Answer:
The average rate of change is 5.
Step-by-step explanation:
First plug in the x values.
y=5x+1
=(0)5+1
=1
y=5x+1
=(4)5+1
=21
Average rate of change = the change in the output divided by the change in the input.
Output change: 21-1=20
Input change: 4-0=4
20/4=5
24
4
3+
2+
2
1
-3
-
-1
1
1
2
3
4
-1+
-2 +
-3+
4
What is the slope of the line?
Answer:
1.5/2
Step-by-step explanation:
slope formula = y2-y1/ x2 - x1
point one (2,0)
point 2 (0, 1.5)
you dont really need to subtract anything because the intercepts, so the slope is 1.5/2
(slope or m = 1.5 - 0 / 2 - 0 )
x intercept = value of x when y is 0
y intercept = value of y when x is 0
What is the value of 3 minus (negative 2)?
A number line going from negative 5 to positive 5.
Answer:
5
Step-by-step explanation:
3-(-2) will become positive 5. so number line will go towards positive 5.
4b^2+300=0 this is a quadratic equation that I am trying to solve including any solutions with imaginary numbers I will include a picture
Answer:
b= 5i square root of 3
b = -5i square root of 3
Step-by-step explanation:
4b^2+300=0
4b^2 = -300
b^2 = -75
b = square root of -75
b = -75^1/2
^1/2 means square root
b = 25^1/2 * 3^1/2 * i
b= 5i square root of 3
b = -5i square root of 3
Answer pllllllleeeaaaaasssss
(3.1) … … …
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{2x-y}{x-2y}[/tex]
Multiply the right side by x/x :
[tex]\dfrac{\mathrm dy}{\mathrm dx} = \dfrac{2-\dfrac yx}{1-\dfrac{2y}x}[/tex]
Substitute y(x) = x v(x), so that dy/dx = x dv/dx + v :
[tex]x\dfrac{\mathrm dv}{\mathrm dx} + v = \dfrac{2-v}{1-2v}[/tex]
This DE is now separable. With some simplification, you get
[tex]x\dfrac{\mathrm dv}{\mathrm dx} = \dfrac{2-2v+2v^2}{1-2v}[/tex]
[tex]\dfrac{1-2v}{2-2v+2v^2}\,\mathrm dv = \dfrac{\mathrm dx}x[/tex]
Now you're ready to integrate both sides (on the left, the denominator makes for a smooth substitution), which gives
[tex]-\dfrac12\ln\left|2v^2-2v+2\right| = \ln|x| + C[/tex]
Solve for v, then for y (or leave the solution in implicit form):
[tex]\ln\left|2v^2-2v+2\right| = -2\ln|x| + C[/tex]
[tex]\ln(2) + \ln\left|v^2-v+1\right| = \ln\left(\dfrac1{x^2}\right) + C[/tex]
[tex]\ln\left|v^2-v+1\right| = \ln\left(\dfrac1{x^2}\right) + C[/tex]
[tex]v^2-v+1 = e^{\ln\left(1/x^2\right)+C}[/tex]
[tex]v^2-v+1 = \dfrac C{x^2}[/tex]
[tex]\boxed{\left(\dfrac yx\right)^2 - \dfrac yx+1 = \dfrac C{x^2}}[/tex]
(3.2) … … …
[tex]y' + \dfrac yx = \dfrac{y^{-3/4}}{x^4}[/tex]
It may help to recognize this as a Bernoulli equation. Multiply both sides by [tex]y^{\frac34}[/tex] :
[tex]y^{3/4}y' + \dfrac{y^{7/4}}x = \dfrac1{x^4}[/tex]
Substitute [tex]z(x)=y(x)^{\frac74}[/tex], so that [tex]z' = \frac74 y^{3/4}y'[/tex]. Then you get a linear equation in z, which I write here in standard form:
[tex]\dfrac47 z' + \dfrac zx = \dfrac1{x^4} \implies z' + \dfrac7{4x}z=\dfrac7{4x^4}[/tex]
Multiply both sides by an integrating factor, [tex]x^{\frac74}[/tex], which gives
[tex]x^{7/4}z'+\dfrac74 x^{3/4}z = \dfrac74 x^{-9/4}[/tex]
and lets us condense the left side into the derivative of a product,
[tex]\left(x^{7/4}z\right)' = \dfrac74 x^{-9/4}[/tex]
Integrate both sides:
[tex]x^{7/4}z=\dfrac74\left(-\dfrac45\right) x^{-5/4}+C[/tex]
[tex]z=-\dfrac75 x^{-3} + Cx^{-7/4}[/tex]
Solve in terms of y :
[tex]y^{4/7}=-\dfrac7{5x^3} + \dfrac C{x^{7/4}}[/tex]
[tex]\boxed{y=\left(\dfrac C{x^{7/4}} - \dfrac7{5x^3}\right)^{7/4}}[/tex]
(3.3) … … …
[tex](\cos(x) - 2xy)\,\mathrm dx + \left(e^y-x^2\right)\,\mathrm dy = 0[/tex]
This DE is exact, since
[tex]\dfrac{\partial(-2xy)}{\partial y} = -2x[/tex]
[tex]\dfrac{\partial\left(e^y-x^2\right)}{\partial x} = -2x[/tex]
are the same. Then the general solution is a function f(x, y) = C, such that
[tex]\dfrac{\partial f}{\partial x}=\cos(x)-2xy[/tex]
[tex]\dfrac{\partial f}{\partial y} = e^y-x^2[/tex]
Integrating both sides of the first equation with respect to x gives
[tex]f(x,y) = \sin(x) - x^2y + g(y)[/tex]
Differentiating this result with respect to y then gives
[tex]-x^2 + \dfrac{\mathrm dg}{\mathrm dy} = e^y - x^2[/tex]
[tex]\implies\dfrac{\mathrm dg}{\mathrm dy} = e^y \implies g(y) = e^y + C[/tex]
Then the general solution is
[tex]\sin(x) - x^2y + e^y = C[/tex]
Given that y (1) = 4, we find
[tex]C = \sin(1) - 4 + e^4[/tex]
so that the particular solution is
[tex]\boxed{\sin(x) - x^2y + e^y = \sin(1) - 4 + e^4}[/tex]
log2(6x) – log2 (x)-2
Answer:
xlog(64)−xlog(2)−2
Step-by-step explanation:
Simplify 6log(2) by moving 6 inside the logarithm.
log(2^6)x − log(2)x − 2
Raise 2 to the power of 6.
log(64)x − log(2)x − 2
Reorder factors in log(64)x − log(2)x −2.
The cardinal number of {200, 201, 202, 203, ..., 1099}
Answer:
I have not been able to answer it sorry
A farmer picks pumpkins from a large field. The farmer makes samples of 260 pumpkins and inspects them. If one in fifty pumpkins are not fit to market and will be saved for seeds, what is the standard deviation of the mean of the sampling distribution of sample proportions?
Answer:
[tex]\mu = 5.2[/tex]
[tex]\sigma = 2.257[/tex]
Step-by-step explanation:
Given
[tex]n = 260[/tex] -- samples
[tex]p = \frac{1}{50}[/tex] --- one in 50
Solving (a): The mean
This is calculated as:
[tex]\mu = np[/tex]
[tex]\mu = 260 * \frac{1}{50}[/tex]
[tex]\mu = 5.2[/tex]
Solving (b): The standard deviation
This is calculated as:
[tex]\sigma = \sqrt{\mu * (1-p)}[/tex]
[tex]\sigma = \sqrt{5.2 * (1-1/50)}[/tex]
[tex]\sigma = \sqrt{5.2 * 0.98}[/tex]
[tex]\sigma = \sqrt{5.096}[/tex]
[tex]\sigma = 2.257[/tex]
An automatic machine inserts mixed vegetables into a plastic bag. Past experience revealed that some packages were underweight and some were overweight, but most of them had satisfactory weight.
Weight % of Total Underweight 2.5 Satisfactory 90.0 Overweight 7.5a) What is the probability of selecting and finding that all three bags are overweight?b) What is the probability of selecting and finding that all three bags are satisfactory?
Answer:
a) 0.000016 = 0.0016% probability of selecting and finding that all three bags are overweight.
b) 0.729 = 72.9% probability of selecting and finding that all three bags are satisfactory
Step-by-step explanation:
The condition of the bags in the sample is independent of the other bags, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
a) What is the probability of selecting and finding that all three bags are overweight?
2.5% are overweight, which means that [tex]p = 0.025[/tex]
3 bags means that [tex]n = 3[/tex]
This probability is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.025)^{3}.(0.975)^{0} = 0.000016[/tex]
0.000016 = 0.0016% probability of selecting and finding that all three bags are overweight.
b) What is the probability of selecting and finding that all three bags are satisfactory?
90% are satisfactory, which means that [tex]p = 0.9[/tex]
3 bags means that [tex]n = 3[/tex]
This probability is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.9)^{3}.(0.1)^{0} = 0.729[/tex]
0.729 = 72.9% probability of selecting and finding that all three bags are satisfactory
HELP ASAP I WILL GIVE BRAINLIST
If sin ∅ = -sqrt{3} OVER 2 and π < ∅ < 3π OVER 2, what are the values of cos ∅ and tan ∅? What is ∅ in degrees and radians? Be sure to show and explain all work.
Step-by-step explanation:
sin ∅ = -(√3)/2
Note that
cos²∅ + sin²∅ = 1
cos²∅ = 1 - sin²∅
= 1 - (-√3 / 2)²
= 1 - (-√3)²/ 2²
= 1 - 3/4
= 1/4
cos²∅ = 1/4
Taking square root of both sides
cos∅ = 1/2
Note that tan∅ = sin∅/cos∅
therefore, tan∅ = -(√3)/2 ÷ 1/2
= -(√3)/2 × 2/1
= -√3
tan∅ = -√3
Since sin∅ = -√3 /2
Then ∅ = -60⁰
The value of ∅ for the given range (third quadrant) is 240⁰.
NB: sin∅ = sin(180-∅)
Also, since 180⁰ is π radians, then ∅ = 4π/3
An air conditioning system can circulate 310 cubic feet of air per minute. How many cubic yards of air can it circulate per minute? The air conditioning system can circulate about cubic yards of air per minute.
Answer:
310/[tex]3^{3}[/tex] = 310/27 =11.48
Step-by-step explanation:
Answer:
310/ = 310/27 =11.48
Step-by-step explanation:
Please help it’s a test and I can’t get logged out
Answer:
the anwer is B ( i mean second option)
And you can try it
you will find ;
[tex]y = \frac{x}{3} - 1[/tex]
HAVE A NİCE DAY
Step-by-step explanation:
GREETİNGS FROM TURKEY ツ
rotation 180 degrees about the origin.
Answer:
Click the rotate 'button' twice.
Observe.
The rotate button is rotating the image about the orgin.
Answer:
Click the rotate 'button' twice.
Observe.
The rotate button is rotating the image about the orgin.
Step-by-step explanation:
FREE
Circle O has a circumference of approximately 250 ft.
What is the approximate length of the diameter, d?
O 40 ft
O 80 ft
O 125 ft
O 250 ft
Save and Exit
Next
Submit
Mark this and return
Answer:
Step-by-step explanation:
circumference = πd ≅ 250 ft
d ≅ 250/π ≅80 ft
A storage box with a square base must have a volume of 80 cubic centimeters. The top and bottom cost $0.20 per square centimeter and the sides cost $0.10 per square centimeter. Find the dimensions that will minimize cost. (Let x represent the length of the sides of the square base and let y represent the height. Round your answers to two decimal places.) x
Answer:
Box dimensions:
x = 3.42 cm
y = 6.84 cm
C(min) = 14.04 $
Step-by-step explanation:
We need the surface area of the cube:
S(c) = 2*S₁ ( surface area of top or base) + 4*S₂ ( surface lateral area)
S₁ = x² 2*S₁ = 2*x²
Surface lateral area is:
4*S₂ = 4*x*h V(c) = 80 cm³ = x²*h h = 80/x²
4*S₂ = 4*80/x
4*S₂ = 320 / x
Costs
C (x) = 0.2* 2*x² + 0.1 * 320/x
Taking derivatives on both sides of the equation we get:
C´(x) = 0.8*x - 32/x²
C´(x) = 0 0.8*x - 32/x² = 0
0.8*x³ - 32 = 0 x³ = 32/0.8
x³ = 40
x = 3.42 cm
h = 80/(3.42)² h = 6.84 cm
To find out if x = 3.42 brings a minimum value for C we go to the second derivative
C´´(x) = 64/x³ is always positive for x > 0
The C(min) = 0.4*(3.42)² + 32/(3.42)
C(min) = 4.68 + 9.36
C(min) = 14.04 $
when price of indomie noodles was lowered from #50 to #40 per unit, quantity demanded increases from 400 to 600 units per week. calculate the coefficient of price elasticity of demand and determine whether by lowering price this firm has made a wise decision
Answer:
The price elasticity of demand is -10
Step-by-step explanation:
Given
[tex]p_1,p_2 = 50,40[/tex]
[tex]q_1,q_2 = 400,500[/tex]
Solving (a): The coefficient of price elasticity of demand (k)
This is calculated as:
[tex]k = \frac{\triangle q}{\triangle p}[/tex]
So, we have:
[tex]k = \frac{500 - 400}{40 - 50}[/tex]
[tex]k = \frac{100}{-10}[/tex]
[tex]k = -10[/tex]
Because |k| > 0, then we can conclude that the company made a wise decision.
Explain how to divide a decimal by a decimal
Answer:
To divide a decimal by another decimal:
Move the decimal point in the divisor to the right until it is a whole number.
Move the decimal point in the dividend to the right by the same number of places as the decimal point was moved to make the divisor a whole number.
Then divide the new dividend by the new divisor
Step-by-step explanation:
see in the example
On a coordinate plane, 2 triangles are shown. The first triangle has points A (negative 1, negative 2), B (negative 4, negative 2), C (negative 1, negative 4). The second triangle has points A prime (1, 2), B prime (4, 2), C prime (1, 4). What rule describes the rotation about the origin? (x, y) → How many degrees was the figure rotated about the origin?
9514 1404 393
Answer:
(x, y) ⇒ (-x, -y)180°Step-by-step explanation:
Each image point has its signs reversed from the pre-image point.
(x, y) ⇒ (-x, -y) . . . . describes the rotation
Rotation from the third quadrant (A) to the first quadrant (A') is a rotation of 180°.
Answer:
3rd and 2nd option
Step-by-step explanation:
Many electronics follow a failure rate described by an exponential probability density function (PDF). Solar panels are advertised to last 20 years or longer, but panels made in China are failing at a higher rate. The time-to-failure of this device is usually exponentially distributed with mean 13 years. What is the probability of failure in the first 5 years
Answer:
The right answer is "0.3193".
Step-by-step explanation:
According to the question,
Mean,
[tex]\frac{1}{\lambda} = 13[/tex]
[tex]\lambda = \frac{1}{13}[/tex]
As we know,
The cumulative distributive function will be:
⇒ [tex]1-e^{-\lambda x}[/tex]
hence,
In the first 5 years, the probability of failure will be:
⇒ [tex]P(X<5)=1-e^{-\lambda\times 5}[/tex]
[tex]=1-e^{-(\frac{1}{13} )\times 5}[/tex]
[tex]=1-e^(-\frac{5}{13})[/tex]
[tex]=1-0.6807[/tex]
[tex]=0.3193[/tex]
Points A, B, C, and D lie on a line in that order. If AD/AC = 2/1 and AD/AB = 3/1, what is the value of AC/BD?
9514 1404 393
Answer:
3/4
Step-by-step explanation:
It might be easier to start by expressing the ratios with AD as the denominator.
AD/AC = 2/1 ⇒ AC/AD = 1/2
AD/AB = 3/1 ⇒ AB/AD = 1/3
From the latter, we have ...
(AD -AB)/AD = 1 -1/3 = 2/3 = BD/AD
Then the desired ratio is ...
AC/BD = (AC/AD)/(BD/AD) = (1/2)/(2/3) = (3/6)/(4/6)
AC/BD = 3/4
Which of the following is a like radical to cube rt of 7x
Answer:
[tex]\sqrt[3]{7x}[/tex]
Step-by-step explanation:
Given
[tex]7x[/tex]
Required
The radical statement
Cube root is represented as:
[tex]\sqrt[3]{}[/tex]
Considering [tex]7x[/tex], the expression is:
[tex]\sqrt[3]{7x}[/tex]
HELP HELP HELP MATH⚠️⚠️⚠️⚠️⚠️
Find four consecutive integers with the sum of 2021
Answer:
This problem has not solution
Step-by-step explanation:
lets the integers be:
x
x+1
x+2
x+3
so:
x+(x+1)+(x+2)+(x+3)=2021
x+x+x+x+1+2+3=2021
4x+6=2021
4x=2021-6=2015
x=2015/4=503.75
x is not a integer
Hannah ran 12 laps for 8 days. How many laps did she run in total if she take a break of 1 complete day and 1 half day.
Answer:
The correct answer would be - 9.75 laps (if runs 12 laps in 8 days) or 78 laps (if 12 laps each day for 8 days)
Step-by-step explanation:
Given:
a) Laps covered in 8 days = 12
interval = 1 and half day
total laps = ?
Solution:
To know the total laps with intervals we need to calculate the laps run each day :
= 12/8 laps per day
= 3/2 laps per day
Now multiply the daily run with days
= (3/2)*6.5 (due to 8 - 1.5 = 6,5 days)
= 9.75 laps
B) Given:
Laps covered in 8 days = 12*8 =96
interval = 1 and half day
total laps = ?
Solution:
To know the total laps with intervals we need to calculate the laps run each day :
= 96/8 laps per day
= 12laps per day
Now multiply the daily run with days
= 12*6.5 (due to 8 - 1.5 = 6,5 days)
= 78 laps
Consider the quadratic function y = 0.3 (x-4)2 - 2.5
Determine the axis of symmetry, x =
Answer:
[tex]x=4[/tex]
Step-by-step explanation:
We have the quadratic function:
[tex]\displaystyle y=0.3(x-4)^2-2.5[/tex]
And we want to determine its axis of symmetry.
Notice that this is in vertex form:
[tex]y=a(x-h)^2+k[/tex]
Where (h, k) is the vertex of the parabola.
From our function, we can see that h = 4 and k = -2.5. Hence, our vertex is the point (4, -2.5).
The axis of symmetry is equivalent to the x-coordinate of the vertex.
The x-coordinate of the vertex is 4.
Therefore, the axis of symmetry is x = 4.
calculate the cost of 4 liters of gasoline if 10 Liters of gasoline cost $8.20 (using proportional relationship).
A . $3.28
B. $4.20
C. $8.20
D.$10
Test 21,753 for divisibility by 2,3,5,9 and 10
Answer:
Step-by-step explanation:
21,753
at unit place=3 not an even number,not equal to 5 and not equal to 0
so 21,753 is not divisible by 2,5 and 10
again
2+1+7+5+3=18 divisible by 3 and 9.
so 21,753 is divisible by 3 and 9.
Midsegments geometry acellus pls helppfpfpff
Answer:
BC = 28
Step-by-step explanation:
The midsegment DF is half the measure of the third side BC , then
BC = 2 × DF = 2 × 14 = 28
5. In 2015, Texas led the nation in the percentage of people who lacked health insurance (21.6% of the population). It is known that, nationally, 5% of patients account for 50% of the costs of healthcare. These are the “high cost” patients Assume* that: Being a high cost patient and being uninsured are independent characteristics Insured and uninsured people become “patients” at the same rate The uninsured and high cost patients in Texas are evenly distributed across the state, and that high cost patients are evenly distributed across insured and uninsured patient populations a. What is the probability that a patient in a Texas healthcare facility will be a high cost patient who is uninsured?
Answer: 0.108
Step-by-step explanation:
Since the probability of the uninsured is 21.6% of the population, then the probability of insured will be:
= 1 - 21.6%
= 78.4%
The probability of high cost patients is 5%. Therefore, the probability that a patient in a Texas healthcare facility will be a high cost patient who is uninsured will be:
= 5% × 21.6%
= 0.05 × 0.216
= 0.108
One-ninth of all sales at a local Subway are for cash. If cash sales for the week were $690, what were
Subway's total sales?
Select one:
O a. $22,600
O b. $2,611
O c. $6,210
O d. $2,610
e. None of these
Answer:
c. $6,210Step-by-step explanation:
Total sales = x
x*1/9 = 690x = 690*9x = 6210Correct choice is C
Un automóvil consume 4 galones de gasolina al recorrer 180 kilómetros y para recorrer 900 kilómetros necesita 20 galones ¿cuántos kilómetros recorre por galón? ¿Cuantos galones consumirá en 2700 kilómetros?
Answer:
45 km por galón
60 galones en 2700 Km
Step-by-step explanation:
180 / 4
45 km por galón
900 / 45
20 galones
2700 / 45
60 galones en 2700 Km
Suppose a large shipment of televisions contained 9% defectives. If a sample of size 393 is selected, what is the probability that the sample proportion will differ from the population proportion by less than 3%
Answer:
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean [tex]\mu = p[/tex] and standard deviation [tex]s = \sqrt{\frac{p(1-p)}{n}}[/tex]
Suppose a large shipment of televisions contained 9% defectives
This means that [tex]p = 0.09[/tex]
Sample of size 393
This means that [tex]n = 393[/tex]
Mean and standard deviation:
[tex]\mu = p = 0.09[/tex]
[tex]s = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.09*0.91}{393}} = 0.0144[/tex]
What is the probability that the sample proportion will differ from the population proportion by less than 3%?
Proportion between 0.09 - 0.03 = 0.06 and 0.09 + 0.03 = 0.12, which is the p-value of Z when X = 0.12 subtracted by the p-value of Z when X = 0.06.
X = 0.12
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.12 - 0.09}{0.0144}[/tex]
[tex]Z = 2.08[/tex]
[tex]Z = 2.08[/tex] has a p-value of 0.9812
X = 0.06
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{0.06 - 0.09}{0.0144}[/tex]
[tex]Z = -2.08[/tex]
[tex]Z = -2.08[/tex] has a p-value of 0.0188
0.9812 - 0.0188 = 0.9624
0.9624 = 96.24% probability that the sample proportion will differ from the population proportion by less than 3%