Answer:
x=-6
Step-by-step explanation:
For the rational expression, 6x/(x+6) to be undefined, the denominator need to be 0, so x=-6 is the point at which the function is undefined.
The rational expression 6x / (x + 6) is undefined when x equals -6, and it is defined for all other real numbers.
To find the real numbers for which the rational expression 6x / (x + 6) is undefined, we need to identify the values of x that would make the denominator equal to zero. When the denominator is zero, the expression becomes undefined.
In this case, the denominator is (x + 6). Setting the denominator equal to zero, we have:
x + 6 = 0
Solving for x, we subtract 6 from both sides:
x = -6
Therefore, the rational expression 6x / (x + 6) is undefined when x = -6.
When x is equal to -6, the denominator becomes zero, which causes division by zero. Division by zero is undefined in mathematics. Hence, for x = -6, the rational expression is not defined.
For any other real numbers other than x = -6, the expression is defined and can be simplified or evaluated.
To learn more about the function;
brainly.com/question/28303908
#SPJ6
A local school board member randomly sampled private and public high school teachers in his district to compare the proportions of National Board Certified (NBC) teachers in the faculty. The results were:
Answer:
0.025 ;
(-0.7198 ; 0.7698)
Step-by-step explanation:
From the table :
_____________ private schls ___ public schls
Sample size, n _____ 80 __________ 520
P, NBC teachers ___ 0.175 ________ 0.150
P1 = P of private school teachers
P2 = P of public school teachers
Difference in proportion :
P1 - P12 = 0.175 - 0.150.= 0.025
The 90% confidence interval for 2 - sample proportion :
C.I = (p1-p2) ± [Zcritical * √(p1(1-p1)/n1 + (p2(1-p2)/n2)]
Zcritical at 90% = 1.645
C.I = 0.025 ± [1.645 * √((0.175*0.825)/80 + (0.150*0.850)/520)]
C.I = 0.025 ± [1.645 * √(0.0018046875 + 0.0002451)]
C.I = 0.025 ± 1.645 * 0.0452755
C.I = 0.025 ± 0.07448
C.I = (-0.7198 ; 0.7698)
Given the triangle below, what is the length of the third side, rounded to the nearest whole number?
Answer:
Step-by-step explanation:
You need the Law of Cosines for this, namely:
[tex]x^2=21^2+14^2-2(21)(14)cos58[/tex] where x is the missing side.
[tex]x^2=441+196-311.5925[/tex] and
[tex]x^2=325.4075[/tex] so
x = 18.0 or just 18
What is force? How is it measured? Write any two effects of force
Answer: Please refer to:
- A force is a push or pull upon an object resulting from the object's interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects. ... Forces only exist as a result of an interaction.
- Force is a vector quantity, with both direction and magnitude. It is defined as Mass x Acceleration = Force.
+ The SI unit of force is the newton (N); defined as the unit of force which would give to a mass of one kilogram an acceleration of 1 meter per second squared.
- two effects of force:
+ It can change the state of movement of the body on which force is applied, i.e. it can move a stationary object or stop a moving object.
+ It can change the shape and size of an object.
Step-by-step explanation:
I'm not sure but hope it helps.
Please help! Thank you.
Answer:
B at -1 minus we go to - ∞
at -1 plus we to + ∞
Step-by-step explanation:
x^2 -x
g(x) = ---------
x+1
Factor out x
x(x-1)
g(x) = ---------
x+1
As x is to the left of -1
x is negative (x-1) is negative
x+1 will be slightly negative
g(-1 minus) = -*-/ - = - and we know that the denominator is very close to zero we are close to infinity so we go to - ∞
As x is to the right of -1
x is negative (x-1) is negative
x+1 will be slightly positive
g(-1 plus) = -*-/ + = + and we know that the denominator is very close to zero we are close to infinity so we go to ∞
I NEED HELP THANK YOU!!
Answer:
rt3/2
Step-by-step explanation:
first off cosine is the x coordinate
now if you do't want to use a calculator, you can use use the unit circle.
360 - 330 = 30 (360 degrees is a whole circle)
a 30 60 90 triangle is made, then use the law for 30 60 90 triangles:
if the shortest leg is x, the other leg is x*rt3 and the hypotenuse is 2x.
Answer:
D
Step-by-step explanation:
cos 330 = cos (360-330)
= cos 30
= √3 /2
Find the missing side round your answer to the nearest tenth
Answer:
x=13.2
Step-by-step explanation:
cos(43)=x/18
x=18×cos(43)
x=13.2
Answered by GAUTHMATH
Tay–Sachs Disease Tay–Sachs disease is a genetic disorder that is usually fatal in young children. If both parents are carriers of the disease, the probability that their offspring will develop the disease is approximately .25. Suppose a husband and wife are both carriers of the disease and the wife is pregnant on three different occasions. If the occurrence of Tay–Sachs in any one offspring is independent of the occurrence in any other, what are the probabilities ofthese events?
a. All three children will develop Tay–Sachs disease.
b. Only one child will develop Tay–Sachs disease.
c. The third child will develop Tay–Sachs disease, given that the first two did not.
Answer:
a) 0.0156 = 1.56% probability that all children will develop the disease.
b) 0.4219 = 42.19% probability that only one child will develop the disease.
c) 0.1406 = 14.06% probability that the third children will develop the disease, given that the first two did not.
Step-by-step explanation:
For each children, there are only two possible outcomes. Either they carry the disease, or they do not. The probability of a children carrying the disease is independent of any other children, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
The probability that their offspring will develop the disease is approximately .25.
This means that [tex]p = 0.25[/tex]
Three children:
This means that [tex]n = 3[/tex]
Question a:
This is P(X = 3). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 3) = C_{3,3}.(0.25)^{3}.(0.75)^{0} = 0.0156[/tex]
0.0156 = 1.56% probability that all children will develop the disease.
Question b:
This is P(X = 1). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 1) = C_{3,1}.(0.25)^{1}.(0.75)^{2} = 0.4219[/tex]
0.4219 = 42.19% probability that only one child will develop the disease.
c. The third child will develop Tay–Sachs disease, given that the first two did not.
Third independent of the first two, so just multiply the probabilities.
First two do not develop, each with 0.75 probability.
Third develops, which 0.25 probability. So
[tex]p = 0.75*0.75*0.25 = 0.1406[/tex]
0.1406 = 14.06% probability that the third children will develop the disease, given that the first two did not.
Solve the equation. - 2(2x-4)= 4x
Answer:
-2(2x-4) = -4x+8 or 2(2x-4) ≠ 4x ; -4x+8 ≠ 4x
Step-by-step explanation:
Did you accidentally write =4x after your expression? If so, then let me explain why my answer is correct. I used distributive property of multiplication, so I multiplied -2 with 2x to get -4x, and -2 multiplied with -4 to get 8. So my final answer was -4x+8. If you did not accidentally put -4x, then my answer would be, 2(2x-4) ≠ 4x or -4x+8 ≠ 4x. Hope this helped.
Is the relationship shown by the data linear? If so, model the data with an equation.
Answer:
4th option
Step-by-step explanation:
The relationship is linear,
putting the value of x in the right side of the equation of option 4, you'll get the value of the left side
putting, x=1
y+4=-1/2(x-1)
y=-1/2(1-1)-4
y=-4
putting, x=7
y+4=-1/2(7-1)
y=-1/2(6)-4
y=-6/2-4
y=-3-4
y=-7
If P is (-5, 4) and Q is (7, -5), what is 2/3 of that?
Answer: 10
Step-by-step explanation:
Sqrt (7- -5)^2+(-5-4)^2 =
Sqrt (12)^2+(-9)^2 =
Sqrt 225 = 15
2/3 * 15 = 30/3 = 10
Divide p(x)=x^3-4x^2+x+6 by (x-3). Find the remainder and the quotient.
Answer:
Quotient is x² - x - 2
Remainder is 0
What is the difference between squaring and cubing a value?
Answer:
squaring a number is multiplying it by itself twice and cubing a number is multiplying the number three times itself
Step-by-step explanation:
for example 2²=2×2
=4
and 2³=2×2×2
=8
write your answer in simplest radical form
Answer:
[tex]9\sqrt{3}[/tex]
Step-by-step explanation:
This is a 30-60-90 triangle.
It's good to remember this. The side length opposite to the 60 degree angle is always the base multiplied by [tex]\sqrt{3}[/tex]
Answer:
9√3.
Step-by-step explanation:
tan 60 = √3
So w/9 =√3
w = 9√3
Ivan invests $5,000 into an account with a 3.5% interest that is compounded semi-annually.
How much money will he have in this account if he keeps it for 15 years?
9514 1404 393
Answer:
$8414
Step-by-step explanation:
The compound interest formula is useful for this.
A = P(1 +r/n)^(nt)
where P is the principal invested at annual rate r compounded n times per year for t years. A is the ending balance.
A = $5000(1 +0.035/2)^(2·15) = $5000·1.0175^30 ≈ $8414.00
Ivan will have $8414 in his account after 15 years.
A certain marathon has had a wheelchair division since 1977. An interested fan wondered who is faster: the men's marathon winner or the women's wheelchair marathon winner, on average. A paired t-test was performed on data from a random selection of 15 of the marathons to determine if there was evidence to indicate that the women's winning wheelchair time is faster than the men's winning running time, on average. What must be true about the population of differences in the women's wheelchair winning times and men's winning times at this marathon for conclusions from the paired t-test to be valid? Choose the correct answer below. A. The distribution of sample means of the differences will be approximately normal if there are at least 30 years of data in the sample and/or if the population of differences in winning times for all years is normal. B. Because there were at least 5 years of observations, the distribution of sample means of the differences will be approximately normal by the Central Limit Theorem. C. Because the sample size is large enough, the distribution of differences for all years will be normal. D. Because of the small sample size of differences in winning times between the women's wheelchair winner and the men's running winner, the distribution of sample means of the differences cannot be normal.
Answer:
A. The distribution of sample means of the differences will be approximately normal if there are at least 30 years of data in the sample and/or if the population of differences in winning times for all years is normal.
Step-by-step explanation:
In other to perform a valid paired test, one of the conditions required is that, data for both groups must be approximately normal. To attain normality, the population distribution for the groups must be normal or based on the central limit theorem, the sample size must be large enough, usually n > 30. Hence, once either of the two conditions are met, the paired sample will be valid.
What are the zeros of the polynomial function f(x)=x3-7x2+8x+16
Answer: x=4, -1
Step-by-step explanation:
Assuming you meant [tex]x^3-7x^2+8x+16[/tex], the zeros of the question are x = 4 and -1.
Step 1. Replace f(x) with y.
[tex]y = x^3-7x^2+8x+16[/tex]
Step 2. To find the roots of the equation, replace y with 0 and solve.
[tex]0 = x^3-7x^2+8x+16[/tex]
Step 3. Factor the left side of the equation.
[tex](x-4)^2 (x+1)=0[/tex]
Step 4. Set x-4 equal to 0 and solve for x.
[tex]x-4=0[/tex]
Step 5. Set [tex]x+1[/tex] equal to 0 and solve for x.
[tex]x=-1[/tex]
The solution is the result of [tex]x-4=0[/tex] and [tex]x+1=0[/tex].
[tex]x=4,-1[/tex]
Which equation can she use as statement 5? 60:x = 48:(48 + 36) 60 + x = 48 + 36 60 − x = 48 − 36 60:(60 + x) = 48:(48 + 36)
Determine what type of transformation is represented.
A. none of these
B. reflection
C. dilation
D. rotation
Answer:
The answer is "Option D"
Step-by-step explanation:
In a rotation, an item is rotated around with a known location. Clockwise or anticlockwise spinning is possible. Rotation centers are spherical geometry in space where rotation occurs. The direction of inclination is the indicator of the total rotation made. Rotary point refers to that part point of a figure around which it is revolved.
The sum of four
consecutive odd number is 8o. Find the number
Answer:
The sum of 4 consecutive odd number is 80
Let X be the first of these numbers
Then the next odd number is X+2
The third is X+4The fourth is X+6
All of these add up to 80
(X) + (X+2) + (X+4) + (X+6) = 80
Using the commutative and associative laws, let's transform this equation into
(X + X + X + X) + (2 + 4 + 6) = 804X + 12 = 80
Subtract 12 from both sides of the equation gives4X = 68
Divide both sides by 4 gives
X = 17
Going back to the original question:What are the 4 consecutive odd numbers: 17, 19, 21, 23Checking our answer:17 + 19 + 21 + 23 = 80 Correct!
If a person invested half of her money at 9% and half at 7% and received $160 interest, find the total amount of money invested.
Answer:
$2000
Step-by-step explanation:
let x be the money she invested
lets assume this was for 1 year
0.09(x/2) + 0.07(x/2) = 160
multiply each side by 2 to cancel the denominators:
0.09x + 0.07x = 320
0.16x = 320
x = 2000
Answer: $2000
Let the amount of money she invested be x
Lets assume the time of investment as 1 year
ATQ
0.09(x/2) + 0.07(x/2) = 160
0.09x + 0.07x = 320
0.16x = 320
x = 2000
Must click thanks and mark brainliest
I need help ASAP thank you guys
Answer:
The fraction is undefined when x=-2
Step-by-step explanation:
The fraction will be undefined when the denominator is zero
x+2 = 0
x+2-2 = 0-2
x = -2
The fraction is undefined when x=-2
Answer:
as to me 5
Step-by-step explanation:
ask someone else to say that I am not sure if you have any questions or need any further information please contact me at the end of the world
find the solution to the system of equations.
y= -7x + 3
y= -x - 3
Answer:
x = 1 y = -4
Step-by-step explanation:
-7x + 3 = -x - 3
-7x = -x - 6
-6x = -6
x = 1
y = - (1) - 3
y = -1 - 3
y = -4
The distance from the plane to the building __ meters
Answer:
1200 ×90÷8 is not correct ans
A line is perpendicular to the line y = 4x - 3 and has x-intercept (2,0). Which of the following is an equation of the line?
Answer:
y = -1/4x+1/2
Step-by-step explanation:
y = 4x - 3
This is in slope intercept form, y = mx+b where the slope is m
The slope is 4
Perpendicular lines have slopes that are negative reciprocals
-1/4 is the slope of the perpendicular line
y = -1/4x+b
Using the point (2,0)
0 = -1/4(2)+b
0 = -1/2+b
b = 1/2
y = -1/4x+1/2
Square root 1.000441
Answer: 1.00022048
Step-by-step explanation:
16)dry air is trapped in a narrow uniform glass tube by a mercury pellet of length 25cm .when the tube is placed vertical with the open end um long.what is the external pressure if the column of air becomes 40 cm in length when inverted ? . ( required answer = 74cm hg )
Step-by-step explanation:
Ru Tu yulyryosuyyyhlsgjpcbmb kvjvlcykxnlvdlbvhck
chgkbhlxyovk m.
chchhlzixhvkh
A certain model of automobile has its gas mileage (in miles per gallon, or mpg) normally distributed, with a mean of 28 mpg and a standard deviation of 4 mpg. Find the probability that a car selected at random has the following gas mileages. (Round your answers to four decimal places.) (a) less than 26 mpg (b) greater than 34 mpg (c) between 22 and 34 mpg
Answer:
Step-by-step explanation:
We are finding the probability, which is a percentage, of each of these intervals on our standard bell curve. In order to find this percentage, we need to find the z-score that provides this percentage. To find the z-score:
[tex]z=\frac{x_i-\bar{x}}{\sigma}[/tex] which is the number in question minus the mean, all divided by the standard deviation. We're first looking for the probability that the gas mileage on a certain model of car is less than 26 mpg.
To find this z-score:
[tex]z=\frac{26-28}{4}=-.5[/tex] Depending upon which table you look at for the z-score determines how you will find it. The z-score that measure from the value and to the left of it is what we need. This decimal is .3085375, or 30.8538%.
Onto b., which is for the percentage of cars that have gas mileage over 34 mpg. Find the z-score, and this time, we look to the right of the value for the percentage:
[tex]z=\frac{34-28}{4}=1.5[/tex] and to the right of 1.5 standard deviations we will find .0668072, or 6.68072%
Then finally c., which wants the probability that the gas mileage on one of these cars is greater than 22 but less than 34 mpg. To do this we have to find the z-scores of each and then do some subtracting. First the z-scores:
[tex]z=\frac{22-28}{4}=-1.5[/tex] The percentage of data that lies to the right of that z-score is .9331927
The z-score for the other value, 34, was already found as 1.5, having .0668072 of the data to the right of that z-score. We subtract the smaller from the larger to determine what's left in-between:
.9331972 - .0668072 = .86639, or as a percentage, 86.639% of the cars fall into this interval for gas mileage.
7(a-1)=45 what is the answer to that equation????
Answer: a = 52/7
Step-by-step explanation:
remove the parentheses, move the constant to the right, calculate, then divide both sides
Answer:
The answer is, a = 52/7, or a = 7.42 in decimal form
Follow the steps below for better explanation:
Which of the following pairs of functions are inverses of each other?
A. f(x) = 5 + x and g(x) = 5 - x
B. f(x) = 2x -9 and g(x)=x+9/2
C. f(x) = 3-6 and g(x)=x+6/2
D. f(x)= x/3+4 and g(x) = 3x - 4
The pair of functions that are inverses of each other is B. f(x) = 2x - 9 and g(x) = x + 9/2.
To determine if two functions are inverses of each other, we need to check if the composition of the functions results in the identity function, which is f(g(x)) = x and g(f(x)) = x.
Let's analyze the given options:
A. f(x) = 5 + x and g(x) = 5 - x
To check if they are inverses, we compute f(g(x)) = f(5 - x) = 5 + (5 - x) = 10 - x, which is not equal to x. Similarly, g(f(x)) = g(5 + x) = 5 - (5 + x) = -x, which is also not equal to x. Therefore, these functions are not inverses.
B. f(x) = 2x - 9 and g(x) = x + 9/2
By calculating f(g(x)) and g(f(x)), we find that f(g(x)) = x and g(f(x)) = x, which means these functions are inverses of each other.
C. f(x) = 3 - 6 and g(x) = x + 6/2
Similar to option A, we compute f(g(x)) and g(f(x)), and find that they are not equal to x. Hence, these functions are not inverses.
D. f(x) = x/3 + 4 and g(x) = 3x - 4
After evaluating f(g(x)) and g(f(x)), we see that f(g(x)) = x and g(f(x)) = x. Therefore, these functions are inverses of each other.
In summary, the pair of functions that are inverses of each other is B. f(x) = 2x - 9 and g(x) = x + 9/2.
Learn more about function here:
https://brainly.com/question/782311
#SPJ8
f=((-1,1),(1,-2),(3,-4)) g=((5,0),(-3,4),(1,1),(-4,1)) find (f/g)(1)
9514 1404 393
Answer:
-2
Step-by-step explanation:
(f/g)(1) = f(1)/g(1) = -2/1 = -2
__
The value of f(1) is the second number in the ordered pair (1, -2) that is part of the definition of function f. Similarly, for g, we look for the ordered pair that has 1 as its first value. The second value is g(1).