaporation
5.How does most ocean water return to the ocean in the water cycle

tysm to u who answers :)

Answers

1. The ocean water collects back in the ocean.

2. Condensation is the process by which water vapor in the air is changed into liquid water. Condensation is crucial to the water cycle because it is responsible for the formation of clouds.

3. an excessive amount of water flowing from downslope along earths surface

4. A.Evaporation occurs when water is warmed by the sun.

5. The water returns into the ocean by the water cycle . It evaporates , then it condensates , then it participates ( Rains ) and then goes back into the ocean.

Hope this answer correct ✌️

Two 1.0 nF capacitors are connected in series to a 1.5 V battery. Calculate the total energy stored by the capacitors.

Answers

Answer:

1.125×10⁻⁹ J

Explanation:

Applying,

E = 1/2CV²................... Equation 1

Where E = Energy stored in the capacitor, C = capacitance of the capacitor, V = Voltage of the battery.

Given; C = 1.0 nF,  = 1.0×10⁻⁹ F, V = 1.5 V

Substitute into equation 1

E = 1/2(1.0×10⁻⁹×1.5²)

E = 1.125×10⁻⁹ J

Hence the energy stored by the capacitor is 1.125×10⁻⁹ J

UVC light used in sterilizers, has wavelengths between 100 to 280 nm. If a certain UVC wave has a wavelength of 142.9 nm, what is the energy of one of its photons in J

Answers

Answer:

The energy of one of its photons is 1.391 x 10⁻¹⁸ J

Explanation:

Given;

wavelength of the UVC light, λ = 142.9 nm = 142.9 x 10⁻⁹ m

The energy of one photon of the UVC light is given by;

E = hf

where;

h is Planck's constant = 6.626 x 10⁻³⁴ J/s

f is frequency of the light

f = c / λ

where;

c is speed of light = 3 x 10⁸ m/s

λ  is wavelength

substitute in the value of f into the main equation;

E = hf

[tex]E = \frac{hc}{\lambda} \\\\E = \frac{6.626*10^{-34} *3*10^{8}}{142.9*10^{-9}} \\\\E = 1.391*10^{-18} \ J[/tex]

Therefore, the energy of one of its photons is 1.391 x 10⁻¹⁸ J

Intelligent beings in a distant galaxy send a signal to earth in the form of an electromagnetic wave. The frequency of the signal observed on earth is 2.2% greater than the frequency emitted by the source in the distant galaxy. What is the speed vrel of the galaxy relative to the earth

Answers

Answer:

Vrel= 0.75c

Explanation:

See attached file

A circular conducting loop of radius 31.0 cm is located in a region of homogeneous magnetic field of magnitude 0.700 T pointing perpendicular to the plane of the loop. the loop is connected in series with a resistor of 265 ohms. The magnetic field is now increased at a constant rate by a factor of 2.30 in 29.0 s.

Calculate the magnitude of induced emf in the loop while the magnetic field is increasing.

With the magnetic field held constant a ts its new value of 1.61 T, calculate the magnitude of its induced voltage in the loop while it is pulled horizontally out of the magnetic field region during a time interval of 3.90s.

Answers

Answer:

(a) The magnitude of induced emf in the loop while the magnetic field is increasing is 9.5 mV

(b) The magnitude of the induced voltage at a constant magnetic field is 124.7 mV

Explanation:

Given;

radius of the circular loop, r = 31.0 cm = 0.31 m

initial magnetic field, B₁ = 0.7 T

final magnetic field, B₂ = 2.3B₁ = 2.3 X 0.7 T = 1.61 T

duration of change in the field, t = 29

(a) The magnitude of induced emf in the loop while the magnetic field is increasing.

[tex]E = A*\frac{\delta B}{\delta t} \\\\[/tex]

[tex]E = A*\frac{B_2 -B_1}{\delta t}[/tex]

Where;

A is the area of the circular loop

A = πr²

A = π(0.31)² = 0.302 m²

[tex]E = A*\frac{B_2 -B_1}{\delta t} \\\\E = 0.302*\frac{1.61-0.7}{29} \\\\E = 0.0095 \ V\\\\E = 9.5 \ mV[/tex]

(b) the magnitude of the induced voltage at a constant magnetic field

E = A x B/t

E = (0.302 x 1.61) / 3.9

E = 0.1247 V

E = 124.7 mV

Therefore, the magnitude of the induced voltage at a constant magnetic field is 124.7 mV

If a convex lens were made out of very thin clear plastic filled with air, and were then placed underwater where n = 1.33 and where the lens would have an effective index of refraction n = 1, the lens would act in the same way
a. as a flat refracting surface between water and air as seen from the water side.
b. as a concave mirror in air.
c. as a concave lens in air.
d. as the glasses worn by a farsighted person.
e. as a convex lens in air.

Answers

Answer:

D. A convex lens in air

Explanation:

This is because the air tight plastic under water will reflect light rays in the same manner as a convex lens

A double-convex thin lens is made of glass with an index of refraction of 1.52. The radii of curvature of the faces of the lens are 60 cm and 72 cm. What is the focal length of the lens

Answers

Answer:

63 cm

Explanation:

Mathematically;

The focal length of a double convex lens is given as;

1/f = (n-1)[1/R1 + 1/R2]

where n is the refractive index of the medium given as 1.52

R1 and R2 represents radius of curvature which are given as 60cm and 72cm respectively.

Plugging these values into the equation, we have:

1/f = (1.52-1)[1/60 + 1/72)

1/f = 0.0158

f = 1/0.0158

f = 63.29cm which is approximately 63cm

A wire of 5.8m long, 2mm diameter carries 750ma current when 22mv potential difference is applied at its ends. if drift speed of electrons is found then:_________.
(a) The resistance R of the wire(b) The resistivity p, and(c) The number n of free electrons per unit volume.​

Answers

Explanation:

According to Ohms Law :

V = I * R

(A) R (Resistance) = 0.022 / 0.75 = 0.03 Ohms

Also,

[tex]r = \alpha \frac{length}{area} = \alpha \frac{5.8}{3.14 \times 0.001 \times 0.001} [/tex]

(B)

[tex] \alpha(resistivity) = 1.62 \times {10}^{ - 8} [/tex]

Drift speed is missing. It is given as;

1.7 × 10^(-5) m/s

A) R = 0.0293 ohms

B) ρ = 1.589 × 10^(-8)

C) n = 8.8 × 10^(28) electrons

This is about finding, resistance and resistivity.

We are given;

Length; L = 5.8 m

Diameter; d = 2mm = 0.002 m

Radius; r = d/2 = 0.001 m

Voltage; V = 22 mv = 0.022 V

Current; I = 750 mA = 0.75 A

Area; A = πr² = 0.001²π

Drift speed; v_d = 1.7 × 10^(-5) m/s

A) Formula for resistance is;

R = V/I

R = 0.022/0.75

R = 0.0293 ohms

B) formula for resistivity is given by;

ρ = RA/L

ρ = (0.0293 × 0.001²π)/5.8

ρ = 1.589 × 10^(-8)

C) Formula for current density is given by;

J = n•e•v_d

Where;

J = I/A = 0.75/0.001²π A/m² = 238732.44 A/m²

e is charge on an electron = 1.6 × 10^(-19) C

v_d = 1.7 × 10^(-5) m/s

n is number of free electrons per unit volume

Thus;

238732.44 = n(1.6 × 10^(-19) × 1.7 × 10^(-5))

238732.44 = (2.72 × 10^(-24))n

n = 238732.44/(2.72 × 10^(-24))

n = 8.8 × 10^(28)

Read more at; brainly.com/question/17005119

You're conducting an experiment on another planet. You drop a rock from a height of 1 m and it hits the ground 0.4 seconds later. What is acceleration due to gravity on the planet ?

Answers

Answer:

Here,

v (final velocity) = 0

u (initial velocity) = u

a = ?

s = 1m

t = 0.4s

using the first equation of motion,

0 = u + 0.4a

= -0.4a = u

using the second equation of motion:

1 = 0.4u + 0.08a

from the bold equation

1 = 0.4(-0.4a) + 0.08a

1 = -0.16a + 0.08a

1 = -0.08a

a = -1/0.08

a = -100/8

a = -12.5 m/s/s

please make me brainly, i am 1 brainly away from the next rank

How much energy is required to accelerate a spaceship with a rest mass of 121 metric tons to a speed of 0.509 c?

Answers

Answer

1.07E22 Joules

Explanation;

We know that mass expands by a factor

=>>1/√[1-(v/c)²]

But v= 0.509c

So

1/√(1 - 0.509²)

=>>> 1/√(1 - 0.2591)

= >> 1/√(0.7409) = 1.16

But given that 121 tons is rest mass so 121- 1.16= 119.84 tons is kinetic energy

And we know that rest mass-energy equivalence is 9 x 10^19 joules per ton.

So Multiplying by 119.84

Kinetic energy will be 1.07x 10^22 joules


I MIND TRICK PLZ HELP LOL
Troy and Abed are running in a race. Troy finishes the race in 12 minutes. Abed finishes the race in 7 minutes and 30 seconds. If Troy is running at an average speed of 3 miles per hour and speed varies inversely with time, what is Abed’s average speed for the race?

Answers

Answer:

Explanation:

Let the race be of a fixed distance x

[tex]Average Speed = \frac{Total Distance}{Total Time}[/tex]

Troy's Average speed = 3 miles/hr = x / 0.2 hr

x = 0.6 miles

Abed's Average speed = 0.6 / 0.125 = 4.8 miles/hr

A competitive diver leaves the diving board and falls toward the water with her body straight and rotating slowly. She pulls her arms and legs into a tight tuck position. What happens to her rotational kinetic energy

Answers

Answer: her rotational kinetic energy increases

light of wavelength 550 nm is incident on a diffraction grating that is 1 cm wide and has 1000 slits. What is the dispersion of the m = 2 line?

Answers

Answer:

The dispersion is [tex]D = 2.01220 *10^{5} \ rad/m[/tex]

Explanation:

From the question we are told that

    The wavelength of the light is  [tex]\lambda = 550 \ = 550 *10^{-9} \ n[/tex]

    The width of the grating is[tex]k = 1\ cm = 0.01 \ m[/tex]

    The  number of slit is  N =  1000 slits

    The order of the maxima is  m =  2

 

Generally the spacing between the slit is mathematically represented as

         [tex]d = \frac{k}{N}[/tex]

substituting values

        [tex]d = \frac{ 0.01}{1000}[/tex]

       [tex]d = 1.0 *10^{-5} \ m[/tex]

Generally the condition for constructive interference is

       [tex]d\ sin(\theta ) = m * \lambda[/tex]

substituting values

      [tex]1.0 *10^{-5} sin (\theta) = 2 * 550 *10^{-9}[/tex]

       [tex]\theta = sin^{-1} [\frac{ 2 * 550 *10^{-9}}{ 1.0 *10^{-5}} ][/tex]

      [tex]\theta = 6.315^o[/tex]

Generally the dispersion is mathematically represented as

           [tex]D = \frac{ m }{d cos(\theta )}[/tex]

substituting values

          [tex]D = \frac{ 2 }{ 1.0 *10^{-5} cos(6.315 )}[/tex]

           [tex]D = 2.01220 *10^{5} \ rad/m[/tex]

     

In the lab, you shoot an electron towards the south. As it moves through a magnetic field, you observe the electron curving upward toward the roof of the lab. You deduce that the magnetic field must be pointing:_______.
a. to the west.
b. upward.
c. to the north.
d. to the east.
e. downward.

Answers

Answer:

a. to the west.

Explanation:

An electron in a magnetic field always experience a force that tends to change its direction of motion through the magnetic field. According to Lorentz left hand rule (which is the opposite of Lorentz right hand rule for a positive charge), the left hand is used to represent the motion of an electron in a magnetic field. Hold out the left hand with the fingers held out parallel to the palm, and the thumb held at right angle to the other fingers. If the thumb represents the motion of the electron though the field, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the particle.

In this case, if we point the thumb (which shows the direction we shot the electron) to the south (towards your body), with the palm (shows the direction of the force) facing up to the roof, then the fingers (the direction of the field) will point west.

The power lines are at a high potential relative to the ground, so there is an electric field between the power lines and the ground. To maximize the potential difference between one end of the fluorescent tube and the other, how should the tube be held?a. The tube should be held horizontally, parallel to the ground b. The potential difference between the ends of the tube does not depend on the tube's orientation. c. The tube should be held vertically perpendicular to the ground

Answers

Answer:

b) True. potencial diferencie does not depend on orientation

Explanation:

In this exercise we are asked to show which statements are true.

The expression the potential with respect to earth or the electric field with respect to earth refers to the potential or electric charge of the planet that is assumed to be very large and does not change in value during work.

It does not refer to the height of the system.

We can now review the claims

a) False. Potential not to be refers to height

b) True. Does not depend on orientation

c) False The potential does not refer to the altitude but to the Earth's charge

Other Questions
Simply. If the solution is not a real number enter not a real number rotate picture answer all 3 please An author writes a story about a teenager who does not realize how kind she is to others. What would be the best object to symbolize that the character cannot see her true self? . Buffer solution resists change to its pH when small amounts of an acid or an alkali are added to it. Buffer solutions can be used to keep the pH of a substance constant during an experiment. For example, if pH 5.5 buffer solution is added to a mixture of amylase and starch solution, the pH of the mixture will remain constant at 5.5. The student has the following buffer solutions available: 5.5, 6.0, 6.5, 7.0, 7.5 and 8.0. Describe how the student can adapt the tube experiment to investigate the effect of pH on the action of amylase. Effectiveness of a solution is equal to:_______ a. Quality of a Solution 20% (x) Acceptability of the Solution 80% b. Quality of a Solution 80% (x) Acceptability of the Solution 20% c. Quality of a Solution 10% (x) Acceptability of the Solution 90% d. Quality of a Solution 90% (x) Acceptability of the Solution 10% e. None of the above Abraham Lincoln wrote the Emancipation Proclamation:________ a) because he considered emancipation to be "a military necessity, absolutely essential to the preservation of the Union." b) as a personal moral statement regarding why slaves should be free. as a response to the constant lobbying of abolitionists pressing him to free the slaves. c) as a way to appease the entire northern population and their cries for freedom for all slaves. Does the VERB agree with the SUBJECT in this sentence? A pair of shoes sit on the steps. A. Yes B. No Which of the following is the graph of f(x) = x2 + 3x 4? graph of a quadratic function with a minimum at 2, negative 9 and x intercepts at negative 1 and 5 graph of a quadratic function with a minimum at 3, negative 4 and x intercepts at 1 and 5 graph of a quadratic function with a minimum at 2.5, negative 2.4 and x intercepts at 1 and 4 graph of a quadratic function with a minimum at negative 1.5, negative 6.2 and x intercepts at 1 and negative 4 Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional questions. Career Connection: Shin-fong How does Shin-fong keep track of his finances? Find the value of x in this equation. 180-5x=1401805x=140 Pavlov, the researcher who studied classical conditioning, rang a bell every time he fed his dogs. At first the dogs drool in response to the food, but eventually began to drool in response to the bell alone (with or without the food). In this example, the food is the _____________________ stimulus, and the bell is the ____________________ stimulus. If we had a situation of Diminishing Marginal Productivity, then this would be great news for the firm. Senior management loves this kind of cost reduction outcome. True or False You are generating a derivatively classified piece of information and are looking for information in a classified database. While you are searching, you find a piece of information that is extremely helpful. It appears to include all of the classification markings including portion, banner, and classification authority block. Is this information authorized for use as a source of derivative classification? Factor this trinomial completely. -6x^2 +26x+20 Chemical change example The process in which individual organisms change during their lifetime is.... The graph of y = 4x2 + 13x + 12 is shown below. What are the zeros of the function (as exact values), the y-intercept, and the maximum or minimum value of the function? .Martin Luther King, Jr. s Letter from Birmingham Jail (1963). In at least a paragraph, describe a persuasive moment of the speech. QUOTE THE LINE! Explain why it was so memorable. DO NOT USE THE FIRST LINES. Which of the two functions below has the largest maximum y-value?f(x) = -x4- 2g(x) = -3x3 + 2 what is x if y is 50, it is equivalent to 9/150. the first peep gets brainliest How are the molecules in photosynthesis and cellular respiration similar? Please include descriptions of the molecules