Sacramento, California's electricity demand on a scorching summer day is depicted in a function graph. The domain is 24 hours of a day.
The site is available around-the-clock.
One thousand two hundred megawatts are consumed at eight in the morning.
The hours between 4:00 and 6:00 pm saw the highest electricity use, while 4:00 am saw the lowest use.
It would be 1,900 megawatts for f (12).
From 4 am to 5 pm, usage rises, and from 5 pm to 4 am, it falls.
What is displayed by the graph?Because each point on the graph reflects a different megawatt usage, the graph is a function. As this graph of electricity usage illustrates, the domain would be available throughout the entire day.
At 8 a.m., these megawatts are used:
= 1, 300 - ( 200 / 2 )
equal to 1,200 megawatts
As people get ready for work and leave for work, we can observe an increase in power demand from 4 am to 5 pm, but a reduction from 5 pm to 4 am.
To learn more about graphs from given link
https://brainly.com/question/31125739
#SPJ1
Determine the length of HK
Step-by-step explanation:
that height splits GK (32) into 2 parts :
8 and 32-8 = 24
then we use the geometric mean theorem for right-angled triangles
height = sqrt(p×q)
with p and q being the parts of the Hypotenuse.
so,
height = sqrt(8×24) = sqrt(192)
and now we can use Pythagoras
c² = a² + b²
with c being the Hypotenuse (the side opposite of the 90° angle), a and b are the legs,
to get HK.
HK² = height² + 24² = 192 + 576 = 768
HK = sqrt(768)
can someone please help me asap!!! ill mark brainlistt...
Answer:
Step-by-step explanation:
To solve this problem, we can use the formula for the Pythagorean theorem, which states that for any right triangle, the square of the length of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the lengths of the other two sides.
In this case, we are given the length of two sides of the triangle (the legs) and we need to find the length of the hypotenuse.
Let's label the sides of the triangle:
The shorter leg is the vertical side opposite the angle marked 55 degrees, so let's call it "a".
The longer leg is the horizontal side adjacent to the angle marked 55 degrees, so let's call it "b".
The hypotenuse is the side opposite the right angle, so let's call it "c".
Using trigonometry, we can determine the value of "a" and "b":
a = b * tan(55°) (since tangent = opposite/adjacent, we solve for opposite which is "a" in this case)
a = 100 * tan(55°) = 100 * 1.428 = 142.8
b = 100
Now, we can use the Pythagorean theorem to find the length of the hypotenuse:
c^2 = a^2 + b^2
c^2 = 142.8^2 + 100^2
c^2 = 20484.84 + 10000
c^2 = 30484.84
c = sqrt(30484.84)
c ≈ 174.6
Therefore, the length of the hypotenuse is approximately 174.6 units (the units are not given in the problem, but we can assume they are consistent with the units used for the given values of "a" and "b").
The problem does not specify the orientation or scale of the graph, but we can assume that it is a right triangle with the angle marked 55 degrees in the upper left corner.
The vertical side (the shorter leg) of the triangle should be labeled with a length of approximately 142.8 units (assuming the units used for the problem are consistent with the values given for "a" and "b"). The horizontal side (the longer leg) should be labeled with a length of 100 units.
The hypotenuse (the side opposite the right angle) should be drawn as a diagonal line connecting the endpoints of the vertical and horizontal sides. The hypotenuse should be labeled with a length of approximately 174.6 units.
The angle marked 55 degrees should be labeled as such, and the other two angles of the triangle (the right angle and the angle opposite the longer leg) should be labeled accordingly.
Change the following equation of a line into slope-intercept form.
y + 4 = 2x
Answer:
Step-by-step explanation:
[tex]y=2x-4[/tex] (slope-intercept form is [tex]y=mx+b[/tex] where m=gradient
and b is where line intercepts y-axis)
A binomial probability experiment is conducted with the given parameters. Compute the probability of x successes in the
n independent trials of the experiment.
n=9, p=0.4, x$3
The probability of x ≤ 3 successes is
. (Round to four decimal places as needed.)
The probability of x successes in n independent trials of the experiment is given by the Binomial probability formula, where n is the total number of trials and p is the probability of success in each trial.
Since n = 9 and p = 0.4, we can calculate the probability of x ≤ 3 successes as follows:
P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)
= (9C0)(0.4)^0(0.6)^9 + (9C1)(0.4)^1(0.6)^8 + (9C2)(0.4)^2(0.6)^7 + (9C3)(0.4)^3(0.6)^6
= 0.17496 + 0.41472 + 0.36608 + 0.04320
= 0.99976
Therefore, the probability of x ≤ 3 successes is 0.99976.
What is the meaning of "the homotopy classes of paths from x to x in a space X"?
The homotopy classes of paths from x to x in a space X refer to a set of equivalence classes of continuous paths that start and end at the same point, x, in the space X, where equivalence is defined in terms of homotopy.
What is the homotopy about?In other words, for any two paths, there exists a continuous transformation (called a homotopy) between them such that the endpoints remain fixed. Two paths are said to be homotopic if they can be continuously deformed into each other while keeping their endpoints fixed. The set of all paths that are homotopic to each other forms an equivalence class.
The homotopy classes of paths from x to x are important in algebraic topology, as they provide a way to study the topological structure of a space by analyzing the properties of the paths within it. They can also be used to define higher algebraic structures such as the fundamental group and higher homotopy groups.
Learn more about paths on;
https://brainly.com/question/17106945
#SPJ1
help plsss
Mitsugu has one quiz each week in math class. The table gives the probability of having a quiz on each day of the week. What is the probability that Mitsugu will have a quiz Wednesday, Thursday, or Friday? Express your answer as a percentage.
The likelihood that Mitsugu will have a quiz on Wednesday, Thursday, or Friday is 0.57, or 57%, based on the facts given.
What does arithmetic probability mean?To determine how probable something is to occur, use probability. Many things are difficult to forecast with absolute precision. Using it, we can only make predictions about how probable an occurrence is to happen, or its chance of happening.
Let's first examine each day's specific probabilities:
Wednesday: 0.16Thursday: 0.21Friday: 0.20Now, all we have to do to determine the overall chance is combine the partial probabilities that were previously provided, as shown below:
0.16 + 0.21 + 0.20 = 0.57
Finally, to determine the chance as a percentage, multiply this figure by 100:
0.57 x 100 = 57%
To know more about Probability visit:
https://brainly.com/question/13604758
#SPJ1
to calculate the workload of a resource that serves different flow unit types, one must know which of the following?
The workload of the resource is 20.5 units.
To calculate the workload of a resource that serves different flow unit types, one must know the amount of flow units, the processing time for each flow unit, and the number of resources available. This is best calculated using Little's Law, which states that the average number of flow units in a system is equal to the average rate of flow units multiplied by the average time they spend in the system.
For example, if a resource is serving 3 flow unit types, A, B and C, with 10, 8 and 5 units respectively, and a processing time of 2 minutes, 1 minute and 3 minutes respectively, with 2 resources available, the workload can be calculated as follows:
Workload = (10*2 + 8*1 + 5*3) / 2
= 41 / 2
= 20.5 units
Therefore, the workload of the resource is 20.5 units.
Learn more about average time here:
https://brainly.com/question/23692925
#SPJ4
Complete question
What are the flow unit types that the resource is serving?
let be the space spanned by the two functions and . find the matrix of the linear transformation from into itself with respect to the basis .
When space is spanned by the two functions of linear transformation from into itself with respect to the basis we need to apply T to each basis vector vi to get the column vectors T(vi) = [T(vi)]B.
where [T(vi)]B is the coordinate vector of T(vi) with respect to the basis B. Arrange the column vectors [T(v1)]B, [T(v2)]B, ..., [T(vn)]B into a matrix. This matrix is the matrix of T with respect to the basis B.
In this case, you have two functions that span a vector space, so you need to specify the basis B. Once you have chosen the basis, you can apply the above steps to find the matrix of the linear transformation.
To learn about linear transformation visit:
https://brainly.com/question/30585642
#SPJ4
. If h> 3 and h - 2g= 0, which of
the following must be true?
A. g> 2.5
B. g> 1.5
C. g <0.5
D. g <1.5
E. g>2
By linear equality , g >1.5 is must be true.
What are equality and inequality along a line?
Equal (=) is the symbol used in linear equations. Example. Using the inequality symbols (>,, is greater than or equal to, and is less than or equal to), linear inequalities are expressed.
x - 5 > 3x - 10 is an illustration of a linear inequality. As the larger than symbol is employed in this inequality, the LHS is strictly greater than the RHS. After being solved, the inequality appears as 2x 5 x (5/2).
If h> 3 and h - 2g= 0
H=2g
2g>3
g >1.5
Learn more about linear equality
brainly.com/question/11874554
#SPJ1
A school has 1800 pupils. 55% of the pupils are girls. 30% of the girls
and 70% of the boys travel by bus.
a) How may girls travel by bus?
b) How many boys travel by bus?
c) What percentage of the pupils travel by bus?
In linear equation, 65.625% of the pupils travel by bus.
What is linear equation?
A linear equation is a first-order (linear) term plus a constant in the algebraic form y=mx+b, where m is the slope and b is the y-intercept. The variables in the previous sentence, y and x, are referred to as a "linear equation with two variables" at times.
A) 1800 * 0.55 * 0.3 = 297 Girls.
B) 1800 * 0.45 * 0.7 = 567 boys
C) Girl
297/864 * 100% = 34.375%
boy -
567 ÷ (297 + 567 ) * 100% = 65.625%
864 = 297 + 567
Learn more about linear equation
brainly.com/question/11897796
#SPJ1
need some help on some questions
For the triangle ABC, the given trigonometric ratios are -
a. sin A = 8/17
b. cos A = 15/17
c. tan A = 8/15
d. tan B = 8/15
What is trigonometric ratio?
Triangle side length ratios are known as trigonometric ratios. In trigonometry, these ratios show how the ratio of a right triangle's sides to each angle. Sine, cosine, and tangent ratios are the three fundamental trigonometric ratios.
For a right-angled triangle ABC, the hypotenuse AB is given as 17.
The base CB is given as 15 and the perpendicular AC is given as 8.
The angle C is given to be 90°.
Using the given values of the sides of the right triangle ABC, we can calculate the trigonometric ratios as follows -
a. sin A = opposite/hypotenuse = AC/AB = 8/17 (reduced fraction)
b. cos A = adjacent/hypotenuse = CB/AB = 15/17 (reduced fraction)
c. tan A = opposite/adjacent = AC/CB = 8/15 (reduced fraction)
d. tan B = opposite/adjacent = AC/CB = 8/15 (reduced fraction)
Note that since angle C is 90°, angles A and B are acute angles, so their tangent ratios are equal to each other.
Therefore, the ratios expressed as reduced fractions are -
a. sin A = 8/17
b. cos A = 15/17
c. tan A = 8/15
d. tan B = 8/15
To learn more about trigonometric ratio from the given link
https://brainly.com/question/13276558
#SPJ1
Which is the solution to the inequality?
One-fourth + x less-than StartFraction 5 over 6 EndFraction
x less-than StartFraction 7 over 12 EndFraction
x greater-than StartFraction 7 over 12 EndFraction
x less-than 1 and StartFraction 1 over 12 EndFraction
x greater-than 1 and StartFraction 1 over 12 EndFraction
To satisfy the inequality x less-than StartFraction 7 over 12 EndFraction.
What is an Inequality?Inequalities are called as the mathematical expressions in which both sides are nonequal. Unlike to equations, we compare two values in inequality. Less than (or less than or equal to), greater than (or greater than or equal to), or not equal to signs can be used in place of the equal sign in between.
The inequality is 1/4 + x < 5/6 in order to solve this inequality we need to isolate the value of x, that is our variable of interest. This is shown bellow:
1/4 + x < 5/6
x < 5/6 - 1/4
LMC is used to subtract the fractions we have as follows:
x < (2*5 - 3*1)/12
x < (10 - 3)/12
x< 7/12
The inequality must be satisfied for x to be smaller than 7/12.
to know more about equation, visit:
https://brainly.com/question/10413253
#SPJ1
Answer: x < 7/12
Step-by-step explanation:
What the values of angles B and C?
The value of b is 73° as opposite angles of congruent sides are equal in an isosceles triangle.
What dοes a math angle mean?An angle is created by cοmbining twο rays (half-lines) that have a cοmmοn terminal. The angle's vertex is the latter, while the rays are alternately referred tο as the angle's legs and its arms.
What is fundamental angle?An angle within a shape that has the shape's base as οne οf its sides is knοwn as the base angle οf a shape in geοmetry. Cοnsider the triangle in the image as an example. We can οbserve that the triangle's base side is made up οf an angle B side and an angle C side. As a result, the triangle's base angles are angles B and C.
To know more about complimentary angles visit:-
brainly.com/question/20693383
#SPJ1
Question 2 of 3
Which subtraction equation shows how to subtract
4
2
12
−
2
8
12
using equivalent fractions? i need help
Answer:
Step-by-step explanation:
your given is not cleared repost it then post
How do you write 0.048 as a percentage?
Write your answer using a percent sign (%).
Answer:
0.048 in %
Step-by-step explanation:
firstly: remove the decimal point
= 48/1000
secondly : Simplify
48/1000*100
=48/10
=4.8%
you are computing a confidence interval for the difference in 2 population proportions. which of the following could be negative? select all.OP1Op 1 - 2Standard errorCritical valueLower bound of the confidence intervalUpper bound of the confidence interval
For the computation of confidence interval for the difference in two population proportions following are negative,
p₁(cap) - p₂(cap)
Lower bound of the confidence interval
Upper bound of the confidence interval
For the computation of confidence interval,
The difference in two population proportions,
p₁ - p₂, can be negative or positive.
This implies,
The sample estimate of the difference in proportions,
p₁(cap) - p₂(cap), can also be negative or positive.
The standard error and critical value are always positive values and cannot be negative.
The lower and upper bounds of the confidence interval can be negative or positive.
Depending on the sample estimate and the margin of error.
So, both the lower and upper bounds can be negative.
Learn more about confidence interval here
brainly.com/question/15049116
#SPJ4
The above question is incomplete, the complete question is:
You are computing a confidence interval for the difference in 2 population proportions. which of the following could be negative?
Select all.
a. p₁
b. p₁(cap) - p₂(cap)
c. Standard error
d. Critical value
e. Lower bound of the confidence interval
f. Upper bound of the confidence interval
Find the derivative of f(x) = -2x^3 by the limit process…
Answer:
f'(x) = -6x^2
f'(-5) = -150
f'(0) = 0
f'(√17) = -102
For which pair of functions is the exponential consistently growing at a faster rate than the quadratic over the interval 0 ≤ x ≤ 5?
One pair of functions that satisfies the given condition is:
Exponential function: [tex]f(x) = 1.46^x,[/tex] Quadratic function: [tex]g(x) = x^2[/tex]
What is expression ?In mathematics, an expression is a combination of numbers, variables, and mathematical operations such as addition, subtraction, multiplication, and division. Expressions can also include functions, brackets, and other symbols.
According to the given information:Let's consider the two functions:
Exponential function: [tex]f(x) = a^x, where a > 1[/tex]
Quadratic function: [tex]g(x) = x^2[/tex]
We want to find the pair of functions for which the exponential is consistently growing at a faster rate than the quadratic over the interval 0 ≤ x ≤ 5.
To determine this, we can compare the growth rates of the two functions by looking at their derivatives.
The derivative of the exponential function is:[tex]f'(x) = a^x * ln(a)[/tex]
The derivative of the quadratic function is: [tex]g'(x) = 2x[/tex]
To compare the growth rates of the two functions, we need to compare their derivatives. We want to find the value of x for which the exponential function is growing faster than the quadratic function, i.e., where f'(x) > [tex]g'(x).\\f'(x) > g'(x)\\a^x * ln(a) > 2x[/tex]
Now, we can solve for x:
[tex]a^x * ln(a) > 2xln(a)/2 * a^x > x[/tex]
Since we want to find the pair of functions for which the exponential is consistently growing at a faster rate than the quadratic over the interval 0 ≤ x ≤ 5, we need to find a value of a such that the inequality ln(a)/2 * [tex]a^5 > 5[/tex] is true for all values of a > 1.
We can use a graphing calculator or a numerical solver to find the value of a that satisfies this inequality. One possible solution is a ≈ 1.46.
Therefore, one pair of functions that satisfies the given condition is:
Exponential function: [tex]f(x) = 1.46^x,[/tex] Quadratic function: [tex]g(x) = x^2[/tex]
To know more about expression visit :
https://brainly.com/question/1859113
#SPJ1
The population of a certain city was 3,846 in 1996. It is expected to decrease by about 0.27% per year. Write an exponential decay function, and use it to approximate the population in 2022.
Answer:
To write an exponential decay function for this situation, we can use the formula:
P(t) = P₀e^(rt)
where:
P(t) = the population at time t
P₀ = the initial population
r = the annual rate of decrease (as a decimal)
t = time in years
We are given P₀ = 3,846 and r = -0.0027 (since the population is decreasing).
To approximate the population in 2022, we need to find t, the number of years from 1996 to 2022. That is:
t = 2022 - 1996 = 26 years
Now we can plug in the values we have:
P(t) = 3,846 e^(-0.0027t)
To find P(2022), we plug in t = 26:
P(26) = 3,846 e^(-0.0027(26))
≈ 3,200.62
Therefore, we can approximate the population of the city in 2022 to be about 3,201 people.
Answer:
3,101
Step-by-step explanation:
Please hit brainliest if this helped!
To write an exponential decay function for the population of the city, we can use the formula:
P(t) = P₀e^(-rt)
where P(t) is the population at time t, P₀ is the initial population, r is the decay rate, and e is the base of the natural logarithm.
In this problem, P₀ = 3,846 and r = 0.0027 (0.27% expressed as a decimal). We want to find the population in 2022, which is 26 years after 1996.To use the formula, we need to convert 26 years to the same time units as the decay rate. Since the decay rate is per year, we can use 26 years directly. Therefore, the exponential decay function for the population is:
P(t) = 3,846e^(-0.0027t)
To find the population in 2022 (t = 26), we substitute t = 26 into the function:
P(26) = 3,846e^(-0.0027*26) ≈ 3,101
Therefore, the population in 2022 is approximately 3,101.
Let me know if this helped by hitting brainliest! If you have any questions, comment below and I"ll get back to you ASAP.
Find the inverse of the function
Answer:
g(y) = √(3/2 y)
Step-by-step explanation:
To find the inverse of a function, we need to solve for x in terms of y and interchange x and y. That is, we need to write the given function f(x) = 2/3x^2 in the form y = 2/3x^2 and then solve for x in terms of y.y = 2/3x^2
Multiplying both sides by 3/2, we get:
3/2 y = x^2
Taking the square root of both sides, we get:x = ± √(3/2 y)
Note that we have two possible values of x for each value of y, because the square root can be either positive or negative. However, for a function to have an inverse, it must pass the horizontal line test, which means that each value of y can only correspond to one value of x.Therefore, we need to restrict the domain of the original function to ensure that it is one-to-one. The simplest way to do this is to take the range of the function and use it as the domain of the inverse function.The range of f(x) = 2/3x^2 is all non-negative real numbers, or [0, ∞). Therefore, we can define the inverse function g(y) as:
g(y) = ± √(3/2 y)
where we choose the positive square root to ensure that the function is one-to-one.Thus, the inverse of the function f(x) = 2/3x^2 is:
g(y) = √(3/2 y)
with domain [0, ∞).
Let me know if this helped by hitting brainliest! If you have a question, please comment below and I'll get back to you ASAP!
do you mind helping me with this?
Answer:
125
Step-by-step explanation:
We Take
625 / 5 = 125
So, the answer is 125
Let Vector r = LeftAngleBracket 4, negative 2, 1 RightAngleBracket.and Vector r = LeftAngleBracket 3, 4, negative 1 RightAngleBracket.. Select the graph that shows the correct representation of Vector r + vector s. and select the correct magnitude of the resulting vector. Check all that apply.
Use the vector law of addition to get the resulting vector is [tex](7i+2j-k)[/tex] and magnitude of resulting vector is [tex]3\sqrt{6}[/tex].
What is the resulting vector and its magnitude?
Vector addition can be defined as the sum of two or more vectors of corresponding components.
It is given that,
[tex]\vec{r}= < 4, -2 > \\\vec{s}= < 3,4,-1 >[/tex]
Given vectors can also be written as,
[tex]\vec{r}=4i-2j\\\vec{s}=3i+4j-k[/tex]
Add above vectors as follows:
[tex]\vec{r}+\vec{s}=(4i-2j)+(3i+4j-k)\\\\=(7i+2j-k)[/tex]
Therefore,
[tex]\vec{r}+\vec{s}= < 7,2,-1 >[/tex]
Show the resulting vector as follows:
Now calculate the magnitude of the vector [tex](\vec{r}+\vec{s})[/tex]
[tex]|\vec{r}+\vec{s}|=\sqrt{(7)^2+(2)^2+(-1)^2}\\=\sqrt{49+4+1}\\=\sqrt{54}\\=3\sqrt{6}[/tex]
Hence the resulting vector is [tex](7i+2j-k)[/tex] and magnitude of resulting vector is [tex]3\sqrt{6}[/tex].
To know more about vector visit:
https://brainly.com/question/29740341
#SPJ1
show that the properties of a probability distribution for a discrete random variable are satisfied.
The properties of a probability distribution for a discrete random variable ensure that the probabilities assigned to each possible value of the variable are consistent with the axioms of probability and allow for meaningful inference and prediction.
The properties of a probability distribution for a discrete random variable are.
The probability of each possible value of the random variable must be non-negative.
The sum of the probabilities of all possible values must equal 1.
The probability of any event A is the sum of the probabilities of the values in the sample space that correspond to A.
These properties are satisfied because the probabilities of each possible value of a discrete random variable are defined in such a way that they are non-negative and sum to 1. Additionally, any event A can be expressed as a collection of possible values of the random variable, and the probability of A is then computed as the sum of the probabilities of those values.
To know more about probability distribution:
https://brainly.com/question/14210034
#SPJ4
For the graph, find the average rate of change on the intervals given
See attached picture b
We cannot determine the actual value of the average rate of change without knowing the function f(x) or having a graph of the function.
Define the term graph?The visual representation of mathematical functions or data points on a Cartesian coordinate system is an x-y axis graphic. The vertical or dependent variable is represented by the y-axis, while the horizontal or independent variable is represented by the x-axis. The difference between the change in output values and the change in input values is known as the average rate of change of a function over a period.
Let's assume that the function is denoted by f(x). Then, the average rate of change on the interval (a, b) can be calculated as
average rate of change = (f(b) - f(a)) / (b - a)
Using this formula, we can calculate the average rate of change on the given intervals as follows:
For the interval (-3, -2):
average rate of change = [tex]\frac{[f(-2) - f(-3)]}{[-2 - (-3)]}[/tex]
For the interval (1, 3):
average rate of change = [tex]\frac{(f(3) - f(1))}{(3 - 1)}[/tex]
For the interval (-1, 1):
average rate of change = [tex]\frac{(f(1) - f(-1))}{ (1 - (-1))}[/tex]
Note that we cannot determine the actual value of the average rate of change without knowing the function f(x) or having a graph of the function. If you provide the function or the graph, I can help you find the actual values of the average rate of change on these intervals.
To know more about plot, visit:
https://brainly.com/question/30195492
#SPJ1
Find all the values of
arcsin −√3/2
Select all that apply:
a.π3
b.5π6
c.11π6
d.5π3
e.2π3
f.7π6
g.4π3
Answer:
g
Step-by-step explanation:
The given expression is arcsin (-√3/2), which represents the angle whose sine is equal to -√3/2. Recall that the range of the arcsin function is from -π/2 to π/2 radians, so we can narrow down the possible solutions to the second and third quadrants.
Since the sine function is negative in the third quadrant, we can start by considering the angle 4π/3, which is in the third quadrant and has a sine of -√3/2:sin(4π/3) = -√3/2
However, we need to check if there are any other angles in the second or third quadrants that satisfy the equation. Recall that sine is periodic with a period of 2π, so we can add or subtract any multiple of 2π to the angle and still obtain the same sine value.
In the second quadrant, we can use the reference angle π/3 to find the corresponding angle with a negative sine:
sin(π - π/3) = sin(2π/3) = √3/2
This angle does not satisfy the equation, so we can eliminate it as a possible solution.In the third quadrant, we can use the reference angle π/3 to find another possible solution:
sin(π + π/3) = sin(4π/3) = -√3/2
This confirms our initial solution of 4π/3, so the answer is (g) 4π/3.
Let me know if this helped by hitting brainliest! If you have a question, please comment and I"ll get back to you ASAP!
Answer:
We know that sin(π/3) = √3/2, so we can write:
arcsin(-√3/2) = -π/3 + 2nπ or π + π/3 + 2nπ
where n is an integer.
Therefore, the values of arcsin(-√3/2) are:
a. π/3 + 2nπ
c. 11π/6 + 2nπ
e. 2π/3 + 2nπ
f. 7π/6 + 2nπ
So, options a, c, e, and f are all correct.
The cost of manufacturing a molded part is related to the quantity produced during a production run. When 100 parts are produced, the cost is $300. When 104 parts are
produced, the cost is $324. What is the average cost per part?
OA $0.23 per part
B. $6 per part
OC. $0.17 per part
OD. $7 per part
Answer:
B. $6 per part
Step-by-step explanation:
The average cost per part can be computed as follows
Average Cost = (324-300)/(104-100)
= 24/4
=$6
Answer: B. $6 per part
G For each ordered pair, determine whether it is a solution to the system of equations. 9x+2y=-5 2x-3y=-8 (x, y) (1, -7) (0, -4) (5,6) (-1,2) Is it a solution? Yes No X 5
Answer:
Math Quotient Verification
G For each ordered pair, determine whether it is a solution to the system of equations. 9x+2y=-5 2x-3y=-8 (x, y) (1, -7) (0, -4) (5,6) (-1,2) Is it a solution? Yes No X 5
To check if an ordered pair is a solution to a system of equations, we substitute the values of x and y into both equations and see if both equations are satisfied.
Let's check each ordered pair one by one:
(1, -7):
9x + 2y = -5 becomes 9(1) + 2(-7) = -5, which is false.
2x - 3y = -8 becomes 2(1) - 3(-7) = -8, which is true.
Therefore, (1, -7) is not a solution to the system of equations.
(0, -4):
9x + 2y = -5 becomes 9(0) + 2(-4) = -8, which is false.
2x - 3y = -8 becomes 2(0) - 3(-4) = 12, which is false.
Therefore, (0, -4) is not a solution to the system of equations.
(5, 6):
9x + 2y = -5 becomes 9(5) + 2(6) = 41, which is false.
2x - 3y = -8 becomes 2(5) - 3(6) = -8, which is true.
Therefore, (5, 6) is not a solution to the system of equations.
(-1, 2):
9x + 2y = -5 becomes 9(-1) + 2(2) = -11, which is false.
2x - 3y = -8 becomes 2(-1) - 3(2) = -8, which is true.
Therefore, (-1, 2) is not a solution to the system of equations.
Therefore, the answer is "No" for all the ordered pairs given in the problem.
(please mark my answer as brainliest)
in the right triangle what is the value of X? 30 24 X
Answer:
x = 21
Step-by-step explanation:
Given the angle measurements of two angles, we can deduce that this is a 30-60-90 triangle. The formula for side lengths of this type of triangle is given by s → s√3 → 2s with s being the shortest side (the side opposite the 30° angle).
We are looking for the side length represented by s[tex]\sqrt{3}[/tex]. We can see that the hypotenuse is represented by 2s, so...
2s = 24
s = 12
The side length of the shortest side is 12. Therefore, we can say that
x = s [tex]\sqrt{3}[/tex]
x = 12 * [tex]\sqrt{3}[/tex]
x = 20.785
The question asks for our answer to the nearest whole number, so
x = 21
93. Electricity Usage The graph shows
the daily megawatts of electricity used
on a record-breaking summer day in
Sacramento, California.
(a) Is this the graph of a function?
(b) What is the domain?
(c) Estimate the number of megawatts
used at 8 A.M.
(d) At what time was the most electric-
ity used? the least electricity?
(e) Call this function f. What is f(12)?
Interpret this answer.
(f) During what time intervals is usage
increasing? decreasing?
The graph that shows the electricity usage on a record-breaking summer day is Sacramento, California is a function.
The domain is 24 hours of a day.
The number of megawatts used at 8 am is 1, 200 megawatts.
The time with the most electricity used was 4 pm to 6 pm and least used was 4 am.
f ( 12 ) would be 1, 900 megawatts.
Usage is increasing from 4 am to 5 pm and decreasing from 5 pm to 4 am.
What does the graph show ?The graph is a function because each point on the graph represents a distinct megawatt usage. The domain would be 24 hours of a day as this graph of electricity usage shows the usage per day.
The megawatts used at 8 am is:
= 1, 300 - ( 200 / 2 )
= 1, 200 megawatts
From 4 am to 5 pm, we see that electricity usage is increasing as people are getting ready for work and going to work, but from 5 pm to 4 am, electricity usage decreases.
Find out more on graphs at https://brainly.com/question/21444630
#SPJ1
Line AB contains point A(1, 2) and point B (−2, −1). Find the coordinates of A′ and B′ after a dilation with a scale factor of 5 with a center point of dilation at the origin
The coordinates of A' and B' after a dilation with a scale factor of 5 and a center point of dilation at the origin are A'(5, 10) and B'(-10, -5), respectively.
How to find dilated coordinate of A and B?To find the coordinates of the points A' and B' after a dilation with a scale factor of 5 and a center point of dilation at the origin, we can use the following formula:
[tex]$$(x', y') = (5(x - 0), 5(y - 0)) = (5x, 5y)$$[/tex]
where (x, y) are the original coordinates of the point, and (x', y') are the new coordinates after the dilation.
For point A(1, 2), the new coordinates A' are:
[tex]$$(x_A', y_A') = (5(1), 5(2)) = (5, 10)$$[/tex]
Therefore, the coordinates of point A' are (5, 10).
For point B(-2, -1), the new coordinates B' are:
[tex]$$(x_B', y_B') = (5(-2), 5(-1)) = (-10, -5)$$[/tex]
Therefore, the coordinates of point B' are (-10, -5).
Therefore, the coordinates of A' and B' after a dilation with a scale factor of 5 and a center point of dilation at the origin are A'(5, 10) and B'(-10, -5), respectively.
To know more about Dilation factor visit:
brainly.com/question/10617018
#SPJ1